
J Internet Serv Appl (2012) 3:319–327
DOI 10.1007/s13174-012-0069-8

SI: DATA INTENSIVE COMPUTING

Record-Based Block Distribution (RBBD) and weighted set cover
scheduling (WSCS) in MapReduce

Qiangju Xiao · Pengju Shang · Jun Wang

Received: 15 May 2012 / Accepted: 16 September 2012 / Published online: 23 October 2012
© The Brazilian Computer Society 2012

Abstract The massive increase in data volume with the
development of computation capability has outmoded com-
pute-intensive clusters for the analysis of large-scale datasets
due to the network bottleneck caused by the large amount of
data transferred over the network. Chunk-based storage sys-
tems are typical data-intensive clusters introduced to do big
data analysis. They split data into blocks of the same pre-
defined size and randomly store them across nodes. These
systems adopt the strategy of co-located computing and stor-
age to reduce the network transfer by scheduling compu-
tation to the node with the most required data. It performs
well when the record as the input of the analysis is mostly
on the same node. However, this does not always hold to
be true, because there is a gap between the records and the
blocks. Blocks are scattered across the data nodes with no
regard to the semantics of the record. The current solution
overlooks the relationship between the computation unit as
a record and the storage unit as a block. For records con-
tained in one block, there is no data transfer to schedule by
block locations. On the other hand, in practice, one record
could be consisted of several blocks which widely applies
to binary files, as a result, extra data transfer is incurred to
prepare the input data, because these blocks are randomly
stored across the nodes and need to be transferred to the
selected compute node. Our contribution is to develop a
Record-Based Block Distribution (RBBD) framework for
data-intensive analytics to eliminate the gap between records

Q. Xiao · P. Shang · J. Wang (B)
Department of Electrical Engineering and Computer Science,
University of Central Florida, Orlando, 32816, USA
e-mail: jwang@eecs.ucf.edu

Q. Xiao
e-mail: qxiao@eecs.ucf.edu

P. Shang
e-mail: shang@eecs.ucf.edu

and blocks, reducing the data transfer volume before the
analytics are processed. Meanwhile, a weighted set cover
scheduling (WSCS) is implemented to further improve the
performance of the data-intensive analytics by choosing the
best combination of data nodes to perform the computation.
Our experiments show that using our RBBD framework and
WSCS, the data transfer volume is reduced by an average
of 36.37 % and our weighted set covering algorithm outper-
forms the random algorithm by 51–62 %, with the deviation
from the ideal solutions of not more than 6.8 %.

Keywords Hadoop · Data-intensive · MapReduce ·
HDFS · Co-located compute and storage · HEC

1 Introduction

The further development of computation capability and
large-scale storage systems facilitates research that inter-
weaves between different scientific fields. This eventually
produces large-scale datasets. Scientific applications running
on high end computing (HEC) platforms can generate large
volumes of output [1]. Virtualization, simulation and other
scientific applications running on HEC are the major con-
tributors. The output data size has been growing with rapid
speed, reaching peta-scale sizes. Since I/O bandwidth is the
bottleneck for evaluated applications [2], it imposes great
challenges for computing science researchers to resolve this
issue by reducing the volume of data to be transferred as
much as possible.

Hadoop system [3], a data-intensive system with chunk-
based storage, is designed to solve these challenges caused by
the increasing volume of data that computer-intensive clus-
ters could hardly handle. Data are split into blocks and stored
randomly across the data nodes. Data are then divided into

123

320 J Internet Serv Appl (2012) 3:319–327

splits according to the user input, the tasks are distributed
to the node storing the largest part of the split. When tasks
are launched on the node, records are read from the split
according to the input format. However, blocks are not equal
to records. There is a gap. Records consist of several blocks
which are distributed across the nodes as shown in Fig. 1.

As shown in Fig. 1, the input data as a record could be
several blocks randomly scattered among nodes. Since the
relationship between them is not considered on current stor-
age mechanisms, blocks from the same node are randomly
stored across the data nodes, then computations over records
with several blocks will cause extra data transfer to gather
the input data.

To address this problem, we design Record-Based Block
Distribution (RBBD) which optimizes block distribution
based on the relationship of the records and blocks by stor-
ing all the blocks from the same record on the same node
as much as possible to reduce data transfer across nodes.
We use a weighted set cover scheduling (WSCS) to reduce
transfer volume. Figure 2 shows the high-level system view
with RBBD and WSCS. Although, the original implemen-
tation works well in situations with records residing on
one block, our experiments show that it can lead to severe

B1

Records

BlockBlocks

RecordLRecord ...Record3Record1

File

BNB9B8B7B6B5B4B3B2

Record2

Fig. 1 Record and blocks demonstration over a single file

Default System
Scheduling

Default Random
Distribution

Scientific Data

Data Intensive File System
(HDFS, GFS)

Entry of Storage
System (Namenode)

Weighted Set Cover
Scheduling (WSCS)

Record Based Block
Distribution (RBBD)

Scientific Data Analysis

Fig. 2 High-level system view with RBBD and WSCS

performance problems when its underlying assumptions are
broken. Our strategy improves co-located computation by
reducing the actual data amount across network by a factor of
36.37 %.

When prior knowledge of the record and block relation is
hard to retrieve,WSCS is adopted. The scheduling algorithm
utilizes the information of (1) available slots for schedul-
ing, (2) locations of file chunks and (3) the network transfer
latency of multiple chunks to determine the cost of each can-
didate node for the map task and picks the best candidate for
scheduling. When prior knowledge of the record and block
relation is accessible, we use RBBD together with WSCS to
reduce the extra data transfer. RBBD distributes the blocks
of the same record onto the same node at the time when the
data are uploaded to the storage system.

The rest of this paper is organized as follows: Sect. 2
states the related research in the data-intensive analysis.
Sect. 3 details the design and implementation of RBBD.
Section 4 demonstrates the weighted set cover approach.
Section 5 presents algorithms, results and analysis respec-
tively. Finally, Sect. 6 concludes the paper and introduces
our plan for the future work.

2 Related works

There have been a lot of large-scale data processing frame-
works in the scientific research area. MapReduce [4],
Bigtable [5], Dryad [6] and many storage systems are con-
tributing to the storage and analysis of the large-scale data.
Dryad is a research project at Microsoft Research for the
general-purpose runtime for execution of data parallel appli-
cations. However, our approach is for the optimization of the
data layout distribution and scheduling improvement on data-
intensive clusters, of which the typical system is Hadoop.
Some approaches contribute to the scheduling improve-
ment of MapReduce performance such as the performance
improvement research in Hetterogeneous Environment [7]
and Mantri [8]. Mantri proposes a solution to improve the
MapReduce performance by improving the outliers, such as
using network-aware placement of tasks, smart restart of out-
liers and protecting outputs of valuable tasks. In Mantri, they
do not address the extra data transfer caused by the random
block placement, rather they focus on the task monitoring
and management.

Binary files arewidely used in scientific applications espe-
cially as the simulation output. Structured format such as
NetCDF [9], HDF5 [10] and Gadget [11] applies to a lot
of scientific data with binary format. There is a project, Sci-
Hadoop, that explores the porting of NetCDF onMapReduce
framework [12]. However, The characteristic of binary file
processing is that the whole record should be inputted as a
whole, otherwise the data do not mean anything. Our RBBD

123

J Internet Serv Appl (2012) 3:319–327 321

framework distributes the blocks according to the predefined
metadata and processes them as a whole, which makes the
analysis proceed correctly.

For the storage research onHadoop systems, such as inter-
mediate storage research [13–15]. Research ofGuo et al. [15]
specifically aims to achieve optimal data locality by a cost
matrix model with scheduling problem and improves the
default Hadoop scheduling strategy. However, their solution
does not take into account the difference of the data access
patterns between binary files and common files.

There are also researches on the access patterns for
MapReduce framework such as MRAP [16]. The author
made a design change for the MapReduce by allowing the
Map function to access two inputs and they also improved
the data layout according to the data semantics to erase the
gap between scientific data and HDFS storage format. How-
ever, our work is to erase the gap between the block and the
actual map input as a record, optimize the block distribution
from the view of the record, and is designed to overcome the
unsplittable feature of the binary file.

3 Record-Based Block Distribution (RBBD)

In this section, we design RBBD at HDFS management
level which optimizes the block distribution according to
the record/block relationship. There are two access pat-
terns for binary files with/without prior knowledge of
the record/block relationship. RBBD only applies to the

access pattern with prior knowledge. We use the uploading
middleware (UPMIDD) to perform the block optimization
at the time when the data are uploaded to the storage sys-
tem. Compared to the existingHDFS blockmanagement, our
RBBD eliminates the gap between the records and blocks,
requiring no data transfer when performing the Map task. To
make it simple, we use 1-replica to demonstrate how we will
improve the HDFS block distribution as shown in Fig. 3. The
general steps are as follows:

1. The usermakes the request to upload certain files together
with metadata.

2. Files are split into blocks of size set in the HDFS system
configure file, the last block can be less than that.

3. Name node uses UPMIDD to retrieve record/block rela-
tionship.

4. Name node distributes at least blocks of the same record
onto the same node, evenly distributes the block packs.

5. The user requests to perform analysis against the uploa-
ded files.

6. Name node schedules the Map tasks to data nodes with
all available blocks of the same record.

7. Data nodes perform the Map task, because all needed
data are already on them.

Suppose there are N data nodes, the default block size is
B bytes, the file to be uploaded comprises M blocks, and
the size of the M th block is � B bytes, to make it simple
to analyze, we assume that the block belongs to only one
record, no overlap among blocks of different records.

Scientific Data

DataNode1 DataNode2 ...

NameNode

B4B3B1 B2 B5 B6 B7 B8 B9

DataNodeN

B4B3

B1

B2B5

B6 B7 B8B9

DataNode1 DataNode2 ... DataNodeN

MapTask 2
Record 2 as input

MapTask 1
Record 1 as input

MapTask 3
Record 3 as input

Distribute blocks

Split

7 block transfer

B1
0

B1
0

B4B3B1 B2 B5 B6 B7 B8 B9
B1
0

Scientific Data

DataNode1 DataNode2 ...

NameNode

DataNodeN

B4B3

B1

B2

B5 B6

B7

B8 B9

DataNode1 DataNode2 ... DataNodeN

Distribute blocks

MapTask 2
Record 2 as input

No Data Transfer
needed

Split

MapTask 1
Record 1 as input

MapTask 3
Record 3 as input

B1
0

B4B3B1 B2 B5 B6 B7 B8 B9 B1
0

B3B1 B2 B4 B8 B9 B1
0

B5 B6 B7

(a) (b)

Fig. 3 A detailed view of comparing HDFS default block distribution and our RBBD

123

322 J Internet Serv Appl (2012) 3:319–327

1. We learned from the metadata that the number of blocks
for the R records is an array as below:

R[R] = R0, R1, R2, . . . , RR−1 (1)

2. For the random replacement, the probability of x blocks
are placed on the same node is:

p = (1/N)x (2)

3. The chance that the blocks are placed as a record-based
through random placement is:

popti =
R−1∏

j=0

(1/N)R[j] = (1/N)
∑R[j]

j=0 (3)

4. Since it is assumed that there is no overlap, then the total
number of blocks M equals

∑R[j]
j=0 , and the (3) is simpli-

fied to:

popti == (1/N)M (4)

Hence, the possibility of the random placement to achieve
the optimal data placement according to the record is defined
by (4). It is clear that the possibility is related to the num-
ber of blocks and the number of data nodes. We learn
that the possibility of randomplacement decreases alongwith
the increasing number of nodes in the Hadoop cluster and the
increasing number of data blocks. Based on our analysis, for
a small scale cluster (our test bed which only has 15 data
nodes), when the number of blocks is larger than 40 (total
data size is more than 2, 560M B), it is highly unlikely that
(possibility = 10−47) the random data placement will achieve
an optimal data lay out. Unfortunately, most data-intensive
applications work on even more data nodes and even more
number of blocks, which eventually would further decrease
the possibility.

We will discuss UPMIDD in detail in the next subsection.

3.1 Uploading Middleware

UPMIDD is a middleware in charge of block optimization
according to the metadata provided by the user when users
request to upload the data set. In HDFS, NameNode main-
tains the blocks and file relationship. What UPMIDD does
is to replace the default random block distribution mecha-
nism of HDFS, and optimize the distribution according to
the metadata. The purpose of this middleware is to reduce
the data transfer caused by the random placement of blocks.

When a client uploads data to the HDFS, the name
node determines the record-based storage by the input para-
meter isRecordBased, if isRecordBased is true, then this

HDFS default Upload ProcessRetrieve the metadata info

HDFS

Scientific Data

isRecordBased
== true ?

Generate the Record and Block
Relationship

Distribute the blocks to the chosen
node

Determine the node IP address for
every block

Yes

No

User Upload or
Rebalance Request

Fig. 4 RBBD flow chart

upload will be completed by UPMIDD. The UPMIDD reads
the user-provided metadata with record delimitation infor-
mation, and then determines the block/record relationship
together with the default block size and distributes the blocks
of the same record on to the same node. The workflow
of UPMIDD is shown in Fig. 4. isRecordBased is also
used to determine whether this file needs to be distrib-
uted according to the metadata and the metadata are also
stored in HDFS for use when the user requested rebal-
ance on HDFS. Suppose that the user provides the below
metadata:

We assume that the block size set for this HDFS system
is B. UPMIDD then distributes the blocks as Algorithm 1.

123

J Internet Serv Appl (2012) 3:319–327 323

4 Weighted Set Cover Scheduling (WSCS)

When MapReduce tasks are received by the NameNode, if
there are Mmap tasks launched on an application then, there
is a set S = {s1, s2, . . . , sM } such that si represents a data
split consistingmultiple blocks andmultiple records, andwill
be processed by the i th map task. The NameNode returns all
of the nodes containing a data block (including the replica
nodes) per block of the input files to the job scheduler. For
example, if there are three replicas, then three nodes will
be returned for a specific block. In case of multiple blocks,
the total number of nodes returned is equal to three times
the number of blocks. We call this set K, and Ki will cor-
respond to all the nodes that contain blocks from the input
files.

We want to find a set (A ⊂ K) of nodes, where one
of the nodes is the primary node to host/schedule the map
task, and others are the secondary nodes and will provide the
missing data to the primary node. The cost of data transfer
from the secondary nodes to the primary node should be at
a minimum. This node- selection problem is similar to the
weighted set cover problem, which models many resource-
selection problems.A split and a node in the scheduling prob-
lem exactly corresponds to an element and a set, respectively,
in the weighted set cover problem. The only difference is that
“a split also represents a set of records, not a single element”.
Each node contains at least one of the records. We need to
find the set of nodes for each split. The weighted set cover
problem has been proven to be NP-hard so that a heuristic
and iterative algorithm is generally used to solve it. The algo-
rithm starts by retrieving all the nodes containing the blocks
from a record. It then starts the iteration with an empty set,
Ai , which denotes a collection of the nodes selected until
it reaches the last iteration. At each iteration, the algorithm
selects a node ni , and adds it to Ai . Nodes that are added
to the set Ai are considered to be covering a part of split si .
The algorithm finishes the iteration when all the blocks in the
si are covered, and then Ai gives a set of nodes, where the
first one is used as a primary node and others as secondary
nodes.

This algorithm (Algorithm 2) is used for all map tasks, and
determines the optimal nodes for all map tasks belonging to
one application.

Table 1 CASS cluster configuration

Fourteen compute/data nodes and 1 name node

Make and model Dell PowerEdge 1950

CPU 2 Intel Xeon 5140, Dual Core, 2.33 GHz

RAM 4.0 GB DDR2, PC2-5300, 667 MHz

Internal HD 2 SATA 500GB (7200 RPM) or 2 SAS 147GB
(15K RPM)

Network connection Intel Pro/1000 NIC

Operating system Rocks 5.0 (Cent OS 5.1),
Kernel:2.6.18-53.1.14.e15

5 Experimental results and analysis

In our experiments, we demonstrate how RBBD frame-
work performs for the two access patterns of binary files
as described in Sect. 3. The first access pattern of the binary
files performs weighted set cover scheduling over the exis-
tent binary files with no prior metadata available on HDFS,
whereas the second access pattern deals with the binary files
with prior knowledge of the metadata about the record and
block relationship. We also show the data transfer improve-
ment due to block-optimized distribution for the second
access pattern. The most challenging part of this work is to
fairly evaluate RBBD framework using various data access
patterns against the existing access patterns currently imple-
mented in HDFS. Unfortunately, it turned out that most
binary analytics programs need to be developed. In addi-
tion, there are no matured benchmarks for us to test our
design. For the first access pattern, we simulate the schedul-
ing algorithm with comprehensive experiments. We have
used the Halo Finding application from the astrophysics
domain, Gadget II [17] binary format and data in GeoTIFF
[18] format produced byBeijing-1 Satellite provided byCen-
ter for Earth Observation and Digital Earth of Chinese Acad-
emy of Sciences (CAS) to evaluate the RBBD framework.
We use both HDFS default storing implementation and our
RBBD to store the blocks across the data nodes and com-
pare the network transfer. In the next subsection, we will
describe the testbed and benchmark setup used to generate
results.

5.1 Test bed

Our test bed consists a total of 15 totally heterogenous nodes
with Hadoop 0.20.1 installed. All these nodes are in the same
rack, and the configurations for the Hadoop cluster is shown
in Table 1. One node is set as the NameNode and JobTracker,
and other 14 nodes are configured to beDataNodes and Task-
Trackers.

123

324 J Internet Serv Appl (2012) 3:319–327

5.2 Simulation of WSCS

We simulate the scheduling algorithm with comprehensive
experiments. There are two steps in our simulation: (1) set up
environments with different configurations; (2) test the per-
formance of randomalgorithm and our scheduling algorithm,
and compare them with that of the ideal solution.

In the first step, we simulate a large-scale cluster con-
sisting of 100 racks, 5, 000 nodes in total. We also create a
global routing table followed the instructions on [“TCP/IP
network administration, p 146–148”] and the metrics dis-
tribution observed in the real routing table for our campus
network. In the widely used Routing Information Protocol
(RIP) and other dynamic routing protocols (such as OSPF,
OSI, andRIPng), themetric in a routing table denotes the cost
of the path throughwhich the packet is to be sent. To focus the
efficiency of our scheduling algorithm, we do not consider
the local transfer latency caused by disk I/O or cache miss;
the only transfer latency for a chunk is the network latency
denoted by the metric in the routing table. We assign a num-
ber of different types of routine costs following a uniform
distribution. The cost starts from 0 ms (in the same rack), the
increasing step is 10 ms (based on the observations from part
of the routing tables in our campus network). For simplicity,
we do not simulate the dynamic updates in the routing table.
The number of replicas for each chunk is set to be 3 as default
in HDFS. Every rack contains the same number of nodes. All
chunks are distributed into the nodes based on the following
rules: any two of the three replicas should not be in the same
node; each replica is randomly assigned to a rack.

In the second step, we implement a random scheduling
algorithm and our weighted set covering based scheduling
algorithm. In both algorithms, we randomly pick one rack as
the primary rack on which the read request is issued. Then,
we check the routing table to obtain the network information
(the transfer latency starting from primary rack). For the ran-
dom algorithm, we randomly pick the racks from those who
have the required chunks until all of the chunks are read. The
algorithm is iterated 40 times and we get the average transfer
latency. For weighted set covering algorithm, we use greedy
algorithm to find the optimal or quasi-optimal solutionwhich
gives the combination of racks providing all of the required
chunks with the smallest transfer latency. Besides these two
solutions, we enumerate all the possible solutions and get the
ideal one to prove the accuracy of our solution.We set up five
different experimental environments. In the first three exper-
iments, we use four types of network latencies (0–30 ms,
10ms for one step) but a different number of required chunks.
The purpose is to show how different request sizes affect the
performance of different algorithms; in the last two experi-
ments, we use the same number of required chunks, but vary
the number of network latencies (8 types, 16 types) to explore
the impact of different sizes of network. The results show

that increasing the size of requests (the number of requested
chunks) does not significantly increase the transfer latency.
The reason is that since the transfer latency between any two
nodes in the same rack is negligible, and the transfer latency
from a node in one rack to any of the nodes in another rack is
the same, we can say that transfer latency between any two
nodes is same as the transfer latency between the two racks.
As a result, the data transfers in our experiment actually is
incurred among racks. Since there are only 100 racks, but
there are many requested blocks, every rack will maintain
some of the requested blocks. In other words, the possible
candidate set for solution always has all of the racks (100
in our experiments). Our weighted set covering algorithm
always chooses the optimal or quasi-optimal combination of
racks from the same candidate set. As a result, the overall
performances are similar. The small difference is due to the
different primary rack we randomly picked. The results in
Fig. 5 show that along with the increasing size of the net-
work, the average transfer latency will obviously increase.
This is caused by the higher network latencies that we add
(50, 60 ms and so on). No matter what kind of configura-
tion we set, our weighted set covering algorithm outperforms
the random algorithm 51–62 %; the deviation from the ideal
solutions is no more than 6.8 %.

5.3 Results of RBBD

In this section, we present three sets of results for RBBD: the
default HDFS data block placement, the comparison of the
network transfer volume of Map execution under the default
HDFS storage strategy, and the RBBD storage strategy; the
overhead of performing RBBD.

5.3.1 The block distribution

The random block distribution of the HDFS is adopted to
balance the work load of data nodes. However, it also causes
problems for cases we mentioned above where the record
comprises several blocks. In this experiment, we used the
GeoTIFF data provided by CAS to perform the block dis-
tribution test. We ran experiments for data with different
record/block relationships to see how the random block dis-
tribution would turn out. We ran five groups of experiments:
one file with records of which the average number of blocks
of a record is 2, 4, 8, 10 and 16.We get the block distribution
as Fig. 6. Firstly, we retrieve the average number of blocks to
be transferred as shown in Fig. 6a for different sizes of data.
To show the actual data transfer rate for every node, Fig. 6b
shows the average number of blocks to be transferred on the
data node performing the actual map task for different sizes
of data, and average number of blocks of one record is 4.
From Fig. 6a, for the data of the same size, if the average
number of blocks of the record is equal to or larger than the

123

J Internet Serv Appl (2012) 3:319–327 325

0

500

1000

1500

2000

2500

3000

3500

5000 nodes; 100
racks; read 200
chunks; 4 types

of routing
metrics

5000 nodes; 100
racks; read 400
chunks; 4 types

of routing
metrics

5000 nodes; 100
racks; read 800
chunks; 4 types

of routing
metrics

5000 nodes; 100
racks; read 400
chunks; 8 types

of routing
metrics

5000 nodes; 100
racks; 400

chunks; 16 types
of routing

metrics

Ideal Solution

WSC

Random
O

ve
ra

ll
tr

an
sf

er
 la

te
n

cy
 (

m
s)

Fig. 5 Five experiments with different configurations

(b)(a)

Fig. 6 Random block distribution of different record/block relationships

total number of data nodes, there is a sharp reduction in the
average block number to be transferred, because at that time,
the possibility of the 16 blocks of the same record to be on
the same node (across 14 data nodes) increases.

5.3.2 Comparison of network transfer

In this experiment, we tested the network transfer using the
Gadget II data. By default, the HDFS stores the blocks ran-
domly across the data nodes, but RBBDoptimized the blocks
according to the block/record relationship to keep one replica
of all blocks to the same record on a same node. We made
experiments on datasets of size 28.8, 57.6, 115.2, 172.8,
230.4, 288 and 576 GB, uploading them to the HDFS to
retrieve the block distribution diagram as shown in Fig. 7.

If we use theWSCS to make tasks locate all records of the
nodes, we learn that optimizing the block distribution accord-
ing to the block/record relationship, can reduce the amount

of transferred data by 196.10 GB for a 576-GB dataset. We
can reduce the data transfer volume to an average of 36.37%.
For data-intensive computations, the data volume has been
increasing to tera bytes, and the transfer has always been the
important factor of influencing the performance. For exam-
ple, if we have a data set of size 1 TB, then by optimizing
the block distribution, we can get an amount of 363.7 GB
reduced in data transfer.

5.3.3 Real application

We use a mass analyzer working with astrophysics data sets
[17] for Halo Finding to perform the experiments. There are
positions and velocities of particles in these data sets. Each
particle has the following attributes: (x, y, z) for the position
coordinate and (vx , vy, vz) for the velocity, and particle mass
M , particle tag T . The mass analyzer reads these data and
calculates the average mass in each area with a predefined

123

326 J Internet Serv Appl (2012) 3:319–327

Fig. 7 Data volume
transferring during map
computation

Fig. 8 MapReduce execution time comparison between default HDFS
and RBBD

area size. Since the particle information as a whole input is
very large to fit in one analysis program, the particles are
divided into several records and computed, respectively. The
records are of random size and stored across data nodes.
We first execute the analysis using MapReduce with blocks
randomly stored by default onHDFS, and then re-execute the
same program again after the blocks are distributed across the
nodes using RBBD and we got the comparison results shown
in Fig. 8. We learned that with the increasing size of data,
the improvement of execution increases. When the data size
reaches 640 GB, we achieve an improvement of up to 20 %.

6 Conclusion

We have developed an extended HDFS uploading frame-
work RBBD to allow users to specify data semantics for
data-intensie analysis applications. Our approach reduces the
overhead of data transfer caused by ignoring the record/block
relationship for the default random block replacement. We
provide functions and metadata templates to specify the
record delimitations. We also studied the unsplittable feature

of binary files; after specifying the delimitations through the
metadata file, the program easily retrieves the correct input of
the Map function. For experimentation, we ran a real appli-
cation from astrophysics. Our results show an average data
volume reduction rate of 36.37 %.

These tasks which access records of multiple blocks also
map to the data nodes as much as possible with the help of
WSCS by selecting the optimal nodes for scheduling map
tasks on the basis of block locations retrieved from the name
node. The research of improving block distribution in the
dynamic HDFS is left for future work. In the future, we
would implement the dynamic block balancing and schedul-
ing schemes on a running Hadoop cluster. We would like to
take into account of the intermediate data at Map phase to
reduce data volume to be transferred and achieve a perfor-
mance improvement.

Acknowledgments This work is supported in part by the USNational
Science Foundation Grant CCF-0811413, CNS-1115665, and National
Science Foundation Early Career Award 0953946.

References

1. Zheng F, Abbasi H, Docan C, Lofstead J, Klasky S, Liu Q, Parashar
M, Podhorszki N, Schwan K, Wolf M (2010) Predata: preparatory
data analytics on peta-scale machines. doi:10.1.1.153.9094. http://
citeseerx.ist.psu.edu/viewdoc/summary?. Accessed 23 July 2012

2. Fu B, Ren K, López J, Fink E, Gibson G (2010) Discfinder: a data-
intensive scalable cluster finder for astrophysics. In: Proceedings
of the 19th ACM international symposium on high performance
distributed computing, ser. HPDC ’10. NewYork, NY,USA,ACM,
2010, pp 348–351

3. Apache hadoop (2012) http://wiki.apache.org/hadoop/. Accessed
23 July 2012

4. Mapreduce (2012) http://en.wikipedia.org/wiki/mapreduce.
Accessed 23 July 2012

5. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows
M, Chandra T, Fikes A, Gruber RE (2006) Bigtable: a distrib-
uted storage system for structured data. In: Proceedings of the 7th

123

http://dx.doi.org/10.1.1.153.9094
http://citeseerx.ist.psu.edu/viewdoc/summary?
http://citeseerx.ist.psu.edu/viewdoc/summary?
http://wiki.apache.org/hadoop/
http://en.wikipedia.org/wiki/mapreduce

J Internet Serv Appl (2012) 3:319–327 327

symposium on operating systems design and implementa-
tion, ser. OSDI ’06. Berkeley, CA, USA, USENIX Associ-
ation, 2006, pp 205–218. http://portal.acm.org/citation.cfm?id=
1298455.1298475. Accessed 23 July 2012

6. Dryad (2012) http://research.microsoft.com/en-us/projects/
dryad/. Accessed 23 July 2012

7. Konwinski A (2009) Improving mapreduce performance in hetero-
geneous environments:Master’s thesis. EECSDepartment,Univer-
sity of California, Berkeley. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-183.html. Accessed 23 July 2012

8. Ananthanarayanan G, Kandula S, Greenberg A, Stoica I, Lu
Y, Saha B, Harris E (2010) Reining in the outliers in map-
reduce clusters using mantri. In: Proceedings of the 9th USENIX
conference on operating systems design and implementation,
ser. OSDI’10, Berkeley, CA, USA, USENIX Association, 2010,
pp 1–16. http://portal.acm.org/citation.cfm?id=1924943.1924962.
Accessed 23 July 2012

9. Netcdf (2012) http://www.unidata.ucar.edu/software/netcdf/.
Accessed 23 July 2012

10. Hdf (2012) http://www.hdfgroup.org/hdf5/.Accessed 23 July 2012
11. Gadget (2012) http://www.mpa-garching.mpg.de/gadget/.

Accessed 23 July 2012

12. Scihadoop (2012) http://www.soe.ucsc.edu/share/technical-
reports/2011/ucsc-soe-11-04.pdf. Accessed 23 July 2012

13. Ko SY, Hoque I, Cho B, Gupta I (2010)Making cloud intermediate
data fault-tolerant. In: Proceedings of the 1st ACM symposium on
cloud computing, ser. SoCC ’10,NewYork,NY,USA,ACM, 2010,
pp 181–192

14. Yuan D, Yang Y, Liu X, Chen J (2010) A cost-effective strategy
for intermediate data storage in scientific cloud workflow systems.
http://hdl.handle.net/1959.3/88596. Accessed 23 July 2012

15. Guo Z, Fox G, Zhou M (2012) Investigation of data locality and
fairness in mapreduce. In: Proceedings of third international work-
shop onMapReduce and its applications date, ser. MapReduce’ 12.
New York, NY, USA, ACM, 2012, pp 25–32

16. Sehrish S, Mackey G, Wang J, Bent J (2010) Mrap: a novel
mapreduce-based framework to support hpc analytics applications
with access patterns. In: Proceedings of the 19th ACM interna-
tional symposium on high performance distributed computing, ser.
HPDC ’10, New York, NY, USA, ACM, 2010, pp 107–118

17. The cosmic data arxiv (2012) http://t8web.lanl.gov/people/
heitmann/arxiv/. Accessed 23 July 2012

18. Geotiff (2012) http://trac.osgeo.org/geotiff/. Accessed 23 July
2012

123

http://portal.acm.org/citation.cfm?id=1298455.1298475
http://portal.acm.org/citation.cfm?id=1298455.1298475
http://research.microsoft.com/en-us/projects/dryad/
http://research.microsoft.com/en-us/projects/dryad/
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-183.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-183.html
http://portal.acm.org/citation.cfm?id=1924943.1924962
http://www.unidata.ucar.edu/software/netcdf/
http://www.hdfgroup.org/hdf5/
http://www.mpa-garching.mpg.de/gadget/
http://www.soe.ucsc.edu/share/technical-reports/2011/ucsc-soe-11-04.pdf
http://www.soe.ucsc.edu/share/technical-reports/2011/ucsc-soe-11-04.pdf
http://hdl.handle.net/1959.3/88596
http://t8web.lanl.gov/people/heitmann/arxiv/
http://t8web.lanl.gov/people/heitmann/arxiv/
http://trac.osgeo.org/geotiff/

	Record-Based Block Distribution (RBBD) and weighted set cover scheduling (WSCS) in MapReduce
	Abstract
	1 Introduction
	2 Related works
	3 Record-Based Block Distribution (RBBD)
	3.1 Uploading Middleware

	4 Weighted Set Cover Scheduling (WSCS)
	5 Experimental results and analysis
	5.1 Test bed
	5.2 Simulation of WSCS
	5.3 Results of RBBD
	5.3.1 The block distribution
	5.3.2 Comparison of network transfer
	5.3.3 Real application

	6 Conclusion
	Acknowledgments
	References

