J Internet Serv Appl (2012) 3:291-310
DOI 10.1007/s13174-012-0065-z

SI: MIDDLEWARE °10 BEST WORKSHOP PAPERS

Jano: location-privacy enforcement in mobile and pervasive
environments through declarative policies

José Simao - Carlos Ribeiro - Paulo Ferreira -

Luis Veiga

Received: 8 August 2011 / Accepted: 16 July 2012 / Published online: 17 October 2012

© The Brazilian Computer Society 2012

Abstract Today there are many location technologies pro-
viding people or object location. However, location privacy
must be ensured before providing widely disseminated loca-
tion services. Privacy rules may depend not only on the
identity of the requester, but also on past events such as
the places visited by the person being located, or previ-
ous location queries. Therefore, location systems must sup-
port the specification and enforcement of security policies
(including history-based) allowing users to specify when,
how and whom may know their location. We propose a mid-
dleware platform named Jano [Jano (or JANVS in latin) is
the god of doors and gates in the roman mythology. He is
usually depicted with two or four faces turning in opposite
directions.] supporting both pull and push location requests
while enforcing configurable security policies. Policies are
specified using the Security Policy Language, SPL, facili-
tating the use of well-known security models. In particular,
Jano supports history-based policies applied to person’s
or object’s location. Jano implementation integrates sev-
eral location technologies (e.g. GPS, RFID, etc.) and deals
with the related heterogeneity aspects. It provides a web-
based interface that facilitates policy specification, and its

J. Simao

Instituto Superior de Engenharia de Lisboa,
Rua Conselheiro Emidio Navarro No.1,
1959-007 Lisbon, Portugal

e-mail: jsimao@cc.isel.pt

J. Simdo - C. Ribeiro - P. Ferreira - L. Veiga (<)
Instituto Superior Técnico, UTL / INESC-ID Lisboa,
Rua Alves Redol No.9, 1000-029 Lisbon, Portugal
e-mail: luis.veiga@inesc-id.pt

C. Ribeiro

e-mail: carlos.ribeiro@inesc-id.pt

P. Ferreira
e-mail: paulo.ferreira@inesc-id.pt

evaluation shows good performance, embodying a number
of optimizations regarding bandwidth, process and storage
savings.

Keywords Location-awareness - Privacy - Declarative
policies - Security - Middleware

1 Introduction

Being able to locate someone or something has been a need
over the times. Today, as in the past, the reasons why location
is needed are multiple. We may wish to know where we are
for self orientation. We may want to know where other per-
sons or objects are located so that we can meet or find them,
respectively. Finally, and more recently, our location could
also be used by third-party applications to send us contex-
tual information (e.g., receiving advertisements related to the
shop we are arriving at [31], or to obtain detailed information
about the work of art we stand by at a museum).

Even though the above-mentioned location-based appli-
cations are varied and very useful, privacy arises as a main
concern. As a matter of fact, privacy is a necessary condition
for freedom, in the sense that where we are and who we are
with, is related to what we are doing. The possibility of being
located by others raises the question: “Who, and under what
condition, may someone be allowed to locate me or know
I am nearby?”. This can be as simple as restricting a time
interval; for example: “Bob can only locate Alice between 10
a.m. and 4 p.m.”. Sometimes, the decision is not only based
on the present situation but also on past events. For exam-
ple, Alice may accept to disclose her location at isolated
instants but not being tracked, i.e., reveal several locations in
sequence. In addition to the previous situation (e.g., knowing
the location of Alice) there are cases in which it is important

@ Springer

292

J Internet Serv Appl (2012) 3:291-310

thatauser, e.g., Bob, is notified of some location-related event
such as “Alice has arrived at the campus”. Finally, when a
person wants to disclose her location, e.g. Alice, she may do
so with different precisions, depending on the requester or
the situation Alice is involved. For example, in an emergency
scenario, it is of utmost importance that Alice is located with
maximum precision; in contrast, Alice may only allow her
students to know her location with minimum precision (e.g.,
inside the campus or not).

To address all these scenarios, the location system must
be capable of responding to location requests but, at the same
time, evaluate each request and decide whether it is autho-
rized or not, based on some previously specified policy. Thus,
the goal of this work is as follows: for location-based services,
to support the specification and enforcement of complex
security policies, including those based on history events,
without compromising usability and performance. Such poli-
cies are to be defined and enforced on a location service that
supports both synchronous, i.e., pull, and asynchronous, i.e.,
push, requests.

It is worth noting that the goal stated above is to be attained
while providing a widely applicable solution, i.e., that can
be used in a generic location infrastructure. Thus, the pol-
icy monitor that enforces the above-mentioned policies can-
not be made as a group of static or built-in rules. As noted
in [7], organizations use different approaches and philoso-
phies to structure and configure their units and collaborators
(e.g., hierarchical, flat, etc.). Policies are to be defined inde-
pendently of the location system and taking into account the
existing organizational model of the site where location poli-
cies are to be enforced.

Given the dynamics of the location information, past
events are particularly important to consider. When a user
makes a query for someone’s location, or when he arrives at,
or leaves from any location, these events must be recorded
by the system with the goal of applying policies to them;
for example, “the administrator can know my location if
I am in a dangerous place for more than one hour”. The
way these events are represented and stored is crucial during
the evaluation of policies (history-based in this case) mainly
for performance and scalability reasons.

Other location services that enforce some notion of pri-
vacy [22,23] do not present an integrated solution to deal
with history-based policies. In some of them, responses to
push requests are also not handled as a first class issue, mak-
ing it hard to use location events produced by the location
service in the notification decision process.

This paper presents Jano, a generic multi-technology
Location Service, supporting the specification and capa-
ble of enforcing flexible declarative privacy policies on
the location of persons or objects. Location information is
gathered from an unlimited variety of sources. Two types
of queries are available: pull and push. While the former

@ Springer

answers with the last known location, the latter corresponds
to an asynchronous notification request (e.g., “Notify me by
e-mail when Alice arrives to room 19 after she has left the
cafeteria”). Thus, Jano supports two types of policies:

Access Control policies enforce the requirements of users
and owners of places regarding the disclosure of location
information. Such policies can be associated to users,
objects or places.

Notification policies are used to decide about the need for
a notification. They are associated to a user when a push
request is made.

The movement of persons and objects makes Jano gen-
erate location events which are evaluated by the above-
mentioned policies to determine if a notification is needed
and allowed.

To define both types of policies (access and notification)
Jano uses an extended version of the Security Policy Lan-
guage (SPL) [25]. SPL is a policy language particularly suit-
able for location services, because it allows the definition
of models comprised by elements specifically adapted to
location semantics; namely, SPL allows for the definition
of history-based policies which are an important element for
the definition of location policies. SPL is also system agnos-
tic which means that the representation of objects and events
can be adapted to the specification of the location system.

Regarding the precision of location information disclosure
(which depends on the requester or on the current situation, as
previously mentioned) in SPL, as in most authorization lan-
guages, one can only get this feature doing several queries
with decreasing precisions until one is accepted. Therefore,
we have extended SPL with an awareness operator. With
this operator, the policy designer (and he alone) can define a
logical expression or rule whose result may be used to deter-
mine the cause of a denied location request. When applied to
the precision of location, as in the previous examples, Jano
will only need to make one policy evaluation to determine if
maximum precision is allowed and, if not, with which preci-
sion can the request be satisfied, improving efficiency while
ensuring that there is no information leakage.

In summary, the contributions of this work are as follows:

(i) The specification and enforcement of privacy-related
security policies using a multi-model language (i.e., not
tied to any specific authorization model such as RBAC,
MAG, etc.) [25]. These policies can be made dependent
on history events without compromising usability and
performance.

(i) The implementation of an extensible and interoperable
tracking and notification mechanism, with the possibil-
ity to define complex notification conditions.

J Internet Serv Appl (2012) 3:291-310

293

(iii)) An extension to SPL logic and semantics, and core
implementation, to improve the performance of location
precision queries through the use of a new awareness
operator.

The rest of the paper is organized as follows. Section 2
describes the overall architecture of Jano, focusing on the
main components and their interactions. With increasing
detail, Sect. 3 presents the solution to ensure policy enforce-
ment, including the logics of history-based policies and the
modifications in SPL to support the new awareness operator.
Some of the implemented policies are described in Sect. 4
along with details about the implementation of Jano’s core.
Section 5 discusses the most relevant performance aspects of
Jano and presents a use case illustrating its functionality. In
Sect. 6, we discuss some related work. Section 7 concludes
the article.

2 Jano architecture

Figure 1 presents the high-level overall architecture of Jano.
Location applications request the user location and set notifi-
cation conditions. The Location Server collects information
from different sources (Location Generators); it works as
a Policy Enforcement Point (PEP) delegating to the Policy
Decision Point (PDP) (i.e., Rule Handler) the decision about
returning location requests and location events. The figure
also illustrates the workflow among all components.

Consider the following scenario. A Location Application,
e.g. a directory service, is used by Alice to ask where Bob,
her project mate, is located in campus (step 1). Jano evaluates
Bob’s policy (steps 2 and 3) and, if the request is accepted,
Bob’slocation is disclosed with a certain precision level (step
4). Later, Alice uses the campus notification service (another
example of a Location Application need) requesting to be
notified by Short Messaging Service (SMS) when the book
she ordered arrived at the reception desk after going through
the library for registration. These two kinds of interactions
with the Location Server are named pull and push requests,
respectively.

The latter kind of interaction (i.e., push requests) is pos-
sible because the Location Server produces two location

Location \ _Locatio
‘ Generators

N
@ Location
Rule Evaluate request| Server Pull/Push request
/" Location %
Handler [~ Location Location
[— N __Manager -
" SPL Policy ™ o Applications
Enforcer /| Decision [Nt?hﬁ.catlon Pull/Push response
® _Distributor @

Fig. 1 Jano architecture overview

events: i) A arrived at place P, and ii) A left place P, A
being a person or an object.

Location events are based on the information collected
from Location Generators. These components represent the
source of location information and have the responsibility of
translating it to a common hierarchical representation with
the following format:

< domain > / < sub-domainl > /.../ < sub-domainN > .

Although not fundamental for this work, such an hierar-
chical representation has some advantages when compared
to other approaches (which could also be used in Jano). As
a matter of fact, due to this hierarchical common format,
policies can be specified independently of the detail of the
low level positioning technologies employed, and are able to
encompass many locations with just a few rules.

Jano provides an efficient and adaptable Rule Handler,
named SPL Policy Enforcer, that enforces both Access Con-
trol Policies and Notification Policies. These policies are
associated to persons, objects and places. They regulate if a
pull or push response, can be given, controlling the disclosure
of location information. The Policy Enforcer applies access
control policies after a common policy is enforced. This com-
mon policy gives the opportunity for the site administrator
to enforce a set of common global rules; for example, “mail
objects can only be localized by their receivers and if the
object has already left the distribution department”.

Notification Policies are used by the Notification Distrib-
utor to evaluate the need and the authorization for a push
response, i.e., a notification. This evaluation happens, at
most, once for each time the Location Manager generates
a location event. In the previously presented scenario, in
which Alice is interested on a book she ordered, each time
the book enters or leaves a place, the notification policies of
Alice are evaluated to determine if a notification must be sent
(or not).

It is worth noting that SPL is a language originally con-
ceived for the specification of access control policies. Thus,
in Jano, we extended SPL to support policies in a notifica-
tion context. Following on the example previously described,
Alice would choose an SPL policy representing the desired
notification situation and specifies which book she was inter-
ested in. This results in the instantiation of the policy, which
will then be associated to her notification policies. This
resulted in a novel approach that, while taking advantage of
SPL features, allows Jano to have the following novel prop-
erties: (i) itis easy to use past location events when determin-
ing the notification conditions (based on history-based policy
support from SPL), and (ii) it is a general approach because
the actual parameters that will be considered for notification
purposes, regarding any given person and/or object, are not
built-in or hard-coded in Jano.

@ Springer

294

J Internet Serv Appl (2012) 3:291-310

Inboth cases (i.e., access control and notification policies),
the actions of the Policy Enforcer are governed by policies
specified and enforced using SPL, with extensions described
in the next section. These policies depend on current and past
interactions with Jano, e.g. location requests and location
events. Users of Jano need not learn SPL, because Jano pro-
vides a library with a pre-defined set of location access con-
trol and notification policies, and policy templates or idioms.
Users, then, only have to parameterize them according to their
needs using a web-based interface (described in Sect. 4.5).

The next section gives a description of SPL, focusing on
the language elements relevant to Jano, and those newly intro-
duced (e.g., regarding policy awareness). Section 4 presents
examples of history-based access control policies and noti-
fication policies, showing the generality and expressiveness
of Jano’s location policies.

3 Location privacy

An important characteristic of Jano is its adaptability, mostly
due to the Location Server. This means that the characteriza-
tion of persons, objects and places can reflect the information
available at the site where Jano is to be deployed, e.g., per-
son’s department, person’s current activity, person’s current
security level.

Jano imposes minimum restrictions regarding the struc-
ture of policies governing the disclosure of location informa-
tion. To accomplish this, as already mentioned, we extended
SPL. The main goal of SPL is to support an environment
where authorization policies can be expressed using a com-
bination of known policy models (i.e., MAC, DAC, RBAC,
history-based, etc.) among others [26]. The next sections
show how the policies, relevant to the context of the Jano
Location Service, can be built with SPL.

3.1 SPL policies structure

SPL [25] comprises four basic blocks: entities, sets, rules and
policies.

Entities are typed objects, described in the language as
a group of properties. Figure 2 shows the definition of the
types for the current implementation of Jano. Each object
has its own policies regarding location disclosure (i.e., access
control) and notifications. These policies are referred by
properties designated accessControlPolicies and
notificationPolicies, respectively. Moreover,
if Jano is to be used in an environment where users are also
characterized by a clearance level, a new property is to be
added to the object type. Next, we describe how these poli-
cies are defined.

During the evaluation of a policy, when areference is made
to a property of an entity (e.g., where of type object), this will

@ Springer

-

// characterization of Jano places

type place {

3 string name; // name of the place
policy set accessControlPolicies;

// policies regulating access to the place

9

// characterization of Jano objects

type object {

9 string id; // name of object

place where; // last known location

11 group set groups; // groups to whom this object belongs
policy set accessControlPolicies; // access control policies
13 policy set notificationPolicies; // notification policies

Fig. 2 Definition of entity types. object represents locatable entities
(i.e., persons or objects). Each object belongs to a group and can define
both access control and notificatio. policies

type event {

2 string action; // kind of interaction between Jano
// and SPL (pull, arrive, leave)
4 string precision; // requested precision

object author; // initiator of the request

6 object target; // target of the request

place targetPlace; // place, target of the request

8 number time; // event generation hour
number date; // event generation date

10| }

Fig. 3 Definition of the type event

result in consulting the Jano platform for the requested infor-
mation. How this is done is not under direct control of SPL.
Jano implements an adapter framework to provide SPL the
necessary information for the properties of the external types,
retrieving them by interfacing with different technologies.

Rules are logical expressions that can take one of three
values: allow, deny or notapply. Client systems com-
municate with SPL using events. The goal of each rule is to
decide on the acceptability of a SPL event. Thus, as stated
above, a rule may allow (allow) or deny (deny) an event;
in addition, an event may be completely irrelevant for that
event i.e., not applicable (notapply).

In Jano these events correspond to pull requests, origi-
nated from the users, and to location events, originated from
the Location Server. SPL events are defined as described in
Fig. 3, which presents the SPL event used in the interaction
between Jano and SPL.

The event representing the current interaction is known
as the current event, and a rule can access it as ce. The
action field of the event element (Fig. 3) identifies the
type of interaction. The author field is the person making
the location request or the originator of the location event.
Field target is the person or object to whom the location
request refers to. Field targetPlace refers to the place
inquired in a pull request or the place in a location event.

Rules can be simple or composite. A simple rule has two
distinct logical binary expressions, separated by the symbol
“::”—the domain expression and the decide expression. The
domain expression determines the applicability of the rule.
The decide expression decides on the acceptability of the

J Internet Serv Appl (2012) 3:291-310

295

SpecialRoom: // simple rule

2 ce.action = "Get_Location" :: // domain expression
ce.author = "alice@inesc.pt" & // decide expression
4 ce.target.where = "inesc/office600" // decide expression (cont)

6| TheOwner: ce.target = ce.author :: true; // simple rule

8| CRule: TheOwner OR SpecialRoom // composed rule

Fig. 4 Example of a simple (SpecialRoom) and a composed
(CRule) rule

event. A composed rule is a composition of other rules using
tri-value logic operators, which are extensions of their first
order binary counterparts (conjunction, disjunction, negation
and logical quantifiers) with a global neutral element, the
notapply value, i.e., the conjunction or disjunction of any
rule with notapply is equal to the value of the rule, mean-
ing that if the domain expression of one of the composed
rules evaluates to FALSE, the value of its decide-expression
is irrelevant for the the result of the composition, whatever
the composition type (conjunction, disjunction, or quantifi-
cation).

Figure 4 shows a composed rule (CRule) as it depends
on two other simple rules named SpecialRoom and
TheOwner (composed with the operator OR). As already
stated, rules are designed to decide on a given location request
which is represented by the construction ce.

Rule SpecialRoom evaluates to allow when, for the
domain expression stated, the corresponding decide expres-
sion is TRUE. Regarding the rule TheOwner, we can see
that, as long as the decide domain is verified (initiator of the
request, the author, is the same as the person being located,
the target) the decide expression always evaluates to TRUE
meaning that the rule result is allow.

Thus, the composed rule CRule means that a location
request is allowed if either:

1. a person is querying his own location; this is enforced
by the TheOwner rule stating that ce . target must be
equal to ce.author thus requiring the initiator of the
request (the author) to be the same as the person being
located (the target); or

2. the current location request, in the simple rule
SpecialRoom, is a pull request (i.e., ce.action =
Get_Location), the requester (i.e., ce.author) has the
unique identifier of alice@inesc.pt and the last
known location of the owner of the policy (i.e., ce.targer)
is inesc/office600.

Policies are groups of rules and sets, forming a logical unit.
Each policy has one query rule, which is distinguishable by
the question mark that precedes its definition. This rule is the
entrypoint of the policy. Figure 5 shows a policy that allows
the location disclosure of the target if it is in one of the rooms
contained in the set allowedRooms.

policy AllowedRooms {
2 string set allowedRooms;
InRoom: ce.action = "Get_Location" ::
4 ce.author = "alice@inesc.pt" &
ce.target.where IN allowedRooms;
6 7AllowedRooms: TheOwner OR InRoom
}

Fig. 5 Example of a policy. The question mark identifies the first rule
to be evaluated. The rule TheOwner is the same as presented in Fig. 4

Different users can use this policy as a template but
with different room names (i.e., a different set of rooms in
allowedRooms), which allows flexibility and promotes
extensibility. This is a difference between Jano and other
policy enforcement systems, making it possible to define a
set of meta-policies that can be particular to a domain, and
letting users/administrators to instantiate them with the spe-
cific values they want.

SPL policies are not written by persons using the Location
Service, but by the organization’s policy designer. The policy
designer responsibility is to create a set of policies adapted
to the domain where Jano is to be used (e.g., office building,
university campus, hospital, military installation).

3.2 History-based policies

As already mentioned, being able to locate someone or some-
thing has been a need over the times. In addition, there are
cases in which it is relevant to track a person’s location; for
example, when security is a concern, it may be important to
know if a person has been in rooms R1, R2 and R3 (pos-
sibly, for how long in each one). Obviously, such tracking
raises important privacy issues; while such disclosure may
be acceptable in an industrial environment during working
hours, such tracking is not acceptable at week-ends or during
other private activities (e.g., during leisure time).

Thus, the disclosure of location information can be depen-
dent on previous location events or accepted pull requests. A
usual scenario is to limit the number of location requests or,
alternatively, the request frequency or the cardinality of the
set of unique results provided, made by the same person, to a
given target. This avoids tracking (as the scenario described
previously) among other types of inference attacks.

Policy TrackingLimit, presented in Fig. 6, shows
a rule (?TrackingLimit) where the location request
is allowed (or not) based on past events. More precisely,
the request is allowed only if in the past there were no
more than maxEvents push requests for the same tar-
get made by the same author (pe.author=ce.author
& pe.target=ce.target),onthe same day. For exam-
ple, if this policy is associated to Alice (ce.author) and
instantiated with a value equal to three for maxEvents,
Alice is allowed at most three such requests in sequence.

@ Springer

296

J Internet Serv Appl (2012) 3:291-310

-

policy TrackingLimit {
?TrackingLimit:

3 EXIST AT_MOST maxEvents pe IN PastEvents {
pe.action = "Get_Location" &

5 ce.action = "Get_Location" &
pe.author = ce.author &

7 pe.target = ce.target &

pe.date = ce.date :: true

o 3

11| policy OnlyOutsideMailRoom {
?70nlyOutsideMailRoom:

13 EXIST pe IN PastEvents {
ce.action = "Get_Location"::
15 pe.target = ce.target &
pe.action = "Leave" &
17 pe.targetPlace = "MailRoom"
}
19| }

Fig. 6 Examples of history-based policies

Another example of history-based policies is policy
OnlyOutsideMailRoom, also presented in Fig. 6. It
takes into account the location event leave (pe .action =
“Leave”). If this policy is applied to a mail object (the
target), this means that such object can only be located
after leaving the mail distributionroom (pe . targetPlace
="MailRoom”). In addition to the examples previously
described, Sect. 4.1 shows examples of history-based notifi-
cation policies where location events (i.e., arrive and leave)
are considered to decide whether a notification is needed.

A critical aspect of the above-mentioned policies (and
history-based ones in general) is the size of the log where
past events are kept. To enforce this type of policies, a virtual
eventlogisused. This special log is referred as the PastEvents
set; it does not match a concrete implementation of an event
log, although the semantics is that of a global log [25]. The
log is associated to each user’s policy. It is the responsibility
of the Policy Enforcer to fill this log, adding successful pull
requests and location events.

In particular, in the policy TrackingLimit previously
described (see Fig. 6) the PastEvents set is searched to deter-
mine whether, on the same day (pe.date=ce.date),
a given requester (ce.author) has already made
maxEvents successful location requests. Only events
regarding location requests are relevant. If a user enters or
leaves a place, that event will not be recorded by this policy
log. Furthermore, each event from the same author, regard-
ing the same place and for a given day will not be duplicated,
reducing the log size. This log mechanism is fundamental as
it promotes logs with reduced size thus fostering scalability
(more details presented in Sect. 4.2).

3.3 Policy awareness
As already mentioned, sometimes, a person may be interested

on being located with different precision levels depending on
who is willing to know his location and also depending on

@ Springer

the purpose. For example, Alice may allow his friend Bob to
know her location within a 1 km radius but, for emergency
purposes, Alice may allow an ambulance to know her location
precisely, i.e., with much greater precision (i.e., 1 m). Jano
takes all these scenarios into account while ensuring that
there is no uncontrolled information leakage.

Thus, often, it is necessary to localize someone with the
best precision allowed by the corresponding policy. How-
ever, with most authorization languages and also with (the
original) SPL, the way to attain this is very inefficient: several
requests must be issued, with decreasing precision, until one
is accepted (as is the case with the above scenario where Bob
wants to know Alice’s location). This inefficiency happens
because authorization engines must prevent any information
leakage.

However, in some situations, providing the user (e.g., Bob)
with the reason why his request was rejected (e.g., for Alice
location) contributes to the policy awareness and turns the
process of locating someone with the best precision possi-
ble much more efficient. Such increased efficiency results
from the fact that the access control engine replies with an
allow or with a deny, together with the best precision that
makes the policy return allow. In fact, there is no need
to ask the engine again with a different precision because
the system already knows the answer. Therefore, with such
an awareness mechanism the authorization engine is called
just once, with clear efficiency gains. Once again, taking into
account the above-presented scenario, Bob would issue a sin-
gle request for Alice’s location indicating a precision value
that is acceptable by the corresponding policy.

In fact, this mechanism can be useful in a more general
context to provide policy awareness to users, letting them
know why their requests are being denied, without having to
contact the help desk for that purpose [28].

In order to enhance SPL with the above-described aware-
ness mechanism, we have extended it with the intro-
duction of a new polymorphic operator: the awareness
operator “$”. This operator applies to logical expressions
(e.g., $(ce.precision < “Medium”)) and rules (e.g.,
$domain-exp: :decide-exp). It states that if an event
is denied because of some condition inside the awareness
scope, that information is transmitted back to the access
requester, as additional awareness information. It’s worth
noting that, only the annotated expressions are transmitted
to the requester; therefore, policy leakage is kept to a mini-
mum and, more important, always strictly controlled by the
policy designer.

The awareness information is provided to the requester
as a symbolic binary logical expression indicating the condi-
tions on the event request that are needed to change the policy
result from deny to allow (or to keep the allow, if thatis
the result of the applied policy). If the applied policy returns
notapply, the awareness information is not specified.

J Internet Serv Appl (2012) 3:291-310

297

The symbolic binary expression is kept on a tree structure
where each leaf is a binary logical constraint (e.g., ev.a >
b), and each node is a binary logical operation. The tree is
reduced whenever one of the branches of a node is a constant
value, butit is not further simplified; therefore, we may end up
with an awareness expression stating that ce .precision
> “Low”& ce.precision > “Medium”, which could
be simplified further to ce.precision > “Medium”.
However, currently, the present solution was deemed ade-
quate. If one of the branches is constant, it is either the
neutral element or the absorbing element of the binary oper-
ation, which means they can either be collapsed into the non-
constant branch (neutral element) or to the constant branch
(absorbing element).

The awareness information is provided to the requester in
a tuple together with the policy result (result, awareness)
in which: result is the usual allow, deny or notapply
values that result from the application of the SPL ternary
logic to all the rules that comprise the policy; awareness is
the binary tree with the awareness information.

The awareness information is provided by the new exten-
sions to the SPL logics; the ternary logic used to compose
rules and the binary logic used in the decide expression of
each rule. The elements of both logics are now tuples with
the original elements and an awareness tag (element, tag).
For the SPL ternary logic, the first element of the tuple
is either allow, deny or notapply; and for the binary
logic it is TRUE or FALSE. The tag corresponds to the
awareness information and it is, in both logics (binary and
ternary), a binary symbolic expression stored in a tree struc-
ture.

The following definitions provide the framework used to
build the awareness information provided to the requester.

Definition 1 The tag of a non-annotated binary logical
expression (ble) is defined as tag = ble, where ble is a
value equal to TRUE or FALSE resulting from the evaluation
of ble with the current event.

Definition 2 The tag of an annotated binary logical expres-
sion ($ble), i.e., an expression that was preceded by the
awareness operator “$”, is defined as:

ble ifble. A OnEvent(ble)
'ble if'ble A OnEvent (ble)
ble if!OnEvent(ble)

tag =

where OnEvent(ble) is a predicate that evaluates to TRUE
if the expression depends on the current event.

Note that ble and !ble represent symbolic logical expres-
sions, i.e., non-evaluated, whilst ble represents an actual
binary value.

Definition 3 The tag of arule (rule = {domain-exp :: decide-
exp}) is defined as:

tae — ifrule = notapply
&= tag(decide-exp) otherwise

where L represents the empty symbolic expression, rule
the evaluation of the rule with the current event and
tag(decide-exp) the tag of the binary logical expression com-
prising the decide expression of the rule.

Extending the SPL ternary and binary logics to handle
awareness tags implies defining two new sets of operators
over two new tuples, respectively the (ble, tag) (or (b, t))
for the extended binary logic, and the (rule, tag) (or (r, t)),
for the extended SPL ternary logic.

Definition 4 The extended binary logical operators are
defined as:

(b1, t1)A(ba, o) = (b1Aby, 11 O 1)
Ob, 1) = (b, 1)

where A is a placeholder for the binary conjunction (&), dis-
junction (]) and exclusive disjunction (), and O is a place-
holder for @, (D and O, which are symbolic operators that
are equal to their binary counterparts, with the exception that
they take L as their universal neutral element. Similarly, (D is
equal to the logical negation but also takes L as their neutral
element.

Definition 5 The extended ternary logical operators are
defined as:

(r1,t1)AND(r2, 12).(r1 AND 12, 11 @ 1)
(r1,t1)OR(r2, 12).{r1 OR 12, 11 (D 1)

NOT(r,t) = (O r, O t)

where AND, OR and NOT are the SPL ternary conjunction,
disjunction and negation, respectively.

With the above definitions, it is not difficult to show that
the new awareness operator “$” enjoys the distributed, com-
mutative and associative properties over both the binary and
ternary SPL logics. This means that annotating the complete
policy with the awareness operator is equal to annotating
each specific logical constraint. Note however that, both for
policy privacy and efficiency reasons, the annotation of a full
policy should be avoided.

We now show how to apply these rules to the policy in
Fig. 9. The precise description of the policy is postponed to
the next section. The tag-tree evaluation takes place from the
last level to the first one. Therefore, the first step is to evaluate
the elementary binary logical expressions, of the decide-
expression (lines 21-24) using Definition 2. Assuming that

@ Springer

298

J Internet Serv Appl (2012) 3:291-310

all non-annotated binary expression evaluates to true for the

current event their tags are all evaluated to tag=TRUE. On the
other hand assuming that the annotated expression requires
high accuracy while every day.accuracy="Medium”,
then its tag is TAG = ce.accuracy != “Medium”.
The next steps are the application of Definition 4 to calculate
the tag of the conjunction of the elementary binary expres-
sions that comprise the decide-expression of the rule. Then,
Definition 3 is used to calculate the tag of the rule (lines 20—
24) out of the tag of the decide-expression, which are both
trivially equal to TAG = ce.accuracy != “Medium”.
Finally, the tag of the policy is calculated applying Defini-
tion 5 to every rule disjunction resulting from the expansion
of the EXIST quantifiers (lines 12-25). Assuming that the
quantifiers groups have 2 and 5 elements, that is, two groups
of friends and a condition for each working day, the tag of
the policy is the disjunction of 10 equal tags, resulting in
the deny reason of ce.accuracy != “Medium”, i.e.,
the expression is denied because the accuracy required is not
equal to the *Medium”.

4 Implementation

Figure 7 provides a global view of Jano implementation.
In the center, we can see the main modules (from left to
right):

— The Location reporting API receives location infor-
mation from the location generators (e.g., applications
reporting GPS readings, RFID positioning systems)
reporting the current position of each target.

— The Location Manager keeps the last location of each tar-
get, as received from the Location reporting API. Based
on this information, it generates location events which
are then stored in a first-in-first-out queue. Each event
contains information about the target (e.g., Alice), the
type of the event (arrive or leave) and the place to which
the events refer (e.g., P1).

— The Notification Distributor receives events from the
Location Manager and interacts with the Policy Enforcer
(see next item) to know if there are users to be notified of
a given event. As a consequence, the Policy Enforcer will
evaluate each notification policy. If, for a certain notifi-
cation request, a notification is needed, the Notification
Distributor is responsible for doing so, using the previ-
ously configured communication channels for the user
being notified.

— The Policy Enforcer evaluates access control and noti-
fication policies. Access control policies are evaluated
for each pull request made through the Queries API (see
next item) while notification policies are evaluated when
a new location event is generated.

— The Queries API (for query and administration purposes)
is used by other services or applications to get instant
locations and configure the access control and notifica-
tion policies.

On the left-hand side of Fig. 7, we can see a set of mobile
devices (possibly attached to objects and/or persons) using
different location technologies such as WiFi, GPS, etc. The
right-hand side of Fig. 7 illustrates a Jano’s user who issues
location or notification requests through any computing
device.

Thus, in summary, the Jano programming interface (i.e.,
API) supports two main services:

— the Queries API allows for location applications (web and
rich clients) to: i) ask for a person or object location (pull
requests), ii) manage access control location policies, and
iii) manage notification policies;

— the Location reporting APIis used by location generators.

Each consumer of location information and each location
generator can be implemented in any language or platform.
To facilitate this goal, Jano API is implemented as a Web
Service, using the framework JAX-WS 2.0. A GPS and RFID

Fig. 7 Jano implementation High level
% Policies SP':
(SPL) compiler

Policy
designer
Queries
Location API —
Manager
9 3 Access Web
@ ‘ @ Control Lo "
) \ Policies ?i(r;h
Locatl_on m i
reporting \ 1 - clients
Notification|
AP m R Policies -0]
@ \ Person using
V . o
Mobile devices report ':)?tltfl_(;)at;on - “P?llcy \/E 0 >
raw location using istributor ~Enforcer
different technologies

@ Springer

|

v
External notification
mechnanism

J Internet Serv Appl (2012) 3:291-310

299

-

policy CommonPolicy {
accessControl: // Evaluate all access control policies of the target
FORALL policy IN ce.target.accessControlPolicies
{ policy };
5| TheOwner: ce.target = ce.author :: true; // Always allow the
// request, if the author
7 // is the target

w

9| ?CommonPolicy: TheOwner OR accessControl;

Fig. 8 Common policy of Jano. All policies of target are evaluated to
decide if location can be disclosed

generator have been developed, both using the .NET platform
and the C# language.

For demonstration purposes, we now describe how Jano
can be used to implement a useful location control policy
to ensure the intended privacy in location services. We have
designed a model where there is a common policy, presented
in Fig. 8. This policy includes two rules:

— TheOwner: this rule is the same described in Sect. 3.1
which, as already mentioned, states that every target can
know his location;

— accessControl: this rule enforces all the exist-
ing specific access control policies for the target
being located (i.e., ce.target.accessControl
Policies) to be verified and enforced.

It is important that, policies for targets and places can be
specified independently, which can result in conflicting rules.
For example, Alice is not allowed to locate Bob, but Alice
can kown who is at P. In this scenario, if Bob is located at
P, and Alice makes a request to see who is at this location,
Jano would not include Bob in the response. Jano will only
disclose a certain location when the combination of target’s
and place’s policies allows it.

The implementation of Jano supports several access con-
trol policies. In this article, we focus on one policy that could
be applied to a variety of environments (e.g., university cam-
pus, enterprise building). The policy is presented in Fig. 9:
when associated to a target (to be located), it defines the users
who are allowed to know the target’s location, with what pre-
cision and when.

The entry point of this policy is the rule GroupsInt-
erval that, as stated previsouly, defines the circum-
stances under which a target’s location can be disclosed.
The target being located is the entity to whom the pol-
icy GroupsInterval is associated. The users request-
ing the target location are members of the group named
allowedGroup. The allowedGroupInfo type con-
tains the name of an allowedGroup along with the preci-
sion that the target location should be returned, and in what
period of the week. Each allowedGroup is stored in the

type allowedGrouplnfo { // type for GroupsInterval policy
string allowedGroup; // users within this group can see locatio
string precision; // mazimum precision of disclosed location

4 dayinterval set daysSet; // allowed intervals of the week

S

policy Groupslnterval {
8| allowedGrouplInfo set groupsInfo; // access control list of
// allowed groups

?GroupsInterval: // rule for evaluating disclosure of location
12 EXIST node IN groupslnfo { // for each node in
// the allowed list

14 EXIST day IN node.daysSet { // for each day in the
// allowed days, search

16 // for the allowed group
// name in the list of groups

18 // whom the author of the
// request belongs to

20 node.allowedGroup IN ce.author.groups

:: day.dayOfWeek = ce.dayOfWeek &
22 (ce.time.hour >= day.start.hour &
ce.time.hour <= day.end.hour) &
24 $(ce.precision = day.precision)
26 }
}

Fig. 9 Example of personal access control policy

policy instance, more precisely in the groupsInfo prop-
erty.

This GroupsInterval policy is evaluated in two sce-
narios: i) following a pull for some target to be located, ii)
when a location event is produced by Jano’s core and a noti-
fication policy determines the potential location disclosure
of some target.

As presented in Sect. 3.3, we have extended SPL with
the awareness operator which allows the policy designer to
identify, if relevant, the reason why the location cannot be
disclosed (e.g., too much precision). In the policy presented
in Fig. 9, when the author of a location request is denied
access to a person’s location, he will be informed about the
precision that is demanded for the location to be disclosed.
Consider a scenario where there are three levels of precision:
“low”, “medium”, “high”. If the requester wants “high” pre-
cision but the policy only allows “low”, Jano returns the loca-
tion with the allowed precision. Note that the original request
will be denied but only because of incompatible precision.
Therefore, the system can automatically return the location
in accordance to the target policy.

Each policy goes through the SPL compiler, which pro-
duces an enforceable policy in the form of a Java class. Ins-
tances of these classes, with proper initialization, are attached
to each target, as access control or notification policies, i.e., to
the accessControlPoliciesorthenotification
Policies properties in Fig. 2, respectively.

The set of policies associated to each target forms a graph
of objects which is updated each time a new policy is added
or removed. In Sect. 4.5, we address Jano’s web interface to
support the configuration of policies.

@ Springer

300

J Internet Serv Appl (2012) 3:291-310

1| policy SNotify(object id, place place, string evType) {
7SimpleNotify:
3 ce.author = id ::
ce.action = evType & ce.targetPlace = place;
5| }
7| policy VisitAfter(object id, place orig, place dest) {
?VisitAfter:
9 EXIST pe IN PastEvents {
ce.author = id & ce.action = "Arrive" &
11 ce.targetPlace = dest ::
pe.author = id & pe.action = "Leave" &
13 pe.targetPlace = orig
}
15| }

Fig. 10 Notification policies. SNot i fy is a simple parametrized pol-
icy. VisitAfter takes into account past location events to determine
if a notification must be sent

4.1 Notification policies

Jano sends notifications based on the evaluation of notifi-
cation policies associated to users. Using SPL, notification
policies can be specified with different conditions, adapted
to the site where the location service is used.

Figure 10 presents a notification policy (SNoti fy), that
can be used as a template for policies, parameterized by the
name of an object (1d), the name of a place (place) and
the location event of interest (evType). This policy could
be used by Alice to be notified by Jano when Bob arrives at
inesc/flooré6. If so, a policy with the given parameters
would be instantiated as follows:

new SimpleNotify(bob,

new place("inesc/floor6"), "Arrive").

When the Notification Distributor (see Fig. 7) receives
a location event stating that Bob has arrived at
inesc/flooré, it will contact the Policy Enforcer, with
the objective of knowing who wants to be notified. For this,
a new SPL event is built, where author is Bob, action
isArriveand targetPlaceis inesc/floor6. Then,
this event is used to evaluate each user pending notification
policies. If the notification policy determines that a notifi-
cation should be sent and the access control policy of the
moving target allows it, a communication channel (e.g., web
service, e-mail, etc.), previously configured by the user, will
be used to send the notification.

Jano can efficiently enforce notification policies with
history-based rules. This is used, for example, when a user
wants to be notified about an object trajectory inside his
organization: a previously ordered book can arrive at the
reception, but this event is only interesting if that same
book has already passed through the library to be cataloged.
Figure 10 shows a parameterized history-based policy, called
VisitAfter, which can be instantiated to represent the

@ Springer

previously described scenario, and associated to Alice:

new VisitAfter("book : Understanding
Privacy",
new place("ist/library"),

new place("inesc/reception"));

4.2 Policy dynamism and log-size management

A monitor-like security service (as is the one implemented
by Jano) has to decide, for each request, whether it should
be allowed or denied. The decision must be taken at the time
of the request with the information available. Thus, in order
to implement history-based policies, any monitor-like secu-
rity service has to store information about past requests and
events.

Some security services store requests explicitly into a
request log [4,16] that can later be queried for specific
requests; others, store them implicitly in their own data struc-
tures. For example, Sandhu [27] proposes the use of dynamic
clearance levels, associated to each user, where the informa-
tion about the classification of the information read is stored,
and may be further used to decide if a user with a specific
clearance level is allowed to access information with the
specified classification.

The former solution is more flexible than the latter. How-
ever, if the request log becomes too big, the memory space
required to keep that log may become unlimited, and the
time required to execute each query could have a significant
impact on the overall performance of the system. Jajodia [16]
tries to solve this problem recording the requests that differ
in time only once. However, this does not solve the problem
because the number of requests to store is still huge and disal-
lows the definition of policies based on request cardinality to
be enforced (e.g., the user may only be localized by someone
else three times in a row).

SPL implements the log solution through a compila-
tion algorithm that optimizes the amount of information to
be saved and the way that information should be queried.
Although the algorithm does not obtain optimal results for
all history-based policies, the results obtained for most fre-
quent policies are equivalent to those obtained by label-based
implementations [27].

The algorithm has three main aspects. First, the Policy
Enforcer (shown in Fig. 7) selectively logs just the requests
required by the concerned history-based policy; e.g., if a pol-
icy needs to know if a document was signed, there is no need
to record requests that are not “sign requests”. Second, the
Policy Enforcer selectively logs just the fields of the requests
required by the specified history policies, e.g. if a policy
decision is based on whether or not the author of the current
request has signed a document, it is not necessary to record
the “time” or the “task’ fields of signature requests. Third, the

J Internet Serv Appl (2012) 3:291-310

301

Policy Enforcer uses the best possible structure to maintain
the log and the best type of query to search it.

Thus, the log is searched by entries with specific proper-
ties. These properties might be expressed using equality con-
straints, inequality constraints or membership constraints.
Equality constraints can be searched in a hash table in O(1),
which makes them ideal to be used as index keys. However, if
there is not a single equality constraint to look for, it is better
to use a balanced tree to hold the log and use a different type
of query.

Thus, with this solution, instead of building a single log
for all history-based policies, the compiler in Jano builds a
specific and fined tuned log for each history-based policy.
This solution has several advantages. First, it reduces the
number of requests required to be searched. Second, it allows
for a better adaptation of the base structure to each query,
because each log can be kept by a different structure. Third,
it simplifies the insertion and the removal of policies.

The problem with this solution is the potential for main-
taining redundant information in several logs. However,
given that the information kept by each log is the minimum
information necessary for the corresponding policy, the level
of redundancy expected is similar to the one of label-based
implementations, where the labels used by different policies
may also be redundant. Nevertheless, this negative aspect can
be further limited through the sharing of logs with the same
signature (same requests to log, same fields in those requests
to log, same base structure) between policies.

Given that, traditionally, each policy applies to a very lim-
ited number of users and places (see for instance ACL-based
policies), and that the domain of event properties is usually
limited (e.g., the localization may be all rooms in campus),
the size of each policy log is not usually large. However,
there are some types of policies that must be avoided. For
instance, a policy that requires the logging of the time at
which each past event took place should be avoided in favor of
some alternative one (e.g., logging the relative order between
a sequence of events), because it could potentially be very
inefficient. Still, from our experience with SPL, most of these
situations may be avoided, and often automatically detected,
by the SPL compiler. The next section describes in detail the
process used in Jano to minimize the log size.

Finally, the main drawback of the proposed solution is
that history-based policies cannot decide on requests prior to
their activation, i.e., the system only records requests for each
history-based policy after the policy starts to exist. However,
based on our and others’ experience, we believe this is not a
serious drawback.

4.2.1 Log size reduction algorithm

The process used to reduce the log size is comprised
by three main algorithms: the compilation algorithm

CompileExist AtMost(rule) {

2 Apply_e +DomainExpression(rule)
Elementar_e <ExtractElementaryExpressions(Apply_e)
4 Pe_ind <Forall z in elementar_e that Independent(z, pe)
Pe_dep «+Forall z in elementar_e that
6 Independent(z, ce) and Dependent(z, pe)
Ce_dep +ReplacePeByCe(Pe_dep)
8 Cpe_dep <Forall z in Elementar_e that
Dependent(z, ce) and Dependent(z, pe)
10 First_e < FindOne z in Cpe_dep that HaveEquality(z)
Next_e <Forall z in Cpe_dep that
12 Conjuntion(z, First_e) and HaveEquality(z)

Find_e <—First_e UNext_e

LE_register <~ Recombine(Ce_dep)

16 LE_apply <—pe #NULL & pe._count <maxEvents &
Recombine(Cpe_dep / First_e) & Recombine(Pe_ind)
18 LE_decide <-DecideExpression(rule)
TE_find < Forall z in Find_e take PeFields(z)
20 TE_register <—Forall z in Cpe_dep take PeFields(z)
}

Fig. 11 Simplified compilation algorithm for history based rule based
with a EXIST AT_MOST construction

LE_apply(ce) +—ce.action = "Get_Location"

2| LE_apply(ce,pe) +—pe #NULL & pe._count <
maxEvents & ce.action = "Get_Location"
LE_decide(ce,pe) <true

4| TP_register(ce) «{author(ce), target(ce), date(ce)}
TP_find(ce) «—{author(ce), target(ce), date(ce)}

Fig. 12 Compilation result for the TrackingLimit policy (shown in
Fig. 6)

(Fig. 11), and the register and decide algorithms (Fig. 13).
The compilation algorithm takes the history based rule
and builds three logical expressions (LE_apply(ce,pe),
LE_register(ce), LE_decide(ce,pe)) and two tuple extraction
functions (TP_find(ce) and TP_register(ce)). The result of
the compilation applied to the TrackingLimit policy (Fig. 6)
is shown in Fig. 12.

For clarity, the algorithms are presented in simplified
pseudo-code. The actual implementation takes a slightly dif-
ferent approach to take in consideration all the different cases.
For more details see [25,24].

The algorithm starts by extracting all elementary expres-
sions out of the domain-expression in the policy (e.g.,
ce.action, = "Get_Location" in the TrackingLimit policy)
which are composed using binary conjunctions and dis-
junctions. Then, it chooses those expressions which are
independent from the past events (Pe_ind), the ones that are
dependent of past events but independent from the current
event (Pe_dep), and the ones that depend on both the current
event and on the past events (Cpe_dep). From these last ones,
it builds the set of expressions that are connected through
equality constraints and are related to each other through
conjunctions (Find_e). Each of these sets of expressions is
then used to build the four logical expressions and two tuple
extractors (Fig. 12).

These five functions are then used in the Register
ExistAtMost and DecideExistAtMost functions
(Fig. 13). The first one is called for every event and decides

@ Springer

302

J Internet Serv Appl (2012) 3:291-310

-

RegisterExistAtMost(ce) {
if (allowed(ce) & LE_register(ce)) then

3 tuple < TE_find(ce)
pe «find(tuple,LOG)
5 if (pe #NULL) then

pe._count ++4

7 else
event < TE_register(ce)

9 add(event, LOG)

}
11

rule DecideExist AtMost(ce) {
13 tuple «TE_find(ce)

pe «find(tuple, LOG)

15 return LE_apply(ce,pe) :: LE_decide(ce,pe)

}

Fig. 13 Register and decide functions for EXIST AT_MOST construc-
tion

which events get to be logged to the specific LOG of
the policy. If there is an identical tuple registered in the
log, the counter with the number of occurrences of that
event is incremented; otherwise, the event is logged. The
DecideExistAtMost enforces the policy. It returns a
simple tri-value rule, built upon the four logical expressions
generated by the compiler. The resulting rule will be evalu-
ated together with the other rules not dependent on history.

4.3 Optimizing policy design, processing, networking

In vast organizations or deployment scenarios, the number of
entities (e.g., members of the organization, locations) tends to
be very large, with the consequent increase in the number of
policies required to enforce overall location-privacy settings.
Thus, the task of policy definition may become too heavy for
a handful of administrators. Also, the total number of events
will also increase (entering, leaving locations). This imposes
further load on policy processing and increases network traf-
fic, even when events are irrelevant for the active policies. To
address these issues, in Jano, we include the following addi-
tional mechanisms: Policy Inheritance, Hierarchical Policy
Applicability and Local Filtering.

With Policy Inheritance, besides policies being parame-
terized in Jano, a policy can also be defined as an extension
and/or composition of other policies, to foster reuse of rules
(that are more intricate to develop or code), with the possi-
bility of overriding rules. The resulting policy is validated
during compilation.

Hierarchical Policy Applicability in Jano, further simpli-
fies policy development, by allowing the rules of policies to
refer to entities according to a hierarchical namespace. Thus,
whenever a policy is applicable to, e.g., a specific building,
department, role/category, it will automatically be applicable
to all its subelements, e.g., rooms in the building, people of
the department, sub-roles or categories. This can be regarded
as a form of inheritance across the entity space (encompass-
ing people, places, roles), instead of the rule space above.

@ Springer

Events, e.g. regarding entering and leaving locations,
when appropriate, can be subject to Local Filtering, i.e., not
sent to the Location Manager (see Fig. 7) by the location
generators (e.g., RFID tag readers). This lowers the load of
policy processing, and saves bandwidth. This action can only
be taken when it is known that the person or location (or both)
are not relevant for the currently active policies.

The Location Manager also stores a policy digest
that states, in summarized form, the entities (and entity
namespaces) that are mentioned in all active policies (an
entity or set appears only once in the digest regardless of the
number of occurrences in policies); for that purpose, Jano
uses a bloom filter [6] storing hashes of strings (entity names
or namespaces).

Thus, on each event reaching the server (i.e., not filtered
by the mobile clients), the Location Manager checks a global
bloom filter for each entity mentioned in the event, to know
whether it is referred to in any policy (or any of its high-level
namespaces). This allows filtering out the events that are not
related to any policy. It also ensures that, while any filtering
done at mobile devices is useful (to save their bandwidth), it
does not render Jano dependent on the cooperation of mobile
devices, in order to reduce the load of event processing at the
server. Note that, the low rate of false positives does not
hinder correctness.

Events surviving the filtering are then checked for every
notification policy, but only its domain of applicability (that
will rule out most of them), and not the entire policy eval-
uation. This imposes less overhead than maintaining, for
each individual policy, an additional dedicated bloom filter
(implying the calculation of several hashing functions), as
applicability conditions are usually a simple test that accounts
for only a fraction of the overall policy evaluation process-
ing. Whenever the coverage of entities involved in policies is
enlarged (due to loading of a new policy), an updated digest
is sent to the Location Manager.

4.4 Interaction between Jano and SPL

SPL is composed by a language, a compiler and a library. The
compiler parses the policy definition files and generates Java
classes with the evaluation of the policy, including the data
structures used to keep track of location requests (i.e., history
log). Figure 14 shows the interaction between Jano and the
SPL-generated modules; the location access control or noti-
fication policies (on top) illustrate the Java code produced by
the SPL compiler.

Policies are instantiated by means of a pull or a push oper-
ation invoked on the Queries API (as shown in Fig. 7) result-
ing in the instantiation of either: i) a location policy as the
one presented in Fig. 9, or ii) a notification policy as the one
presented in Fig. 10.

J Internet Serv Appl (2012) 3:291-310

303

Location
| access control P
4m or notification policies | :

-

[%)]
(%]
(O]
Q
[&]
@©
o
C
®©
=

framework

»
Q
=
~—
<
()
—
(]
IS
2
[UR]

evaluate
spl event

register
spl event

Policy Enforcer

Fig. 14 Location requests and events are evaluated by policies. To this
end, the policy enforcer accesses the domain model through a the Jano
access framework

Policies are used to decide about a pull request or loca-
tion event. During the evaluation of a pull request or location
event, the Policy Enforcer needs to obtain information about
the target of the event. Because SPL is designed to be agnos-
tic with regards to the enforcement site’s information system,
SPL policies rely on a bridge framework, called Jano access
framework (top left-hand of Fig. 14) to access the relevant
information. This framework interacts with the implementa-
tion of the SPL external entities presented in Sect. 3.1 which,
in our system, represents Jano’s locatable objects (i.e., per-
sons, mobile objects and places).

4.5 Web-based GUI

In order to enhance the usability of Jano, a web-based GUI
runs on top of the Jano API, using the ASP.NET platform.
Using this GUI, a non-SPL expert user can make not only
location requests but also select and provide the necessary
parameters for his access control and notification policies.

Figure 15 shows the GUI, during the configuration phase
of the access control policy illustrated in Fig. 9 enriched
with some history-events described afterwards. The user, in
this case Alice (alice@inesc.pt), configures the above
mentioned policy with just a few “clicks”.

The top part of the GUI shown in Fig. 15 (named
Alice’s Access Control Policy) allows Alice
to indicate, for two groups of users (inesc/Mail
Deliveryandinesc/Visitors), the circumstances
under which they are allowed to know Alice’s location.
More precisely, Alice specifies the acceptability of a loca-
tion request or location event (regarding her location) as
follows:

/ (%) Access control policies T -
« cC #

) localhost

Alice's access control policy
= @ Tinesc MaiDelvery
4_;) Monday (10:00 <-> 12.0)
__l) Thursday (1530 <-> 17:30)
88 7 alice-assistant @inesc pt
[
= sﬁ nesc/Visitors

45 T Wednesday (10:00 <-> 18:30)

“Z Min

K E3
Save | [Clear
Operations to fill the policy
Add Allowed Group inesc/MailDelvery
Begn: 9 [+] 00[+]
Add Day to Group Monday [=] o [=] [00]]

End :[17[5] [30[5]
Set precision to Group = Min -]
Remove Selected
- HISTORY OPERATIONS --

M person not located | alice-assistant@inesc pt

Maximum locations

Fig. 15 Web-based GUI to configure Jano’s policies

e a user who is member of the group inesc/
MailDelivery is allowed to know Alice’s location
if, and only if, the current day is Monday or Thurs-
day (on the time slots indicated) and he has not
succeeded previously on locating Alice’s assistant
(alice-assistant@inesc.pt); in addition, the
precision allowed for Alice’s location is High.

e auser who is member of the group inesc/Visitors
is allowed to know Alice’s location if, and only if, the
current day is Wednesday (on the time slots indicated)
and the location requests so far performed have not
exceeded three reports; in addition, the precision allowed
for Alice’s location is Min.

The bottom part of the GUI allows Alice to add or remove
new user groups, date intervals, and parameterize the history-
based rules, mentioned above.

In conclusion, the GUI developed in Jano supports a large
number of operations so that most policy specifications can
be easily done without knowing SPL.

5 Evaluation

In this section, we present the evaluation of Jano. There are
two types of evaluation: quantitative, by means of perfor-
mance tests, and qualitative, by means of a use case with two
applications.

With respect to the quantitative results, we evaluated the
most important performance aspects regarding the system

@ Springer

304

J Internet Serv Appl (2012) 3:291-310

300 +

250

200 - —

Average evaluation time
(microseconds)
"
w
=3

1 10 50 100 150
Location events per second
[=#=20 notification policies ==30 =a—40 50)

Fig. 16 Growing number of groups of requesting author

behavior, with an increasing number of: users issuing loca-
tion requests, history events and location events, and load
of concurrent requests. The results that were obtained can
be seen as a worst-case scenario, measuring the most per-
formance demanding modules and operations. While the
conditions tested are more demanding than typical usage
scenarios, Jano’s manages to operate within small response
times.

Regarding the use case and applications, these were cho-
sen as they provide two usage scenarios that illustrate real
user needs in terms of location privacy policies, and are
related to other scenarios described in the literature [29].

5.1 Performance evaluation

In this section, we report the performance of two crucial
interactions between users and Jano. First, we present the
results obtained in the evaluation of the Policy Enforcer,
while enforcing an access control policy, with and without
history-based rules. We use this type of policy because it must
always be evaluated, even before a push response. Second,
we present the performance of the system in a scenario in
which there are several location events generated per second
(similar to the use case presented in Sect. 5.2), in order to
test Jano under load conditions.

Overall, Jano performs adequately in every scenario
tested, including under load. In particular, Jano’s perfor-
mance under scenarios with increasing load (number of
policies, and of concurrent requests and events), is always
within the constraints required for interactivity and percep-
tual tasks [5,8] (namely, replies under 50 ms, the usually
referred latency for good interactivity, e.g. in multi-player
games or cooperative work).

Access control policies The policy considered for evaluation
of the Policy Enforcer is the one presented in Fig. 9; the
results are shown in Fig. 16. In the referred policy, the set of
groups allowed by the target (GroupsInfo) must be tra-
versed linearly. Recall from Fig. 9: for each member of the

@ Springer

set, there is the indication of in which intervals the target
can be located. Each of these allowed groups are looked up
in the groups to which the author of the request belongs to
(designated hereafter AuthorGroups). The cost of this
search is O (log(AuthorGroups)) (search on the ordered
set).

Experiments where done with different numbers of groups
allowed and groups to which the author (the user making
the location request) belongs to. In our test scenarios, we
considered that Author Groups tend to be much bigger than
GroupsInfo, as can be seen in the four series of Fig. 16.
In the more demanding scenario, the series with 100 allowed
groups (a number that would stress the capacity of the owner
of the policy to manage it), and taking into account that the
author of the request belongs to 3,000 groups, the considered
policy takes nearly 2.5 ms to be evaluated.

Figure 17 presents an analysis of the percentage slow-
down, in performance, in the presence of load conditions.
In each subfigure, we evaluate the percentage slowdown,
regarding an increasing number of concurrent location
requests (i.e., 10, 100, 1,000), for each of the sets of groups
allowed by the target (i.e., 1, 25, 50 and 100), against the
results previously presented in Fig. 16. Although response
times increase when the load increases, which is expected,
the results show that the slowdown does not grow linearly, as
it remains below 100 % (and most often around 40-60 %),
when the load of concurrent requests has been raised up to
1,000-fold. Moreover, the obtained slowdowns result in aver-
age response times always below 5 ms, which is still very
low.

A critical aspect in the evaluation of the Policy Enforcer
is the measurement of the delay introduced by the evalua-
tion of history-based policies. As explained in Sect. 4.2.1,
the SPL compiler produces specific data structures to store
the events needed in the evaluation of history-based poli-
cies, such that it minimizes the time to evaluate history-based
policies.

Figure 18 shows the delay introduced by the evaluation
of a policy based on the history rule presented in Fig. 6.
Tests were made using the (optimized) log of SPL and a
non-optimized log. With the SPL log, if a user makes 1000
location requests to 20 different targets, only 20 events will
be effectively stored, instead of the 1,000 of a non-optimized
implementation. This optimization has a significant impact
in the space needed to store the history log and, more impor-
tantly, in the evaluation time of history policies, as can be seen
when compared to the non optimized log, where all events are
recorded regardless of their redundancy. Therefore, evaluat-
ing history-based policies with this log takes much less time
because there are orders of magnitude fewer entries in the
log to be evaluated, when compared with the non-optimized
log. Even so, the evaluation time will eventually grow but
with a sub-linear progression and dependent only on how

J Internet Serv Appl (2012) 3:291-310

305

Number of concurrent location requests

10 100 1000
c
H
o
o
3
o
)
~ =+ 0%
1000 . g e
Number of groups 1500 ™ —"
the requester belongs to 3000
(a) Target allows 1 group
Number of concurrent location requests
10 100 1000
1 80%
——— B ‘ c
| e
= - 40% 3
. s S [o
bk : L 209 wv
250 [20%
500 " ot 0%
1000 =
Number of groups 1500
3000

the requester belongs to

(c) Target allows 50 groups

Number of concurrent location requests
10 100 1000

Slowdown

1000
Number of groups
the requester belongs to

R e -

3000
(b) Target allows 25 groups

Number of concurrent location requests
10 100 1000

Slowdown

Number of groups
requester belongs to

3000

(d) Target allows 100 groups

Fig. 17 Percentage slowdown of average evaluation time for policy GroupsInterval with an increasing number of concurrent location requests

Evaluation time (miliseconds)
g

o 200 500 1000 2500 5000 7500
Number of events
[=®—optimized =a—not optimized |

Fig. 18 Evaluation time for growing number of history events

new events are compressible or not, due to their previous
occurrence.

Multiple location events In Fig. 19, we show the results
obtained when evaluating the response time of Jano in a
scenario where multiple targets (persons or objects) are mov-
ing. As a consequence of these movements, several location
events will be generated (e.g., leaving or arriving at some
place). For this scenario, we consider a single user who has
between 20 and 50 notification policies (a rather high number
in reality, as other literature often considers only five [29]).
Such policies are instantiations of the SNot i fy policy, pre-
viously presented in Fig. 10.

The results presented in Fig. 19a show the evaluation time
(in logarithmic scale) of the notification policies. We can
see that as more notification policies need to be enforced,
the average evaluation time does increase, although roughly
in a linear fashion with the number of polices. We recall
that 50 active policies is nonetheless a rather large number
(compared to others found in literature [29]), representing up
to 50,000 concurrent policy evaluations, and that even then,
all times are below 50 ms.

Jano’s scalability regarding evaluation of notification poli-
cies is further illustrated in Fig. 19b, detailing the percentage
slowdown of notification policy evaluation as the number of
concurrent events increases tenfold, each time, from 10 up
to 1,000, against serial execution. The slowdown observed is
never smaller than 25 % but is always under 100 %, being
most of the time between 40 and 80 %. This shows that when
the load is increased by a factor of 1,000, policy evaluation
times do not even double, which demonstrates the scalabil-
ity of Jano notification policies evaluation under load. Once
again, these slowdowns represent absolute times under 50 ms,
within the latency constrains for interactivity and perceptual
tasks [5,8].

More important, these results illustrate the performance
of Jano when events have to be processed against at least one
of the notification policies. This does not take into account

@ Springer

J Internet Serv Appl (2012) 3:291-310

306
m
£ =
L]
cwn
]
2%
S c
g ES =50
v & o001 - /
o & ™ 40
® = 0001 4 /
] B ! i 30 Number of
> 10 " . active
< 100 %220 e
1000 notification
Number of concurrent location events policies

(a)

Fig. 19 a Average evaluation time of notification policies with an
increasing number of concurrent location events. b Percentage slow-
down of average evaluation time of notification policies with increas-

the effect of the filtering mechanism, based on using bloom
filters (described in Sect. 4.3), that minimizes the number of
events to be considered. As already mentioned, this mech-
anism ensures that only those events needing to be further
processed (because they are relevant for active policies) do
have to be considered.

In a conservative scenario, we consider that this filtering
mechanism achieves an average of 40 % reduction in the
number of events to be processed. Thus, the results shown
in Fig. 19, when considering the filtering mechanism, are
in fact valid for scenarios up to 2,500 concurrent location
events (i.e., from these 2,500, only 60 % do correspond to
active policies and have to be effectively processed).

Globally, these results are very encouraging regarding the
scalability and performance of Jano’s policy evaluation and
enforcement core.

5.2 RFID use case

The qualitative evaluation of Jano was done by implementing
several location applications using different location tech-
nologies (e.g., wifi, GPS, RFID) demonstrating Jano’s capa-
bility to deal with location technology heterogeneity. One of
the most representative use cases is described in this section
along with two applications in which a wide set of access
control and notification policies were used.

We have implemented an RFID location based system in
the Jano architecture. In addition, we developed two proto-
type applications: i) campusLocation allows a student/pro-
fessor not only to find out his location, but also to obtain
information regarding how to reach a particular place and
where other colleagues are; ii) transportLocation allows
users, at each bus stop, to receive a wide range of information
regarding their own location as well as the buses that may
be used. Similar applications are also considered in [29] and
their relevance evaluated with user questionnaires.

@ Springer

100% -

g 80% -
S 60%-
3 -50
) 40% =
@ - 40
20% -
0% " 3% Number of
10 ' i
100 Z50 a.ctnvc?
1000 notifcation
Number of concurrent location events policies

(b)

ing load (number of concurrent location events) and number of active
notification policies

Figure 20 provides a view of the several main aspects
regarding the campusLocation application. At each rele-
vant physical place in the campus, there is a fixed RFID tag
(FT). Also, at some particular places (such as room entrances)
there are fixed RFID readers (FR). Each user (students and
professors) holds a mobile phone with RFID reading capa-
bilities that also has an RFID tag.

A user can explicitly read a FT and send via Wi-Fi the
corresponding identification to the Jano server. Thus, Jano
knows where a user is as long as he decides to read a FT
and send its identification. In addition, the FRs previously
mentioned are also capable to automatically read the RFID
tags on the user’s mobile phone (when a mobile phone is
close to the reader, obviously). These two mechanisms allow
the Jano server to know the students’/professors’ location.
Figure 21 illustrates the interface of the campusLocation
application (e.g., finding a way to a particular place in the
campus).

Based on the users’ locations, it is possible to offer a set
of location-based added-value services which do raise pri-
vacy concerns (as stated in Sect. 1). For example, professor
Alice may be notified when, his colleague, Bob enters in a
particular room or arrives at the campus. On the other hand,
Bob does not want students to know his location when he
has no teaching duties. To ensure this, Bob simply config-
ures the corresponding policy, regarding the disclosure of his
location, using the Jano web-based GUI: allowing Alice to
be notified in the circumstances indicated above, and allow-
ing students to know where he is located only when he has
teaching duties (e.g., from Monday to Thursday from 14 to
19 hours). These policies are similar to those described in
Sect. 4, and in line with those considered as complex in the
literature [29].

In the particular case of IST (the engineering school
of the Technical University of Lisbon), there are approx-
imately 900 professors organized in 9 departments.

J Internet Serv Appl (2012) 3:291-310

307

garden

= B F =) (=1 (=L
P -place 3 E_.E’_] 21 22
MR — mobile reader - i
. FT - fixed tog skt = g
h FR —fixed reader (i | 3
MT - mobile tag ‘E
S (=,
T :
-I I: ' estaura; 3 outside
(((w @ fw'::::ﬂ&l [ccv::: | “(“""‘M} [n::::‘.::: campus
= E m 8 |i] 19 e)
" G E=E= B o
utside of bulldings
[20] [12]
() Outside of campus.
@ () Fixed Tag
s travel () Fixed Reader
agency entrance
(a) Global view. et] 3 ¥R

Fig. 20 Application campusLocation

(b) Real scenario.

£iF| campus Location “¢2:16 €3 || £F| campus Location ¢ 2:16 €3 #| campus Location << 217 €3
Alice &
Bk Central building
Main hall -
North entrance
Travel agency
Football field
-
() (o] [) [Fen) | | (ewowar]
Contacts I l P] . I c I I
Swimming pool New events! Swimming pool New events | Swimming pool Noevents!
File E'A Fite El- File I‘

Fig. 21 Interface of campusLocation application

Therefore, the number of groups they belong to, for policy
specification purposes, is in most cases five (department, sci-
entific area, research institute and research group). In some
cases, a single user belongs to more groups depending on the
management duties. However, the number of groups found
in this case is much smaller than those that were used for the
performance tests previsouly described.

Regarding the transportLocation application, on each
bus stop there is both a fixed RFID tag (FT) and an RFID
fixed reader (FR). As in the campusLocation application,
each user holds a mobile phone with RFID reading capabil-
ities that also has an RFID tag. In addition, each bus has an
RFID tag (called bus tag) that is read by the FR at each bus
stop; this reader sends the identification of the bus tag to the
Jano server so that the location of all buses is known in real
time.

A typical usage scenario (“findWay”) is the following.
At the bus stop, using his mobile phone, the user reads the

fixed tag FT which uniquely identifies the location. Then,
the user contacts the Jano server (using GPRS) sending it the
fixed tag identification (thus, allowing the system to know
where the user is) along with the desired final destination;
the system then replies with the most appropriate bus the user
should take. Regarding location information privacy in this
application, Jano suports the following (among others): a bus
driver may access all buses locations, contrary to bus clients.
This requires the specification of distinct location policies,
accordingly. Once again, such policies can be easily defined
using the web-based GUI interface previously presented (see
Sect. 4.5).

In conclusion, these two applications require a careful set
of location policies (both access control and notification) to
ensure privacy. For this purpose, Jano provides the adequate
features: only in some application specific circumstances are
users (e.g., students, professors, bus drivers, etc.) allowed to
know the targets location.

@ Springer

308

J Internet Serv Appl (2012) 3:291-310

6 Related work

The interest in location privacy has been growing with more
services being able to take advantage of persons’ and objects’
locations. This is possible because of the universality of
location technologies and their integration with every day
devices. Hightower et al. [14] provide a systematic review of
location technologies. In their work, these technologies are
divided in proximity sensing, triangulation and scene analy-
sis. Examples of proximity sensing include the radio fre-
quency identification technology. Triangulation is the basis
of the Global Position System (GPS) and scene analysis has
been used to take advantage of Wi-Fi infrastructures [2,32].

In [20], Minch points out that location privacy can be
defined in terms of: Intrusiveness, Seclusion, Boundaries,
Control, and Limitation. In our work, users are willing to
share their location to third parties and so we focus on control
and limitation in the disclosure of location privacy. Different
approaches have been considered to promote privacy when
disclosing and sharing personal location and, mainly, three
lines of research can be identified: one that takes the person’s
location and blurs it [1], one that anonymizes users [3,21,12]
making them indistinguishable and finally, one that takes
into account security policies defined by the users of the
system [19,22,23].

Typically obfuscation deals with the problem of what loca-
tion accuracy should be reported to location consumers, not
dealing with conditions like history of events or the origin
of the location request. On the other hand, anonymization
is applied in scenarios were the real identity of the user is
not relevant, e.g. receiving an advertisement when arriving
to a defined shopping area. If the location consumer wants
to know the location of someone or something in particular,
it will not be possible with this technique.

Location privacy with the enforcement of security poli-
cies has been a topic of research for some time [19,13,18].
Security policies of persons, objects or places, can be made
dependent on several location privacy primitives (geograph-
ical area, time interval, historical access, etc.) [3,30]. Each
of these aspects can be combined to form a user, object or
place, security policy.

Leonhardt and Magee [19] present a system where the
access control is based on multi-target and multi-object
policies. To simplify the management, the system has three
levels of policy control: access, visibility and anonymity.
The Aura project [11] incorporates a location module which,
besides being able to handle multiple sources of positioning
information, is also structured to protect access to people’s
location [13]. Their option was to use the SPKI/SDSI
infrastructure, giving the possibility, among other things, to
delegate location access rights.

LocServ [22] represents each person’s policy by a group
of validators responsible for the evaluation of each location

@ Springer

request. The implementation of these validators can range
from a software that interrogates the user for each request, to
a generic decision function based on, for example, a security
policy file. Context Fabric [15] is a middleware to organize
and promote communication between different information
spaces where users keep their information (e.g., location).
Associated to the information in each of these spaces, is a
description of privacy related actions that the middleware
has to attend to, e.g. the requester of the information cannot
be at a given building.

More recently, Opyrchal [23] focuses on adding support to
location privacy in a content-based publish subscribe middle-
ware. Their system allows publishers (i.e., mobile users)
to control dissemination of location information they own.
Publishers can do so by specifying to which users, and in
what conditions, the disclosure of information is possible,
using the KeyNote Trust-Management System [10]. People
Finder [17] takes a different direction, applying techniques
of machine learning to automatically adjust each user’s pol-
icy, based on their satisfaction with the location information
disclosure.

The work in [1] applies obfuscation techniques to loca-
tion information based on user’s privacy preferences. In our
work, we do not attempt to tamper with location data, instead
we allow users and administrators to define/use policies that
rule the disclosure of location information for queries and
notifications. The work in [21] assumes the existence of
untrusted servers from which users want to hide their exact
location; this is achieved by anonymizer nodes that reduce
location precision to cloak spatial areas. In Jano, location
servers are trusted, nevertheless, the two works could be
combined with enriched support for policies. Cooperative
sensing is addressed in [9]: user nodes submit sensing tasks
to accessible mobile devices of other users. To ensure pri-
vacy, all communication is anonymized. In Jano, we do not
attempt to recruit other users’ devices but deployment of
sensing tasks could be defined, reused and enforced by taking
advantage of Jano support for policy definition and enforce-
ment.

Common to all these works is the lack of support to make
decisions based on past events. The authors in [23] recognize
the need to support history-based policies, but their work is
unable to do so. In [29], a study is presented indicating that
users tend to develop more elaborated policies as they con-
tinue to use a location service. In the same paper, a social
location service is presented, as in our example, integrat-
ing a rule editor. Nevertheless the authors do not show how
history-based rules can be used and how the system could be
adapted to other contexts besides the social network. Perfor-
mance evaluation of the component used to evaluate policies
is not mentioned, with exception of [23], where the authors
conclude they need a more efficient policy evaluator. The
adaptability of the policies to different organizations where

J Internet Serv Appl (2012) 3:291-310

309

users, objects and places have different characterization is
also not the main issue.

7 Conclusion

In recent years, location information has been increasingly
used in context-aware applications with the goal of augment-
ing the mobile services offered to the end user. Some exam-
ples are: advertisements on mobile devices from the shop
being visited, and presentation of more information related
to the product being purchased, or the work of art we stand by.

For an effective deployment and acceptability of location
services, they must support the specification and enforce-
ment of security policies. Users want to specify under what
conditions their location can be disclosed. In some scenarios,
this can depend on past events such as, how many times a
location request was made, or what places have been visited.
Finally, the kind of properties that are relevant to characterize
each object or event is different for each location service.

In this document we have presented Jano, a Location Ser-
vice capable of enforcing privacy-related security policies.
Although the instant reporting of locations (pull requests) is
essential, in many situations, users want to be notified about
some kind of location related event, i.e., push requests. The
policies enforcing the access to location information, and the
conditions used in the specification of push requests are made
through an extension of SPL, a multi-model authorization
platform. Using SPL, policies can be implemented using a
variety of different security models, and their deployment can
be made dependent on the resources of the organization site.
That is, the location policies are tailored to the domain model
where the location service is to be deployed. Regarding eval-
uation, results have shown that performance is not compro-
mised. The usability of the system is enhanced by the simple
GUI developed for users to control their security policies.

Acknowledgments This work was partially supported by national
funds through FCT-Fundagdo para a Ciéncia e a Tecnologia, under
projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-EIA/113993/2009,
and PEst-OE/EEI/LA0021/2011.

References

1. Ardagna CA, Cremonini M, Damiani E, De Capitani di Vimer-
cati S, Samarati P (2007) Location privacy protection through
obfuscation-based techniques. In: Lecture notes in computer sci-
ence, vol 4602. Springer, Berlin, pp 47-60

2. Bahl P, Padmanabhan VN (2000) Radar: an in-building rf-based
user location and tracking system. In: INFOCOM 2000. Nineteenth
annual joint conference of the IEEE Computer and Communica-
tions Societies. Proceedings, vol 2. IEEE, pp 775-784

3. Beresford AR (2005) Location privacy in ubiquitous computing.
Technical Report 612, University of Cambridge

4. Bevier WR, Young WD (1997) A constraint language for Adage.
Inc, Technical report, Computational Logic

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

. Bhola SK, Banavar GS, Ahamad M (1998) Responsiveness and

consistency tradeoffs in interactive groupware

. Bloom BH (1970) Space/time trade-offs in hash coding with allow-

able errors. Commun ACM 13:422-426

. Burton RM, DeSanctis R, Obel B (2006) Organizational design: a

step-by-step approach. Cambridge University Press, Cambridge

. Cheshire S (1996) Latency and the quest for interactivity. In: White

paper commissioned by Volpe Welty Asset Management, LLC., for
the synchronous person-to-person interactive computing environ-
ments meeting

. Cornelius C, Kapadia A, Kotz D, Peebles D, Shin M, Triandopou-

los N (2008) AnonySense: privacy-aware people-centric sens-
ing. In: Proceeding of the 6th international conference on mobile
systems, applications, and services. ACM, New York, pp 211-
224

Blaze et al M (1999) Rfc 2704: the keynote trust-management sys-
tem version 2

Garlan D, Siewiorek DP, Smailagic A, Steenkiste P (2002) Project
aura: toward distraction-free pervasive computing. PERVASIVE
Computing, pp 22-31

Gedik B, Liu L (2008) Protecting location privacy with personal-
ized k-anonymity: architecture and algorithms. IEEE Trans Mobile
Comput 7:1-18

Hengartner U, Steenkiste P (2003) Protecting access to people loca-
tion information. In: First international conference on security in
pervasive computing, pp 25-38

Hightower J, Borriello G (2001) Location systems for ubiquitous
computing. IEEE Comput 34(8):57-66

Hong JI (2004) An architecture for privacy-sensitive ubiquitous
computing. In: MobiSYS 04: Proceedings of the 2nd international
conference on mobile systems, applications, and services, pp 177—
189. ACM Press, New York

Jajodia S, Samarati P, Sapino ML, Subramanian VS (June 2001)
Flexible support for multiple access control policies. ACM Trans
Database Syst 26(2):214-260

Kelley PG, Drielsma PH, Sadeh N, Cranor LF. User-controllable
learning of security and privacy policies. In: Proceedings of the
1st ACM workshop on workshop on AlSec, AlSec 08, New York,
NY, USA. ACM, New York, pp 11-18

Langheinrich M (2002) A privacy awareness system for ubiquitous
computing environments. In: UbiComp ’02: Proceedings of the 4th
international conference on Ubiquitous Computing, London, UK,
2002. Springer, Berlin, pp 237-245

Leonhardt U, Magee J (1998) Stability considerations for a distrib-
uted location service.] Netw Syst Manage 6(1)

Minch R (2011) Issues in the development of location privacy the-
ory. In: Proceedings of the 2011 44th Hawaii international confer-
ence on system sciences, HICSS * 11, Washington, DC, USA. IEEE
Computer Society, pp 1-10

Mokbel MF, Chow CY, Aref WG (2006) The new Casper: query
processing for location services without compromising privacy. In:
Proceedings of the 32nd international conference on very large data
bases. VLDB Endowment, p 774

Myles G, Friday A, Davies N (2003) Preserving privacy in envi-
ronments with location-based applications. Pervasive computing,
pp 5664

Lukasz O, Atul P, Amit A (2007) Supporting privacy policies in
a publish-subscribe substrate for pervasive environments. J Netw
2:17-26

Ribeiro C (2002) Uma Plataforma Para Politicas de Autorizacao
Para Organizacoes Complexas. PhD thesis, Instituto Superior Tec-
nico, Lisbon, Portugal

Ribeiro C, Zuquete A, Ferreira P, Guedes P (2001) Spl: an access
control language for security policies and complex constraints. In:
NDSS, The Internet Society

@ Springer

310

J Internet Serv Appl (2012) 3:291-310

26.

217.

28.

29.

Samarati P, De Capitani di Vimercati S (2001) Access control:
policies, models, and mechanisms. In: Revised versions of lectures
given during the IFIP WG 1.7 International School on Founda-
tions of Security Analysis and Design on Foundations of Security
Analysis and Design: tutorial lectures, FOSAD *00, London, UK.
Springer, Berlin, pp 137-196

Sandhu R (1993) Lattice-based access control models. IEEE Com-
put 26(11):9-19

Stiemerling O, Wulf V (2000) Beyond "yes or no"—extending
access control in groupware with awareness and negotiation. Group
Decis Negot 9:221-235. doi:10.1023/A:1008787208430

Toch E, Cranshaw J, Drielsma PH, Tsai JY, Kelley PG, Springfield
J, Cranor L, Hong J, Sadeh N (2010) Empirical models of privacy
in location sharing. In: Proceedings of the 12th ACM international
conference on ubiquitous computing, Ubicomp *10, New York, NY,
USA. ACM, New York, pp 129-138

@ Springer

30.

31.

32.

Tsai JY, Kelley PG, Cranor LF, Sadeh N (2009) Location-sharing
technologies: privacy risks and controls. In: Research conference
on communication, information and internet policy (TPRC)
Varshney U (2003) Location management for mobile commerce
applications in wireless internet environment. ACM Trans Interet
Technol 3(3):236-255

Zaruba GV, Huber M, Kamangar FA, Chlamtac I (2007) Indoor
location tracking using rssi readings from a single wi-fi access
point. Wirel Netw 13:221-235

http://dx.doi.org/10.1023/A:1008787208430

	Jano: location-privacy enforcement in mobile and pervasive environments through declarative policies
	Abstract
	1 Introduction
	2 Jano architecture
	3 Location privacy
	3.1 SPL policies structure
	3.2 History-based policies
	3.3 Policy awareness

	4 Implementation
	4.1 Notification policies
	4.2 Policy dynamism and log-size management
	4.2.1 Log size reduction algorithm

	4.3 Optimizing policy design, processing, networking
	4.4 Interaction between Jano and SPL
	4.5 Web-based GUI

	5 Evaluation
	5.1 Performance evaluation
	5.2 RFID use case

	6 Related work
	7 Conclusion
	Acknowledgments
	References

