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Abstract In this paper, a distributed controller for a virtual-
ized router is proposed. This controller enables the dynamic
and automatic resource allocation between the different vir-
tual routers (called slices) running on top of the physical
router. The controller is designed on a two-layer architec-
ture. A slice controller (one for each slice) estimates the
relationship between the past performances and resource
allocations of the slice using a linear model, and then deter-
mines the requested allocation for the slice to meet its target
performance. The physical router consists of a set of modu-
lar linecards. A resource controller (one for each linecard),
collects the resource allocation requests from the different
slices using the resources it controls and determines the allo-
cations based on the available capacities of the resources.
Resources are allocated to slices to guarantee their target
performances if possible, or provide service differentiation
if the total requests from all the slices exceeds the capacities
of the shared resources. We have found that the convergence
of the controller depends on different parameters (such as the
number of slices and the parameters of the linear model) and
therefore some tuning of these parameters is needed for the
system to achieve the stability.

1 Introduction

Router virtualization is considered a promising solution for
network providers and equipment vendors to better utilize
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their resources. It simplifies network design by allowing mul-
tiple virtual routers supporting multiple independent virtual
networks running on the same shared physical substrate [1].
However, very little studies have dealt with issues related
to router virtualization such as resource allocations. Most of
the existing literature addressed virtualization in servers and
data centers [2—11]. The objective of this paper is therefore
to fill a part of that gap by proposing a distributed controller
for dynamic resource allocation.

In a virtualized or sliced router, multiple virtual routers,
called slices, co-exist on the same physical router platform
and share its physical resources.

Due to the time-varying requirements and workloads of
the different slices, resource management is particularly
important aspect in a sliced router. Management functions
should be performed dynamically to reflect any fluctuations
in workloads or system conditions. They should also be per-
formed automatically without the need for the administrator
intervention.

In addition, resource allocation should be distributed,
because the router resources used by the different slices may
reside in different locations of the router line-cards. Fur-
thermore, these linecards can be inserted or removed online
which implies that if all the controller components are on a
single linecard, removing this card results in the termination
of the whole controller.

Resource allocation and management is executed period-
ically in specific control intervals. This automated manage-
ment is performed by a two-layer controller. At the slice level,
the slice controller records the past resource allocations and
performance of the slice. Using the target performance of the
current control interval, it estimates the new optimal resource
allocations requested by the slice to meet its performance.

The requests from all the slice controllers are directed to
the respective line-card and switch fabric controllers. The
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resource controllers at each line-card and switch fabric allo-
cate resources to slices requesting them to achieve certain
service level.

The remainder of the paper is organized as follow. In
Sect. 2, a review of relevant related work is presented. The
problem of automated resource allocation and the system
overview are discussed in Sect. 3. In Sect. 4, the proposed
controller is introduced and the different modules of this
controller are detailed. Then in Sect. 5, simulations are con-
ducted to evaluate the performance of the proposed model
under different parameter values. Finally, Sect. 6 concludes
the paper.

2 Related works

Control theory-based feedback loop has been recently applied
for dynamic resource management in a virtualized environ-
ment. [t guarantees system stability and can adapt to changes
in workload and system conditions.

In Ref. [12], the authors applied control theory for design-
ing a controllable computer system. They have derived a set
of properties that have to be satisfied in order for the system
to be controllable.

In Ref. [11], the authors proposed a multi-input
multi-output (MIMO) controller for automated resource
management in a virtualized data center. Their controller
automatically adapts to dynamic workload changes to achieve
service-level objectives for the different applications running
on that virtualized infrastructure.

In another work [13], the authors have used control theory
to design a dynamic system for provisioning of computing
and storage resources in a cloud computing environment.
Their system was modeled using an auto-regressive-moving-
average with exogenous inputs (ARMAX) to represent the
system behavior.

Controlling CPU and memory utilization in servers and
data centers have been extensively addressed using control
theory.

For example, the authors in Ref. [14] proposed to use a
MIMO controller for CPU and memory utilization in a web
server.

In Ref. [15], the authors proposed a proportional integral
(PD) controller for admission control of client HTTP requests.
This controller is implemented as a proxy, which operates by
taking simple external measurements of the client response
times.

In Ref. [16], the authors presented an adaptive controller
that adjusts the CPU shares to individual tiers of multiple
applications to meet a specified level of service differentia-
tion. The controller parameters are automatically estimated
using a recursive least-squares (RLS) method.
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Our approach is similar to the one proposed in Refs. [11]
and [13]. However, our controller is designed for a sliced
router rather than a data center.

3 System model

Figure 1 shows a sliced aggregation router and Fig. 2 shows
the logical architecture of its controller.

This router consists of three line-cards (LC1, LC2 and
LC3) and a switch fabric (SF) shared by four slices (S1, S2,
S3 and S4). The resources to be shared at each line-card are
the network processor (NP) and the memory (M). For the
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SFE, the resources are the input queues (I_Q) and the output
queues (O_Q).

Figure 2 gives the big picture of the logical working of
the controller. Slice controllers receive the performances of
the slices they control from the monitors, compare them with
their desired (target) performance and then generate a request
for resource allocation to the respective card controllers. The
card controllers gather all the requests from the slices con-
trollers and then compute the actual allocation for each slice.
These actual allocations are used to schedule the resources
for each slice. Once the resources are allocated to each slice,
the monitors record the performances of the slices and then
send them to the slice controllers.

Slice performance can be expressed through different per-
formance metrics. We consider slice latency or response time
as its performance metric. This is a good choice of the per-
formance metric, since it reflects the processing power and
the buffering capacity of the router. For each slice, we define
the following parameters:

e LR; is the total number of line-rates in slice s

° xrf,’m. is the fraction of resource type r in card ¢ requested
by line-rate / in slice s.

e xry . is the total allocation request of resource type r in
card ¢ by slice s, 0 < xrg . < I.

1
XFs,re = 2 XFg re

1eLR;

e xay . is the actual fraction of resource type r in card ¢
allocated to slice s (0 < xa; . < 1).

e T, is the desired or target response time of slice s.

e 1, isthe ingress time of packet p. It represents the arrival
time of the packet.

e 17, is the egress time of packet p. It represents the depar-
ture time of the packet.

Table 1 The used notations

o Ips = tfm — t;']s is the time spent by packet p in the router.
It is the sum of all the processing and queuing times a
packet has undergone inside the router.

e P is the total number of packets transmitted during
a specific time interval (defined later as the control
interval).

e M is the total number of packets in which #,; > 7,. It
represents the packets with a response time exceeding the
slice target response time.

oy, = i “‘;AMS is the measured performance of the slice.
It represents the fraction of packets that met the slice
target response time. This performance measure is at its
maximum (yg = 1) for a slice with all its packets meeting
its desired response time.

For the controlled resources in line-cards that are dynami-
cally allocated to slices, we consider network processor (NP)
and memory (M). For the switch fabric, we consider the input
queues (I_Q) and output queues (O_Q).

The controller has the objectives of assuring the perfor-
mances of slices, providing service differentiation between
the slices, automatically allocating resources, adapting to the
variations in workloads and system conditions and scaling to
many slices, line-cards and switch fabrics. Furthermore, it
should converge (reaching a stable state) as quickly as possi-
ble in the case of any changes in workloads or system condi-
tions. This convergence has to be also, as smooth as possible,
avoiding any high degradation in the slices’ performances.

4 The controller

As introduced in Sect. 1, the controller is designed based on
a two-layer architecture. In this section, each control layer is
discussed in detail. In designing our controller, we adopt a
strategy similar to the one described in Refs. [11, 13]. Table 1

Symbol Description

S Set of hosted slices, e.g., S = s1, 52, 53, 54

LR, Set of line-rates in the slice s

C Set of cards with controlled resources, e.g., C = {LCy, LCy, LC3, SF}

Ts Tier of slice s € S,e.g., Ty = {LCy, LCy, SF}

R Set of all controlled resource types, e.g., R = {NP, Memory}

L. Set of slices sharing the resources of card c, e.g., L1 = {s1, 52}

xrﬂm ¢ Requested fraction of resource type  in card ¢ to be allocated to line-rate / in slice s, 0 < xr‘lv‘,, k) <1
XTg e Requested fraction of resource type r in card c to be allocated to slice s (from all its line-rates), 0 < xry , (k) <1
X0y r.c Actual fraction of resource type r in card c allocated to slice s, 0 < xay (k) <1

T5 Target packet latency for slice s for a given time interval

ts Measured average packet latency for slice s for a given time interval

Vs Performance for slice s for a given time interval, where y; = %S

wy Priority weight for slice s

q Stability factor in the slice controller
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summarizes the different symbols and parameters used in the
following discussion.

4.1 The slice controller

Each slice has a controller attached to it. This controller has
two main functions. It first estimates a linear model to relate
the resources allocated to the slice with its performance.
This model uses both the past and present performance and
allocations. Based on the estimated model, it predicts the
resource allocation required to meet the performance target
of the slice. Figure 3 shows the schematic diagram of the slice
controller.

The model estimator learns and updates periodically a
model for the dynamic relationship between the resource
allocated to the slice and its performance using the following
Eq. [12]:

ys(k) = AT ()Y (k — 1) + BT (k) X, (k) (1

Where:

e Yok —1) = [ys(k — 1), ys(k — )17 are the two past
performances of slice s.

o X,(k) = [xa,(k),xaz(k — 1)] are the past and actual
allocations for slice s.

e xa; = [xay 1, Xas2, .. T with xag,r represents the allo-
cation of resource r to slice s.

e A = [ay, a»]" are model parameters to capture the rela-
tionship between the past and the present performances
of the slice.

Past allocation

3 Past performance
(xas(k- 1), xas(k-Z),...)

v (k-1), y (k-2),...)

 performance | |
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Fig. 3 The slice controller internal architecture
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with b = [b1, 2, ...]T are the correlation vectors
between the slice performance and its allocated
resources.

Once the parameters of the linear model are computed,
the optimizer predicts, based on the estimated model, the
resource allocations (xry) required for the slice s to meet its
target performance (y; = 1) in a stable way. To do so, the
optimizer finds the value of xry that minimizes the following
function [11]:

Js = (ys(k) — 1) + glIxrs (k) — xag(k — D] 2)

The optimal resource allocation xr} (k) that minimizes the
cost function J; can be derived from Eq. (1) and is given by:

xrt (k) = (bobj + gD = a1ys(k — 1) — agys (k — 2)
—bTxa;(k — 1))by + gxas(k — 1)) 3)

4.2 The resource controller

The resource controller (for line-card or SF) receives resource
allocations requests from slice controllers and then deter-
mines the allocated resources to the slices according to the
available resources. There are two possible scenarios.

o If the total requested resource allocation is less than the
available capacity, the controller satisfies all the requests
and then partitions the remaining extra capacity propor-
tionally to the requests taking into consideration the slice
priority weight wg. Hence, the resource controller parti-
tions resources as follows:

Wy

S v @
ieL, ™!

XAg e = XFg e+ AXxye

Where Ax,. represents the extra resource capacity
given by:

Axm =1- Z XTirc (5)

i€l

o If the aggregated requested resources exceed the avail-
able capacity, the resource controller allocates resources
to slices in such a way it locally minimizes the difference
between the actual (from allocation ) and the target per-
formance values. This is achieved by minimizing a cost
function that sums up the weighted square differences for
all the slices sharing the resources, with the slice priority
used as its weight. In this case, the actual allocations are
found by solving the following problem.
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Minimize J, = Z Wy (Axs,r,c)z (©)
sel¢
S.t.
Z Xas e <1 (7N
s€Ll¢
Axsre >0 ®)

where Ax; . represents the difference between the
requested and the actual allocation of resources r for slice
s given by:

Axs,r,c = XI's,r,c — Xds r.c ©)

Constraints (7) is the capacity constraint applied to actual
resource allocation, whereas constraint (8) ensures that
no slice exceeds its target which may cause other slices
to be throttled. Service differentiation is achieved in
this case by weighing the slice deficiencies by their
priorities.

5 Performance evaluation

In this section, we present evaluation results of our controller
and the effects of each parameter on its convergence. For
this reason, we have used Matlab as the simulation tool. The
results are based on an NP with a maximum throughput of
200 Mbps.

5.1 Service differentiation

One of the objectives of the controller is to provide service
differentiation between slices in the case of contention for
resources. This situation is illustrated in Fig. 4. The figure
shows the performances of two slices (in terms of their aver-
age packet latency) contending to share one resource in two
different cases. In both cases, performance target of slice2
is kept constant for the entire control intervals, however, the
target performances of slicel is halved after half the control
intervals. The only changes between the two cases is that in
the first case, the two slices have equal priorities and in the
second case, slice2 has higher priority than slicel.

As shown in Fig. 4, the performance (latency) of slice2
is increased after the target of slicel has been decreased.
This increase in the packet latency of slice2 is caused by the
decrease in packet latency of slicel. This is due to the equal
priorities of the slices, therefore, the one with higher target
(request) receives the higher latency.

In Fig. 4, slice2 has higher priority than slicel, so it
receives better performances than slice2 even in the case
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Fig. 4 Service differentiation (average packet latency)

when the target for slice2 is higher than its target. So, the
slices with high priority always receive better performance
than the slices with low priority. This shows the service dif-
ferentiation provided by the controller.

5.2 The number of slices

The controller convergence depends on the number of slices
running on the system. When there is a high number of slices
competing for the same resource, more control intervals are
required for the system to converge, since the slice controllers
are working independently from each other and independent
from the card controllers, they always try to get the required
resource allocations to reach their targets. This allocation is
determined by the card controller, which has a global view
of the resource capacity as well as the slices requests. The
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Fig. 5 The effect of the number of slices on the controller convergence

card controller then applies equity between slices and service
differentiation when allocating the resources. Therefore, the
number of control intervals needed for achieving a steady-
state is increasing with the increase in the number of slices.

Figure 5 illustrates the impact of the number of slices on
the stability of the controller. The figure shows the perfor-
mance of one slice in the case of 2, 8 and 20 slices in the
system (having equal priorities). When there are only two
slices contending for the resources, the controller adjusts the
resource allocation in a smooth way. When the number of
slices increases, the convergence of the controller starts to
become an issue causing the performances of the slices to
oscillate. The more the slices, the worst the convergence
of the controller. Furthermore, this oscillation can bring the
system into an unstable state. This instability problem can be
solved by tuning some controller parameters, such as increas-
ing the value of the stability parameter in the slice controllers.

5.3 The stability parameter g

As discussed in the previous section, the increase number of
slices in the system may cause convergence problem. This
stability issue may be overcome by manipulating the value
of the stability parameters of the slice controllers. However,
taking a high value of this parameter makes the controller
lazy and it does not react adequately to changes in slices
workloads.

Figure 6 illustrates the effect of the stability factor on the
convergence of the system. The figure shows the case of 20
slices sharing the same resources with different values of ¢.
In case where the value of the parameter is small (g = 0.6),
the controller is actively tracking any changes in the work-
loads of the slices and tries to guarantee the desired target for
each slice. This leads to oscillations in slice performances.
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Fig. 6 The effect of the value of ¢ on the controller convergence
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Fig. 7 The effect of estimation of the slice controller parameters

If the value of the parameter is high (e.g., ¢ = 10), the con-
trollers react less aggressively to changes in workloads and
the stability of the system is achieved. However, this stability
comes from the fact that the system is passive to changes in
workloads and may not allocate resources in an optimal way
between the slices.

5.4 The system estimator

Another important factor impacting the convergence of the
system is the way to estimate the linear model parameters in
Eq. (1).

Figure 7 illustrates the impact of the estimation algorithm
for the slice controller parameters updates. We have used
two different algorithms to estimate the parameters of the
linear model. In the first algorithm (algorithml), we have
used an approximation for the recursive least-squares (RLS)
algorithm and in the second case (algorithm?2), we have used
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abuilt-in function in Matlab called recursive ARMAX for the
estimation of the parameters of a recursive ARMA model.
It is clear from the figure that the accurate estimation of the
parameters is very important in the stability of the system.
In this figure, when we have used a built-in function, which
is not well adapted to our model, the system becomes unsta-
ble. However, the the case of the a well-adapted algorithm
(algorithm1), the model makes good estimations of the sys-
tem parameters which results in a more stable behavior in the
system performance.

6 Conclusion

In this paper, we have proposed a distributed controller based
on a feedback-loop control system for resource allocation
in a sliced router. The controller is a two-layer architecture
composed of a set of slice controllers and a set of card con-
trollers. Slice controllers estimate the relationship between
the past and current allocations and performances. This esti-
mation is very important for the computation of the optimal
request for the next control interval. If the system parameters
are wrongly estimated, the system may diverge from the tar-
get performance. In our system, the model parameters have
been estimated using a RLS adaptive filter, which exhibits
extremely fast convergence.

The controller convergence depends also on the number
of slices in the system. Naturally, a high number of slices
competing for the same resource need more control intervals
to converge, since the slice controllers are working inde-
pendently from each other and independent from the card
controllers, they always try to get the required resource allo-
cations to reach their targets. This allocation is determined by
the card controller, which has a global view of the resource
capacity as well as the slices requesting it. The card controller
then applies equity between slices and service differentiation
when allocating the resources. Therefore, the number of con-
trol intervals needed for achieving a steady-state is increasing
with the increase in the number of slices.

Another important parameter for the stability of the sys-
tem is the length of the control interval. When the control
interval is small, any change in workload can be captured by
the controller. However, if the control interval is very short,
a large number of updates are needed and a huge amount of
messages are exchanged between the different controllers,
which results in a system overhead. In addition to that, very
short control intervals may cause some of the system para-
meters not to be available at the next control period. On the
other hand, if the control interval is very long, the system
cannot cope with the changes in workload and may result in
performance degradation of the system.

The stability of the controller depends also on the stabil-
ity parameter of the slice controller. With small values of this

parameter, the controller reacts aggressively to any changes
in workload. This results in performance oscillations. How-
ever, for high values of ¢, the controller becomes very slow
in detecting and adjusting resource allocations to meet the
target performances.

The system parameters and its stability depends also on the
type of applications and resources. When the traffic pattern
of the slice changes very fast, the system parameters should
be chosen to react quickly to those change and then adjust
resource allocations accordingly. This implies a small control
interval and a small value of the stability parameter.
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