
J Internet Serv Appl (2012) 3:269–275
DOI 10.1007/s13174-012-0073-z

ORIGINAL PAPER

Computing multicast trees in dynamic networks
and the complexity of connected components in evolving
graphs

Sandeep Bhadra · Afonso Ferreira

Received: 30 August 2011 / Accepted: 8 October 2012 / Published online: 6 November 2012
© The Brazilian Computer Society 2012

Abstract Future Internet technologies and the deployment
of mobile and nomadic services enable complex commu-
nications networks, that have a highly dynamic behavior.
This naturally engenders route-discovery problems under
changing conditions over these networks, but the tempo-
ral variations in the topology of dynamic networks are not
effectively captured in a classical graph model. In this paper,
we use evolving graphs, which help capture the dynamic
characteristics of such networks, in order to compute mul-
ticast trees with minimum overall transmission time for a
class of wireless mobile dynamic networks. We first show
that computing different types of strongly connected com-
ponents in evolving digraphs is NP-Hard, and then propose
a polynomial-time algorithm to build all rooted directed
Minimum Spanning Trees in strongly connected dynamic
networks. These results open new avenues for the implemen-
tation of Internet spanning-tree based protocols over highly
dynamic network infrastructures.

Keywords Future internet · Graph theoretic models ·
Dynamic networks · Wireless networks · Routing · Evolving
graphs · Minimum spanning trees

Sandeep Bhadra
Department of Electrical Engineering, Indian Institute
of Technology, Madras, Chennai, India
e-mail: sandy@ee.iitm.ernet.in

Afonso Ferreira (B)
CNRS, I3S, INRIA-Sophia Antipolis, Projet MASCOTTE, BP93,
2004 Rt. des Lucioles, 06902 Sophia Antipolis, France
e-mail: afonso.ds.ferreira@gmail.com

1 Introduction

With the advent of the Internet of Things, it is clear that a glob-
ally mobile Internet induces key new challenges related to
existing communication and routing solutions [2]. As stated
in [15], a major challenge for the Future Internet, where most
connected entities will be mobile, is the explicit design of
protocols for a mobile wireless world.

Indeed, infrastructure-less mobile communication envi-
ronments, such as mobile ad hoc networks (MANETs),
present a paradigm shift from back-boned networks in that
data are transferred from node to node via peer-to-peer inter-
actions and not over an underlying backbone of routers.
Naturally, this engenders new problems regarding optimal
routing of data under various conditions over these dynamic
networks [18].

In this setting, the generalized case of mobile network
routing using shortest paths or least cost methods are com-
plicated by the arbitrary movement of the mobile agents
thereby leading to random variations in link costs and con-
nectivity [18]. This variable nature of the topology can
be apprehended only by network updates of the link state
between moving nodes, thus creating substantial commu-
nication overhead along the link. This naturally motivates
studying the modeling of such dynamics, and designing algo-
rithms that take it into account [19].

Literature related to route discovery issues in dynamic
networks started more than four decades ago, with papers
dealing with operations of transport networks (e.g., [7,11–
13]). Work on time-dependent networks deals with flow algo-
rithms in static networks, with edge traversal times that may
depend on the number of flow units traversing it at a given
moment. If traversal times are discrete, then the approach pro-
posed in [11], namely of expanding the original graph into
T layers representing the time steps (also called space-time

123

270 J Internet Serv Appl (2012) 3:269–275

Fig. 1 An FSDN represented as an indexed set of networks.The
indices correspond to successive time-steps comp00comp01comp02
comp03

approach), may work for computing several path-related
problems (see [16,17] and references therein). Unfortunately,
this approach leads to non-tractable algorithms, since T may
be of exponential size.

1.1 Predictable dynamics

Note, however, that for the case of low earth orbiting (LEO)
satellite systems, unmanned aerial vehicles (UAV), and other
mobile networks with predestined trajectories of the mobile
agents, the network dynamics are somewhat deterministic.
Therefore, since the trajectories of the network agents are
known in advance, it is possible to exploit this determinism
in optimizing routing strategies [8,10,20].

Another setting where the evolution of the network is
known was studied in [9]. The authors used the notion of com-
petitive analysis [3] on a dynamic setting in order to analyze
the quality of a protocol and its online choices made, forced
by the evolution of the network. At the end of the process, the
history of the network is formalized as a sequence of graph
topologies on which the application can be solved off-line.
The merit of the protocol is then the ratio of the solution cost
found online over the optimal off-line cost.

Such networks, where the topology dynamics is known
or can be predicted beforehand, are henceforth referred to as
fixed schedule dynamic networks (FSDNs) (see Fig. 1).

1.2 Evolving graphs

Evolving graphs are a formal abstraction for dynamic net-
works, and can be suited easily to the case of FSDNs [4].
Concisely, an evolving graph is an indexed sequence of T
subgraphs of a given graph, where the subgraph at a given
index point corresponds to the network connectivity at the
time interval indicated by the index number. The time domain

0,1,2,3

30,1,2,3

1,2,3

1

0,2,3

0,3

0

1,2,3
0,1,2

0,1,30,1,2

0,1,3

0,1

0,1,2,3

A

B

C

D

E

F

0

2,3

Fig. 2 Evolving digraph corresponding to the FSDN in Fig. 1. Edges
are labeled with corresponding time-steps. Observe that C B F is not a
valid journey since B F exists only in the past with respect to C B

is further incorporated into the model by restricting journeys
(i.e., the equivalent of paths in usual graphs) to never move
into edges which existed only in past subgraphs (cf. Fig. 2
below, and Sect. 2). We refer to evolving digraphs to indi-
cate the fact that the edges are directed, implying the same
distinction that exists between graphs and digraphs.

Notice that this model allows for arbitrary changes
between two consecutive time steps, with the possible cre-
ation and/or deletion of any number of vertices and edges.
Evolving graph edges can also be associated with traversal
times. In [4], algorithms were proposed for finding foremost,
shortest, and fastest journeys in dynamic mobile networks
modeled by evolving graphs. Other path problems in evolv-
ing graphs can be found under the merit approach [9]. Results
proven include finding a sequence of paths that connect a
given pair of nodes throughout the system, such that the
global routing plus re-routing costs are minimized.

1.3 Our work

We focus on the analysis of connectivity properties in FSDNs
and the design of algorithms for building directed mini-
mal spanning trees (DMSTs) to generate multicast routes
in FSDNs. The DMST problem in wireless networks was
defined in [14] as finding N minimum weight trees, or
arborescences, in a network modeled by a strongly connected
digraph with N vertices. A centralized algorithm for finding
DMSTs in static wireless networks is presented by Chu and
Liu [5], and Tarjan [21] provides an efficient implementation
of the same. Humblet [14] provides a distributed algorithm
for finding DMSTs in strongly connected networks. Further-
more, minimum energy multicast trees for wireless networks
have also been studied for the static case in [1,22]. In contrast,

123

J Internet Serv Appl (2012) 3:269–275 271

our approach differs from these, in that our algorithm builds
DMSTs over dynamic mobile networks modeled by evolv-
ing digraphs, which can be seen as dynamically changing
digraphs.

In this paper, we start by providing, in the next section,
basic definitions for various common graph theory terms in
the context of evolving digraphs. Following Humblet [14],
we define rooted DMSTs over strongly connected evolv-
ing digraphs. This naturally leads to the question of how
to determine if an evolving digraph is strongly connected. In
Sect. 3, we define strongly connected components (SCCs)
in evolving digraphs and discover that the unique properties
of evolving digraphs yield two types of strongly connected
components: standard SCCs and the more loosely defined
open strongly connected components (o-SCCs), as it will
become clear later. One of our results is that unlike in stan-
dard digraphs, finding the strongly connected components in
evolving digraphs is not possible in deterministic polynomial
time, unless P=NP. In case the evolving digraph is already
identified as a strongly connected component, we give in
Sect. 4 a polynomial-time algorithm to compute DMST,
which uses a variation of Prim’s algorithm [6] for computing
minimum spanning trees. For an evolving digraph with N
nodes and maximum outdegree D, our algorithm builds the
rooted DMST over a strongly connected component in an
evolving digraph in O(ND log T) time. Section 5 contains
concluding remarks and scope for further research.

2 Graph theoretic model

Since we use evolving digraphs as a model for FSDNs
throughout this paper, we start with a revision of the basic
definitions of terms in the theory of evolving digraphs.

2.1 Evolving digraphs

Evolving digraphs are defined as follows.

Definition 1 (Evolving Digraphs) Let a digraph G(V, E)

be given, along with an ordered sequence of its subdigraphs,
SG = G0,G1, . . . ,GT , T ∈ IN . Then, the system G =
(G,SG) is called an evolving digraph.

We now define some of the main parameters of an evolving
digraph. Let EG = ⋃

Ei , and VG = ⋃
Vi . It is clear that

M = |EG | ≤ |E | = M and that N = |VG | ≤ |V | = N .
The central notion in evolving graph theory is the restriction
imposed upon paths to traverse arcs strictly in non-decreasing
order of arc schedule times, implying that there are no paths
in G going to the “past”.

Definition 2 (Journeys) Let P be a path in Gi , under the
usual definition. Let F(P) be its first vertex, L(P) be its

last vertex, and |P| be its length. We define a journey in G
between two vertices u and v of VG as a sequence J (u, v) =
Pt1 , Pt2 , . . . , Ptk , with t1 < t2 < · · · < tk , such that Pti is a
(usually defined) path in Gti with F(Pt1) = u, L(Ptk) = v,
and for all i < k it holds that L(Pti) = F(Pti+1).

Corresponding to each arc in EG we may define an arc
schedule as a set of indices indicating the presence of the arc
in the respective subdigraphs inSG . Thus, we may alternately
define an evolving digraph as a tuple G = (VG, EG), where
each arc in EG has an arc schedule defined for it.

Two vertices are said to be adjacent in G if and only if
they are adjacent in some Gi . The degree of a vertex in G is
defined as its degree in EG .

As usual, a tree in G could be defined as a connected
induced subdigraph of VG with no circuits in G(V, E). How-
ever, such a tree would not be very helpful when studying
connectivity issues, since it does not take into account the
total order of the subdigraphs in G, and the restrictions it
imposes on journeys inG. Therefore, we define a valid rooted
tree in G as a rooted directed tree in G, where all paths from
the root to the leaves are journeys in G.

2.2 Strongly connected components and arborescences

We define an evolving digraph G to be a strongly connected
digraph if there exists a journey J in G between any two
vertices in VG .

Definition 3 (Strongly Connected Component) Analogous
to standard digraphs [6], we define a strongly connected com-
ponent (SCC) in an evolving digraph as a maximal set of
vertices UG ⊆ VG such that for any pair u, v ∈ UG , there
exists a journey from u to v and from v to u using only arcs
in the Cartesian product UG ⊗ UG .

Thus, the subdigraphG′ induced by considering vertices in
the SCC UG is a strongly connected digraph. For example, in
Fig. 3, {b, a} forms a SCC since there are journeys from a to
b and vice versa which traverse only vertices in the set {a, b}.
In this figure and elsewhere in the paper arcs are labeled with
their respective arc schedule times. Note that, unlike standard
digraphs, there can be a journey between two vertices in the
SCC that traverses vertices outside UG . Thus, it is possible
for two vertices u, v ∈ UG to establish a journey between
them without the constraint that all arcs in the journey must
be within UG ⊗ UG . In Fig. 3, although there exist journeys
from b to c and from c to b, {b, c} is not an SCC since the only
journey from c to b traverses via a. Indeed the subdigraph
induced by {b, c} is not strongly connected. So, we also offer
a looser definition of strong connectivity as follows.

Definition 4 An open strongly connected component(o-
SCC) is a maximal set of vertices UG ⊆ VG such that for
any pair u, v ∈ UG , there exists a journey from u to v and
from v to u.

123

272 J Internet Serv Appl (2012) 3:269–275

a

b

c

1

2

3

2

Fig. 3 Open strongly connected components. Arcs are labeled with
their respective arc schedule times

A journey between two nodes u, v ∈ UG , might need to
use nodes hi ∈ VG, hi /∈ UG to maintain strong connectivity.
The set of such nodes {hi } = H(u, v) are the helping nodes
(h-nodes) for the vertices u, v.

Consequently, an SCC UG is an o-SCC with the additional
requirement that H(u, v) = ∅ ∀u, v ∈ UG . Hence, the set
{b, c} in Fig. 3 forms a o-SCC with H(b, c) = {a} since ver-
tex a is required to form the only journey from b to c, thereby
maintaining strong connectivity. Also, since H(b, c) 	= ∅,
{b, c} is not an SCC.

For the case of static networks, Humblet [14] defines the
concept of rooted spanning trees over strongly connected
directed networks. We extend this definition to the case of
evolving digraphs as follows. We define a rooted directed
spanning tree or an arborescence over a o-SCC UG ∈ G as
a valid rooted directed tree in G rooted at r which spans all
the vertices in UG ; thus, all the nodes except the root has one
and only one incoming arc. Note that the arborescence might
need to include h-nodes to reach some vertices in the o-SCC.

3 Complexity of strongly connected components

In this section we will first use the foremost journey algo-
rithm to verify strong connectivity for an FSDN. Then we
will prove that the decomposition of a FSDN into (o-) SCC
components is NP-Hard.

3.1 The network model

A FSDN can be seen as a series of networks R =
. . . ,Rt−1,Rt ,Rt+1, . . . over time. We model a FSDN as a
dynamic network which has a presence matrix PE [(u, v), i],
indicating whether (u, v) is present at time step ti , for each
link (u, v) of R, and another presence matrix PV [u, i], indi-
cating whether u is present at time step ti , for each node
u of R. The network at time ti is then represented by the
subnetwork Rti of R, which is obtained by taking the nodes

and links of R for which their corresponding P[i]s indicate
they are to be present.

In order to model a fixed-schedule dynamic network by
an evolving digraph, it suffices to be given a time window W
of size T , and to work with G = (

⋃
Ri |i ∈ W,FSDN|W).

Throughout this text, we assume packet-based networks—so
transmitting one piece of data equals transmitting one packet
over an arc. Link transmission time between nodes in the net-
work may allow for the transmission of a packet over several
links before a change in the network topology. Correspond-
ingly in the model, considering time between two succes-
sive subdigraphs in an evolving digraph as unity, the time
taken to cross an arc (u, v) is expressed as a positive delay
w(u, v) ≤ 1. The case where the traversal time is larger
than the frequency of topology change would then yield a
delay w(u, v) > 1. We also implicitly assume conservation
of information, i.e., in case a node in the network disappears
for any reason, then upon rejoining the network, it will still
have all the information that it had received before its disap-
pearance.

3.2 Verification of strong connectivity in FSDNs

Given an FSDN network, we must determine if it is strongly
connected. It is equivalent to the following proposition over
the corresponding evolving digraph.

Proposition 1 Given an evolving digraph G with N nodes
and M links over a sequence of length T , it is pos-
sible to determine if it is strongly connected or not in
O(NM(logT + logN)) time steps.

Proof The transitive closure of G is defined as the digraph
RG =(V, ER),where ER ={(vi , v j) : ∃ a journeyJ (vi , v j)}.
Hence, G is strongly connected if the underlying graph of
RG is a complete graph1. The verification is executed simply
and efficiently by forming the foremost journeys tree for each
node in the network using the algorithm for a single node pro-
posed in [4], whose complexity is O(M(logT +logN)). For
N nodes, the algorithm is repeated N times, for an overall
time of O(NM(logT + logN)). ��

3.3 Decomposition into SCCs

Tarjan’s algorithm [6], based on the concept of forefathers in
a depth-first search tree over a digraph, is used to decompose
standard digraphs into SCCs. However, SCCs in evolving
digraphs have the following unique properties, which pre-
clude the use of Tarjan’s algorithm.

1 The underlying graph of RG refers to the undirected graph that has
an edge between vi and v j if and only if ER has both arcs (vi , v j) and
(v j , vi).

123

J Internet Serv Appl (2012) 3:269–275 273

a
b

c

d

1

2

3

4

5

6

7, ,

Fig. 4 Overlapping SCCs. Arcs are labeled with their respective arc
schedule times

Property 1 Two different SCCs can have common vertices.

For example, consider the digraph given in Fig. 4. From
the definition of SCCs we see that there are two SCCs a, c, d
and b, c, d which have the vertices c, d in common.

Property 2 For any two vertices in an SCC (respectively,
o-SCC), there may be journeys connecting them which use
vertices outside the SCC (respectively, o-SCC).

This stands directly from Property 1. As an example, con-
sider in Fig. 4 the journey from d to c, which uses vertex a
that lies outside the SCC {b, c, d}.

The main problem calls for decomposing the evolving
digraph into all possible SCCs. Consider a subproblem COM-
PONENT defined as follows.

COMPONENT: Given an evolving digraphG = (VG, EG)
and an integer k, is there a SCC of size k?

We shall subsequently demonstrate that COMPONENT is
NP-Complete, thereby precluding a polynomial time algo-
rithm for the decomposition problem, unless P=NP.

Theorem 1 COMPONENT is in NP.

Proof Given a subset VG′ of VG and an integer k, we must
verify in polynomial time if VG′ is indeed a SCC of size k.
First, verifying that |VG′ | = k is easy. Then, verifying that
the subdigraph G′ induced by VG′ on G is strongly connected
is possible in polynomial time from Proposition 1. ��

We now define a strong reachability digraph for an evolv-
ing digraph G as an undirected graph SG = (VG, ES), where
ES = {(vi , v j)} if and only if (vi , v j) ∪ (v j , vi) ⊆ RG , the
transitive closure digraph of G.

To prove the NP-Completeness of COMPONENT we
reduce the CLIQUE problem to COMPONENT. CLIQUE
is formally defined as follows: Given a digraph G = (V, E),
and an integer k, is there a clique of size k in G?

Lemma 1 Finding an SCC in G is equivalent to finding a
maximal clique in SG , the strong connectivity graph of G.

Proof Directly from the definitions of strong reachability,
SCC and maximal clique, we see that the SCC in G is equiv-
alent to finding the maximal clique in SG . ��
Theorem 2 CLIQUE can be reduced to COMPONENT in
polynomial time.

Proof Given an undirected graph G = (V, E) and the integer
k, we construct an evolving digraphG = (VG, EG) as follows
(cf. Fig. 5):

1. For each node ui ∈ V create a node vi ∈ VG , a node
hii ∈ VG , and arcs (vi , hii), (hii , vi) with arc schedule
time 2;

2. For each edge {ui , u j } ∈ E , do

(a) create nodes hi j , h ji ∈ VG ,
(b) create arcs (vi , hi j) and arcs (v j , h ji), with arc sched-

ule time 2,
(c) create arcs (hi j , v j) and arcs (h ji , vi), with arc sched-

ule time 3.

3. Create an SCC connecting all h-nodes. Label these arcs
with schedule times 1 and 4.

By construction of G, its corresponding strong reachability
digraph SG contains a clique of size formed by all the
h-nodes. Let n′ denote its size. We can then prove that find-
ing an SCC in G is the same as finding a clique in G, since a
clique of size k in G will correspond to a clique of size n′ +k
in SG , corresponding, in turn, to an SCC of size n′ + k in G
(via Lemma 1). ��
Theorem 3 COMPONENT is NP-complete.

Proof We know that CLIQUE is NP-Complete. So from
Theorems 1 and 2, COMPONENT is NP-Complete. ��

3.4 Decomposition into o-SCCs

Here, we address the more general result for the case of
o-SCC which has a less strict definition than SCC. We define
the decision problem as follows.

o-COMPONENT: Given an evolving digraph G and an
integer k, is there a o-SCC of size k?

Although SCCs are a special case of o-SCCs, the NP-
Completeness of COMPONENT does not directly imply that
o-COMPONENT is NP-Complete as well. This is because
a possible polynomial time algorithm for o-COMPONENT
need only answer the above decision problem and not iden-
tify the o-SCCs of size k, thus making it difficult to verify
if at least one o-SCC of size k is an SCC as well (in other
words if the set of h-nodes is empty or not for a particu-
lar o-SCC of size k). Also, the same digraph G may contain
both an SCC (of indeterminate size) and an o-SCC of size k,
so o-COMPONENT would always return “yes”, ignoring
the presence or absence of a SCC of size k, thereby leav-
ing COMPONENT unsolved. Conversely, since SCCs are
a special case of o-SCCs, proving o-COMPONENT to be
NP-Complete does not directly imply that COMPONENT is
NP-Complete as well.

These arguments would entail an independent proof for the
NP-Completeness of o-COMPONENT. Fortunately, how-

123

274 J Internet Serv Appl (2012) 3:269–275

Fig. 5 Construction for
Theorem 2. Arcs are labeled
with their respective arc
schedule times.

v

v

v

v

h 12

h

h

h

h

h

h

h

22

33

21

34

43

23

32

h

h

11

14

41
h

1

h

h h
3

4

44

2

24 42

2 2

2
2

2

2

2

2

2
2

2
2 2 2

2

2
3

3

3

3 3

3

3
3

1, 4

2

3 2

3

K
14

v

v

v

v

1

2

4

3

ever, the same widget utilized for the previous reduction can
be applied in the current case, yielding the following results.

Theorem 4 o-COMPONENT is in NP.

Proof The proof of this result is analogous to the one of
Theorem 1. It can be derived step by step from the pre-
vious proof, but showing it here would be quite fastidious
and would not add new insights to this paper. Consequently,
we leave the full development of this proof to the interested
reader. ��
Theorem 5 CLIQUE can be reduced to o-COMPONENT in
polynomial time.

Proof Given an undirected graph G = (V, E) and the integer
k > 3, the same arguments used in the proof of Theorem 2
apply here. Indeed, the same widget can be used to reduce
CLIQUE to o-SCC, since a SCC is a o-SCC where H = ∅,
and in that widget, a max o-SCC is a max SCC, which by
Theorem 2 implies the reduction from CLIQUE. ��
Theorem 6 o-COMPONENT is NP-complete.

Proof We know that CLIQUE is NP-Complete. So from
Theorem 4 and Theorem 5, o-COMPONENT is NP-
Complete. ��

4 Computing directed Minimum Spanning Trees

Considering a strongly connected evolving digraph G, the
object is to find N = |VG | rooted directed Minimum Span-
ning Trees rooted at each of the nodes r ∈ VG . Our algorithm
is a modification of the Prim–Dijkstra algorithm [6] for find-
ing MSTs in undirected graphs. The algorithm proceeds by
building a fragment which is a subset of the DMST starting
from the root r . The property of the fragment f (r) is that it
consists of those edges by which information transmitted at
the beginning of the time interval from the root r will travel in
the shortest time to the vertices already included in the frag-
ment. Having defined a fragment as such, it is easy to see how
the algorithm for the DMST proceeds. In the following algo-
rithm we choose from among the set of arcs outgoing from

the fragment f (r), the arc with the smallest arc schedule time
such that it can form a valid journey starting from the root.
A number tv is associated with each vertex v ∈ VG denot-
ing the minimum time required for that vertex to receive the
information given that the root r originates the information.

Since each node can transmit information only after it
has received it, the information cannot pass simultaneously
through two edges. Recall that the time required for trans-
mission over one arc is denoted as an arbitrary weight,
w(u, v) < 1.

In Algorithm 1, an arc schedule time i indicates the pres-
ence of the link from time i − 1 to i .

Note that two cases might arise depending on whether
fa(u j , v j) = tu j + w(u j , v j) or fa(u j , v j) > tu j +
w(u j , v j). For the first case, the information reaches the node
exactly at the time fa(u j , v j). For the other case, if the arc
is present both at times fa(u j , v j)− 1 and fa(u j , v j), since
w(u j , v j) < 1, the packet will reach v j in tu j + w(u j , v j).
If, however, the arc is not present at time fa(u j , v j) − 1,
then the transmission process itself starts at the fa(u j , v j)

th

step (i.e., from time fa(u j , v j)− 1 to time fa(u j , v j)), thus
reaching v j by time fa(u j , v j) − 1 + w(u j , v j).

We remark that a rooted directed tree can also be com-
puted over an o-SCC VG′ . As a modification for that purpose,

123

J Internet Serv Appl (2012) 3:269–275 275

VG must be replaced by VG′ and correspondingly, Step 3 of
Algorithm 1 should be modified to VG′ 	⊂ V f since the frag-
ment can also contain the h-nodes for the vertices in VG′ and
the loop can stop once all the vertices are covered.

Algorithm 1 is a greedy algorithm that always chooses
the arc that transmits in minimum time. The proof of its cor-
rectness is the same as the proof of the Prim–Dijkstra algo-
rithm [6]. If the maximum outdegree of each vertex isD, then
each step of increasing the fragment will take O(ND log T)

time and the fragment will increase N times adding up to a
total execution time of O(N 2D log T) steps.

5 Conclusion

The two important results in this paper are the intractability
of the decomposition into (open) strongly connected com-
ponents in FSDNs and the construction of DMSTs over an
already existing strongly connected components. Note also
that the very concept of Open Connected Components is
completely new, and somewhat surprising, arising because
of the dynamics of the networks, and may find important
applications.

The former result implies that it is possible to lead a non-
strongly connected network towards strong connectedness
by adding intermediary agents to serve as hops between two
nodes that are out of range from each other. An interest-
ing problem would be to find a way to add such links so
as to minimize the number of intermediary (helping) nodes.
Another way for further research is to design approxima-
tion algorithms for (open) strongly connected components
in evolving digraphs.

Finally, the construction of minimum spanning trees in
networks is part of the solution of many networking prob-
lems, like that of finding a low-cost sub-network connecting
a set of nodes. We are confident that the foundations laid
by this paper will help understand the impact of mobility in
networks of the future. The algorithms shown in this paper
provide an efficient basis for the deployment of the Future
Internet on highly dynamic network environments.

As possible avenues for future work, we know that in order
to be more representative of reality, restrictions on network
topology changes between consecutive time-slots may be
introduced. In the case of mobility, such restrictions could
be of geometric nature, e.g., dependent on expected speed
and location of nodes. Such modeling of network dynamics
could lead to the development of further algorithms, in addi-
tion to the general-case and centralized algorithm presented
in this paper. Distributed algorithms for this problem also
need to be designed.

Acknowledgments The authors are grateful to Aubin Jarry and
Stephane Perennes for very fruitful discussions. The authors would also
like to thank the reviewers, in particular Reviewers 2 and 3, for the very

careful reading of the document. Their comments helped to increase the
quality of this paper.

References

1. Ambuehl C (2005) An optimal bound for the MST algorithm to
compute energy efficient broadcast trees in wireless networks. In:
Proceedings of 32th ICALP, pp 1139–1150

2. Andersen FU, Berndt H, Abramowicz H, Tafazolli R (2007) Future
internet from mobile and wireless requirements perspective. http://
www.emobility.eu.org/

3. Borodin A, El-Yaniv R (1998) Online computation and competitive
analysis. Cambridge University Press

4. Bui-Xuan B, Ferreira A, Jarry A (April 2003) Computing shortest,
fastest, and foremost journeys in dynamic networks. Int J Found
Comput Sci 14(2):267–285

5. Chu YJ, Liu TH (1965) On the shortest arborescence of a directed
graph. Sci Sin 14:1396–1400

6. Cormen T, Leiserson C, Rivest R (1990) Introduction to algorithms.
The MIT Press, Boston

7. Dreyfus SE (1969) An appraisal of Some Shortest-Path Algorithms.
Oper Res 17:269–271

8. Ekici E, Akyildiz IF, Bender MD (2000) Datagram routing algo-
rithm for LEO satellite networks. In: IEEE Infocom, pp 500–508

9. Faragó A, Syrotiuk VR (2001) MERIT: a unified framework for
routing protocol assessment in mobile ad hoc networks. In: Pro-
ceedings of ACM Mobicom 01, pp 53–60, ACM

10. Ferreira A, Galtier J, Penna P (2002) Topological design, routing
and handover in satellite networks. In: Stojmenovic I (ed) Hand-
book of wireless networks and mobile computing, pp 473–493.
Wiley, New York

11. Ford LR, Fulkerson DR (1958) Constructing maximal dynamic
flows from static flows. Oper Res 6:419–433

12. Halpern J (1977) Shortest route with time dependent length of edges
and limited delay possibilities in nodes. Zeitschrift für Oper Res
21:117–124

13. Halpern J, Priess I (1974) Shortest path with time constraints on
movement and parking. Networks 4:241–253

14. Humblet PA (1983) A distributed algorithm for minimum weight
directed spanning trees. IEEE Trans Commun COM-31(6):756–
762

15. Issarny V, Georgantas N, Hachem S, Zarras A, Vassiliadis P, Autili
M, Gerosa MA, Ben Hamida A (2011) Service-oriented middle-
ware for the future Internet: state of the art and research directions.
J Internet Serv Appl 2(1):23–45

16. Köhler E, Langkau K, Skutella M (2002) Time-expanded graphs
for flow-dependent transit times. In: Proceedings of ESA’02

17. Köhler E, Skutella M (2002) Flows over time with load-dependent
transit times. In: Proceedings of the 13th annual ACM-SIAM sym-
posium on discrete algorithms, pp 174–183

18. Scheideler C (2002) Models and techniques for communication in
dynamic networks. In: Alt H, Ferreira A (eds) Proceedings of the
19th international symposium on theoretical aspects of computer
science, vol 2285. Springer, pp 27–49, March 2002

19. Stojmenovic I (ed) (2002) Handbook of wireless networks and
mobile computing. Wiley, New York

20. Syrotiuk V, Colbourn CJ (2003) Routing in mobile aerial net-
works. In: Proceedings of WiOpt’03—modeling and optimization
in mobile, ad-hoc and wireless networks, pp 293–302, INRIA,
Sophia Antipolis, March 2003

21. Tarjan RE (1977) Finding optimum branchings. Networks 7:25–35
22. Wieselthier J, Nguyen G, Ephremides A (2000) On the construc-

tion of energy-efficient broadcast and multicast trees in wireless
networks. In: Proceedings of IEEE Infocom, pp 585–594, Tel Aviv,
2000

123

http://www.emobility.eu.org/
http://www.emobility.eu.org/

	Computing multicast trees in dynamic networks and the complexity of connected components in evolving graphs
	Abstract
	1 Introduction
	1.1 Predictable dynamics
	1.2 Evolving graphs
	1.3 Our work

	2 Graph theoretic model
	2.1 Evolving digraphs
	2.2 Strongly connected components and arborescences

	3 Complexity of strongly connected components
	3.1 The network model
	3.2 Verification of strong connectivity in FSDNs
	3.3 Decomposition into SCCs
	3.4 Decomposition into o-SCCs

	4 Computing directed Minimum Spanning Trees
	5 Conclusion
	Acknowledgments
	References

