
Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17
http://www.jisajournal.com/content/4/1/17

RESEARCH Open Access

AppaaS: offering mobile applications as a
cloud service
Khalid Elgazzar*, Ali Ejaz and Hossam S Hassanein

Abstract

With the huge number of offerings in the mobile application market, the choice of mobile applications that best fit
particular objectives is challenging. Therefore, there is a demand for a platform elevating the momentum of mobile
applications that can adapt their behavior according to the user’s context. This paper proposes AppaaS, a
context-aware platform that provides mobile applications as a service. AppaaS uses several types of context
information including location information, user profile, device profile, user ratings, and time to provision the best
relevant mobile applications to such a context. AppaaS supports state preservation, where user-specific data and
application status are stored for the user’s future reference. Experimental validation demonstrates that AppaaS
alleviates the burden on mobile users to find applications that work best for a particular situation. It also enables
application providers to dynamically control access to the functionality of their applications. Performance evaluation
results show that AppaaS can employ cloud elastic resource provisioning to offer flexible scalability, while satisfying
certain QoS constraints. Experimental results also support a conclusion that with little overhead handling context
information, AppaaS can bring remarkable benefits to provisioning mobile applications as a service.

Keywords: Mobile applications; Cloud computing; Location-based services; Context-aware; Mobile devices

1 Introduction
Mobile devices have become the most pervasive inter-
face that enables access to information services anywhere,
anytime. Nowadays, most business enterprises, govern-
ments, and public sectors rely on mobile applications to
reach a wider range of customers at their most conve-
nience anytime and anywhere. Recent years have wit-
nessed increasing momentum for mobile applications that
can adapt their behavior according to user context. Adap-
tation to context changes reshapes the application’s behav-
ior to support service personalization and offer better user
experience. Such context includes location information,
user profile, user ratings, device profile, and time.
At the time of writing this paper, Google Play Store has

over than 1 million apps [1], while Apple Store is now
the home of over than 900,000 apps [2]. Many of these
applications are available from various businesses to ben-
efit their customers and improve their experience. With
the ever growing application market, a number of open
questions related to context awareness arise. From a user

*Correspondence: elgazzar@cs.queensu.ca
School of Computing, Queen’s University, Kingston, Canada

perspective, how would a user know that there is an appli-
cation relevant to his/her current location, and how can
a user decide on which application to use from the many
available choices. From a business perspective, how can
businesses control access to their applications while main-
taining a high level of mobility and flexibility to their
employees or customers. The system proposed in this
paper answers these questions.
We propose AppaaS, a context-aware platform for

mobile application dissemination and control. AppaaS
provisions mobile applications as a cloud service on
demand with the appropriate access constraints. AppaaS
provides a platform where mobile applications providers
and users can match offerings with requests. The plat-
form enables providers to customize their offerings and
set proper access constraints according to the privileges
of users and their context. It also enables users to con-
veniently find relevant applications to their situation and
save the current application state for future reference.
The platform handles several types of context informa-
tion to ensure that selected applications best serve the
user requesting the service. The proposed platform offers
a user-friendly interface to facilitate the communication

© 2013 Elgazzar et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/2.0

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 2 of 12
http://www.jisajournal.com/content/4/1/17

between users and the backend server, where all context
processing and data storage management occur.
The remainder of this paper is organized as follows.

Section 2 presents motivating scenarios. Section 3 pro-
vides brief background and outlines related research.
Section 4 describes the proposed architecture. In
Section 5 we provide the implementation details of our
prototype. The platform functionality is validated in
Section 6 and a performance evaluation is presented
in Section 7. Lastly, Section 8 draws some concluding
remarks.

2 Motivating scenarios
To better understand the advantages and functionalities of
such a system, consider the following scenarios.

• Finding the Appropriate Application: Suppose that
Adam walks into a store with his smartphone and is
looking for an application by which he can browse
through different offers, product catalogues, or find
information relative to a specific product of interest.
Imagine how convenient this would be to Adam and
how beneficial it would be to the store. AppaaS
makes this scenario possible. As soon as Adam enters
the store’s physical space, the store-specific
application gets downloaded onto Adam’s
smartphone, with his consent. As soon as Adam
leaves the space, the application preserves its current
state (browsed items, shopping cart, etc.) for future
reference and gets uninstalled to free up the mobile
resources it is holding. If Adam comes back to the
same store (or another related store that shares the
same application), the application launches back with
the last preserved state that is relevant to Adam.

• User-aware Applications: Now, suppose Adam and
his friend John enter a store where Adam holds a
store membership and John does not. As soon as they
walk in, Adam gets the application with the
membership privileges, giving Adam exclusive access
to membership offers, while John gets the application
intended for non-member customers, which might
have an open access scheme but is limited to the
store’s physical location. It is also possible that the
same application may handle users with different
access privileges. AppaaS facilitates such a model
which offers great flexibility to business entities.

• Controlling Application Behavior: Now let’s assume
Adam is at work. Adam holds a position that gives
him access to confidential data. As soon as Adam
enters the workplace premises, AppaaS installs or
activates the enterprise application functionality on
his mobile device that allows him access to such data.
It is possible that enterprises restrict access to their
confidential data wherein coffee rooms or break

lounges. Furthermore, enterprises might restrict their
business-related mobile applications (or certain
functionality) to specific physical places (such as
enterprise premises, location of bidders’ conference)
with variant access privileges according to the
user/employee position at workplace.

3 Background & related work
Mobile services that are capable of changing their behav-
ior according to context changes are of particular inter-
est to the provisioning of personalized behaviors [3]. To
achieve the desired functionality, such context-aware ser-
vices typically exploit a combination of several context
information, such as location information, user profile,
user satisfaction indicators, device features and capabili-
ties, time, etc. [4,5].
Location-based services in ubiquitous computing envi-

ronments is a rich domain of research [6-9], in which
services make use of location information in particu-
lar to better provide relevant ubiquitous services. The
application of location-based services is popular in many
domains such as navigation and traveler services [10,11],
shopping and entertainment services (e.g. finding nearby
theater), emergency situations (e.g. nearest medical facil-
ity), information services [12], and many others [13].
Such services require access to the user’s location, which
compromises the user’s privacy even if several location
cloaking techniques are applied [14]. To tackle this chal-
lenge, Amoli et al. [14] propose a protocol to preserve
privacy in location-based services while satisfying the
requirement of accurate location. Similarly, Puttaswamy
et at. [15] propose an approach to encrypt location
data.
The ultimate objective of AppaaS is to relieve users

from having to search and install relevant applications fit-
ting their current situation, especially when there are a
huge number of applications in the market. Sharing our
objective, Quah et al. [16] propose a mobile application
distribution system that retrieves relevant applications
based on location information. The system uses the loca-
tion as the main driver to download mobile applications.
Which App? [17] also addresses the same issue in a dif-
ferent way. It proposes a mobile application recommender
system that monitors the social interaction and behavior
of users to recommend relevant applications accordingly.
Toye et al. [18] employ personal information stored on
smartphones to customize the behavior of site-specific
applications to best fit a particular user. AppaaS shares
the same interests of finding relevant applications to a
particular context. However AppaaS offers more advan-
tages in managing and controlling the behavior of such
applications according to users’ access privileges and time
constraints. In addition, AppaaS offers the opportunity

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 3 of 12
http://www.jisajournal.com/content/4/1/17

to preserve the user-specific application state for future
reference.

3.1 Context management
Context is any information that can characterize a cer-
tain situation relevant to a user including the user itself
[19]. Exploiting context information in developing mobile
applications opens up new opportunities for a smart gen-
eration of applications that dynamically adapt to changing
environments and look very personal to the user. Such
applications promise a unique user experience. The var-
ious context information that AppaaS uses to provide
mobile applications as a service are the following.

• Location: The location of mobile user influences
what applications users may run on their mobile
devices. A user within a certain location might not be
aware of relevant application(s) to run in order to get
the best service a location might provide. AppaaS
employs location information to dispatch the most
appropriate application to a user’s context. The
automatic collection of location information can be
obtained in a variety of ways outdoors (e.g. GPS and
mobile networks) [20,21], or indoors (e.g. Received
Signal Strength techniques) [22,23].

• User Profile: Different users may have different
access rights to same applications. For example,
within an enterprise different users may have
different roles and various job responsibilities, which
influence their privilege to access certain information
or enterprise-related confidential data. Furthermore,
some users could have a variant level of access
privilege to such data according to their location or
current time. AppaaS exploits such user information
in order to assign the user with the proper access
rights to an application. Towards this end, AppaaS
keeps records of user profiles and credentials.

• Device Profile: AppaaS exploits the device profile in
order to identify the appropriate version of a relevant
application that fits the device platform. AppaaS
takes advantage of communication sessions to collect
the device profile information [24].

• User ratings: Web 2.0 and open environments have
enabled users to leave feedback and share their
consumer experience. User ratings reflect the user
perceived quality of service. AppaaS takes advantage
of such a feature to choose between applications that
provide similar services.

• Time: AppaaS uses time to apply time-based access
control over mobile applications. Applications may
restrict access to their functionality during certain
periods of time. For example, enterprises may allow
their employees to access confidential data only
during working hours on the premises. AppaaS uses

the server time as a reference while handling
time-related constraints to avoid synchronization
aspects. The server performs the appropriate time
transformation according the user’s time zone based
on current location information.

3.2 State preservation
State preservation refers to how applications can save
their latest status and user-specific data for future access.
Mobile applications can manage their own state at dif-
ferent levels. For example, applications may use check-
pointing techniques [25,26] to suspend and resume their
execution for migration purposes. However, the energy
and communication cost of migration is inevitably high
for mobile applications. Since most of the mobile envi-
ronments adopt the concept of the virtual machine (VM)
[27] to isolate individual applications, the migration pro-
cess transfers the whole VM and associated resources.
To avoid high migration cost, Hung et al. [28] propose
an energy-efficient approach that migrates applications
between mobile devices and the cloud resulting in lower
overhead. Their approach relies on pre-deployment of
mobile applications on the cloud side and then trans-
fer only the application state, by which an application
resumes its executions.
Application-independent state preservation of user-

specific data remains challenging. Current mobile plat-
forms do not natively support state preservation at any
level. However, platforms such as Android offer a generic
framework for saving an application’s state, in which the
platform provides two interfaces onSaveInstanceState and
onRestoreInstanceState for saving and retrieving an appli-
cation state, respectively. Application developers though
need to override these interfaces to handle the appli-
cation state in a state Bundle. The Bundle [29] is an
Android API for passing data, typically in key-value pairs,
between various Android activities. Therefore, AppaaS
requires application developers to implement their own
algorithms and provide two proprietary APIs to save and
restore the user-specific data that impacts the behaviour
of their applications. AppaaS then uses these APIs to offer
a persistent state preservation.
To better understand how to save an application state,

we describe how applications are developed for Android.
Android applications are composed of a set of activities.
Each activity performs a certain task. Activities are man-
aged by an activity stack, where recent activities reside on
top. An Android activity may switch between four essen-
tial states [30]: running, paused, stopped, and killed. An
activity is in the running state when it is active and run-
ning in the foreground of the user’s screen. When the
activity is out of focus but still alive, the Android platform
puts the activity in the paused state. In this case the activ-
ity maintains all its current state information. When the

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 4 of 12
http://www.jisajournal.com/content/4/1/17

activity is invisible to the user (put into the background),
it means that this activity is in the stopped mode. The
onSaveInstanceState method is called before placing the
activity in a background state. Application developers use
this method to capture any required user-specific data and
pass it to the activity during the onCreate event through
the onRestoreInstanceState interface. The Android system
always kills stopped activities first when system mem-
ory is required by any other activity. Figure 1 shows the
lifecycle of Android application activities and empha-
sises when the state preservation procedures occur. The
rectangle boxes represent the different methods that an
Android developer needs to implement to perform oper-
ations/functions while activities switch between various
states.

4 AppaaS: system architecture
Figure 2 shows an overview of the AppaaS system archi-
tecture. The architecture encompasses three main enti-
ties, mobile user, space, and AppaaS server. We assume
that the user has a smartphone that is capable of running
mobile applications, the space is associated with particu-
lar mobile applications to better provide a specific service,

Activity
Starts

On Creat()

On Start()

Activity
Running

on Resume()

on Pause()

on Stop()

on Destroy()

Activity
Stops

Activity
Killed

O
n R

estart()

A
ct

iv
ity

 is
 in

vi
si

bl
e

A
ct

iv
ity

 is
 in

 fo
re

gr
ou

nd

on Restore Instance State

on Save Instance StateIf
an

 a
pp

 w
ith

 h
ig

he
r

pr
io

rit
y

ne
ed

s
re

so
ur

ce
s

Ba
ck

gr
ou

nd
st

at
e

Figure 1 The lifecycle of Android application activities
(re-produced from [30]).

and the AppaaS server is hosted on the cloud and is
continuously available.
AppaaS maintains a database that stores information

about each of the system main entities, namely, users (U),
spaces (S), i.e. physical locations, and mobile applications
(M). A user u ∈ U has a set of credentials Ru and an
application m ∈ M has a set of access rights Am. A user
u is granted access to an application m if Ru

satisfy→ Am.
Variations of access rights could be granted to a user
according to how the user’s credentials satisfy an appli-
cation’s access constraints. Users are identified by their
user ID (user_id), while applications are identified by
a system-generated (app_id). Applications are associ-
ated with a URL that refers to the application package
on their respective market store. Spaces are identified by
a numeric location ID (location_id) representing a
physical location s ∈ S.
Each space s ∈ S is associated with one or more mobile

applications m ∈ M. Once a registered user enters a des-
ignated space that is associated with mobile applications,
the user’s smartphone detects the location and sends
the location information to AppaaS context manager for
manipulation. AppaaS collects the device profile during
communication sessions and retrieves respective context
(such as user profile) from the database. AppaaS then
checks these various pieces of context information and
dispatches the appropriate application to the user’s smart-
phone. AppaaS sends a link to the application of interest,
to the user’s smartphone, which is then downloaded and
installed. If the user has previously used this application, it
starts with the last state that the user had left the applica-
tion with when it was suspended or removed last time. It is
worth mentioning that it is possible, according to the pro-
vided context, AppaaS returns a response of “no relevant
application fits current context”, despite that the space has
an associated mobile application. This might be because
one ormore context does not satisfy the access constraints
of such an application.
Upon leaving the designated space, the user’s smart-

phone reports that the user is currently outside the
space. The AppaaS server reassesses the current context
and invokes the OnExit procedure to apply prespecified
actions set by application providers. These actions include
uninstalling or deactivating certain applications. In all
cases, the OnExit procedure captures the user-specific
data and saves it on the server, so that the application can
resume with the last user state in the future. Figure 2b
illustrates the interactions between the various system
entities.

5 Implementation details
We have developed a prototype to test the fundamen-
tal functionality of AppaaS. The prototype implements
the context and data management on the server side

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 5 of 12
http://www.jisajournal.com/content/4/1/17

a b

Figure 2 AppaaS Architecture: (a) spatial view of system architecture illustrating different composing entities, (b) logical interactions
between various system entities.

while the mobile user interface resides on the mobile
device. The user interface is implemented using the latest
Android SDK [31]. The server components are respon-
sible for managing the database, handling context infor-
mation, and dispatching relevant applications along with
recommended actions.

5.1 User interface
A user must register with AppaaS to use its functional-
ity. The registration requires the user “name”, “email
address”, and “password”. The email address is used
as a unique user ID. Once the user is successfully authen-
ticated, AppaaS starts the main process which coordinates
between other activities. Figure 3 shows the flow of the
main system processes and how they exchange informa-
tion with one another.
The current version of this prototype identifies location

using two Near Field Communication (NFC) RFID tags,
one at the space entrance and the other one at the space
exit. The entrance tag holds “ENTER:location_id”
while the exit tag holds “EXIT:location_id”, where
location_id represents a numeric value of the loca-
tion ID. We store the location information on tags in plain
text. The user taps the mobile application to scan the loca-
tion ID. The NFC scanner reads the NFC Data Exchange
Format (NDEF) message from the RFID tag and reports
it to the Context Manager, which extracts the locations
ID and the user status to query the database for relevant
applications and replies with the recommended actions. If

an application is found relevant, the Downloader down-
loads and installs it onto the user’s smartphone along with
the proper access privileges or function constraints. We
remark that the use of RFID to identify space is only an
instance and other techniques, including use of beacons
are also possible.
The Context Manager applies Algorithm 1 to find rel-

evant application to current user’s context. The “match”
function applies Equation 1 tomatch the user’s credentials
with the application’s access requirements.

match(Ru,Am) =
∑

i,j F(rui , amj)

i ∗ j
(1)

where ru ∈ Ru denotes a single user credential and
am ∈ Am, denotes a single application’s access constraints,
i and j are the number of credentials and access con-
straints, respectively. F(ru, am) represents how much ru
satisfies am and it produces values {0,1}. A value of 0
means that if the respective am is a constraint at the
application level, the application will not be available
for the user. If am is a constraint at the function level,
this functionality will be disabled for the user. Other-
wise access is granted. Each relevant application has
two scores, relevancy score (matchm) and rating score
(ratingm). For simplicity, we consider the two scores are
equally important.

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 6 of 12
http://www.jisajournal.com/content/4/1/17

Algorithm 1: Find relevant application(s) to a user’s
context
Input: user_id, location_id, device_profile,time
Output: download url of relevant application

1 Function
FindApp(user_id,location_id,device_profile,time)

2 Initialize Apps=[] //App collector
3 if location_id has application(s)(M) then
4 foreachm ∈ M do
5 Initializematchm=0 //application relevancy

score
6 Initialize ratingm=0 //application rating score
7 // retrieve application access constraints Am
8 ifm has no absolute time constraints then
9 ifm has open-access then

10 // m gets max. score
11 matchm =1
12 end
13 else
14 // retrieve user profile and credentials

Ru
15 Initializematchm=0
16 foreach ruinRu and am ∈ Am do
17 // check how much ru satisfy am
18 matchm =matchm + F(ru, am)

19 end
20 end
21 end
22 m = 0.5 ∗ matchm + 0.5 ∗ ratingm
23 // addm to relevant Apps
24 Apps=Apps +m
25 end
26 end
27 if Apps is not null then
28 //choose the application with the highest score
29 end
30 return url //if null means no applicaitons

5.2 State preservation
Figure 4 illustrates an abstract view of how AppaaS han-
dles the state preservation of mobile applications. As
we noted earlier, the current implementation of AppaaS
assumes that applications provide two proprietary APIs
for the sake of state preservation. The saveState() API
saves the application’s current state, where all user-
specific data is saved in an XML file format. The load-
State() API uploads an application state from an XML
file when the application launches. Figure 5 shows the
lifecycle of AppaaS state preservation. AppaaS invokes
the saveState() whenever the application stops running
(in Android operating environments, this implements the
onStop() method). The system generates a state bundle

object to save the user-specific parameters. User-specific
data is added in a key-value pairs format to a bundle
object. This object then is written in an XML file. Each
parameter record holds the parameter name, data type,
and latest value in memory. The generated XML file is
transferred to the server and the context manager updates
the database tables or inserts a new record that associates
the application ID, user ID, and location IDwith a state file
name. The state file name is composed of the application
ID, user ID and location ID. Listing 1 shows an abstract
structure of the state preservation file.

Listing 1 An abstract structure of the application state
preservation file in XML format

<?xml v e r s i o n = " 1 . 0 " encod ing ="UTF−8"?>
< a p p l i c a t i o n >

<name> app_name</name>
<ID> a p p l i c a t i o n _ i d < / ID>

</ app l i c a t on >

< con tex t >
<use r >

<ID>u s e r _ i d < / ID>
</ use r >
< l o c a t i o n >

<ID> l o c a t i o n _ i d < / ID
</ l o c a t i o n >

</ con t ex t >

<da ta >
<parameter>

<name>paramter_name</name>
< type>da t a_ t ype < / type>
< va l u e >paramete r_va lue < / v a l u e >

< / paramter>

<parameter>
<name>paramter_name</name>
< type>da t a_ t ype < / type>
< va l u e >paramete r_va lue < / v a l u e >

< / paramter>
.
.
.

< / da ta >

When a user launches a location-specific application,
AppaaS checks if the user has a previous saved state of
this particular application at this location. If a match is
found in the database, the system retrieves the state file to
the user side and uploads it into a state bundle. This bun-
dle is used by onRestoreInstanceState() callback

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 7 of 12
http://www.jisajournal.com/content/4/1/17

Figure 3 AppaaS components and process flow.

methods during the onCreate() to resume the applica-
tion from where it stopped last time. Although the state
file structure is generic, the state information and parame-
ters are application-specific. The current implementation
only preserves the last application state and does not keep
track of all previous states. It is worth mentioning that
AppaaS provides no state preservation support for appli-
cations that do not provide appropriate handling of their
internal status.

Figure 4 An abstract view of state preservation handling in
AppaaS.

Figure 5 AppaaS state preservation lifecycle.

5.3 AppaaS server-side components
AppaaS system has two components that run on the
server: Database Server and Context Manager. The lat-
ter handles context information sent by the user to see if
any mobile applications fit this context. The former com-
ponent (Database server) maintains information about
various system entities, users, applications, and a list of
registered locations. The database is implemented using
MySQL Database Server [32]. It maintains various tables
that hold information about each entity such as user pro-
file and credentials, application profile and related access
constraints, and location detail which holds information
about physical boundaries, associated type of business,
working hours, etc. In addition, there are also various
database tables that hold the relations between differ-
ent entities which, for example, relate a certain location
to a specific application and users to both locations and
applications.

6 Experimental validation
The prototype aims to highlight three aspects of AppaaS
functionalities. The first aspect is how AppaaS finds
mobile applications which are relevant to a specific con-
text information, in particular user, time, and location.
The second aspect demonstrates the ability of AppaaS to
customize the application behavior in order to fit certain
access rights and constraints. The third aspect shows how
AppaaS preserves the application state relevant to a user
for future reference.
To demonstrate the first functionality, we define in our

prototype some locations and associated these locations

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 8 of 12
http://www.jisajournal.com/content/4/1/17

with mobile applications. The mobile application pack-
ages (.apk) are stored on the AppaaS server with each
package associated with a url for download purposes. The
id of one of these registered locations is stored on two
RFID tags, one represents the location entrance while the
other one holds the NDEF message that denotes the loca-
tion’s exit. To start with the system, a user logs into the
AppaaS as shown in Figure 6a. The user then taps the
RFID tag that represents the location entrance as shown in
Figure 6b. The user’s context along with the location infor-
mation is sent to the context manager for processing. The
context manager finds the relevant application that fits
this context and sends the download url back to the user’s
device. The Downloader at the user’s device downloads
and installs the application as exhibited in Figure 6c.
AppaaS may also apply access limitations to certain

functionalities according to the user’s access privileges.
To validate the second aspect, we developed mCalc
to demonstrate how AppaaS implements control over
access and preserves the user-specific application sate.
The mCalc is a proof-of-concept mobile application that
implements the basic functionality of a calculator with
access restrictions. We have restricted the access to some
functions to particular users. Therefore, if an unautho-
rized user tries to perform these restricted functions, an
access denial message appears as illustrated in Figure 6d.
At this stage, AppaaS supports control over access for
mobile applications that implement embedded policy-
control for their functions.
The third aspect that our prototype highlights is the

state preservation. We use mCalc to test this func-
tionality. We set the application mCalc to be accessi-
ble by a specific user during two specific time periods,

10:00–11:00 AM and 11:15–11:30 AM. This user logs into
the system during the first time period and performs cal-
culations. When first period ends, AppaaS initiates the
saveState procedure and stops the applicationmCalc. The
generated state file is sent to be stored at the context
manager. Then, AppaaS invokes the uninstall procedure
of mCalc. Currently, AppaaS always uninstalls the appli-
cation whenever the user’s authorized time elapses. The
same user logs into the system again during the second
period of time. When the application downloads onto the
user’s smartphone, the context server finds that there is
a previous state preserved for the user for this applica-
tion. The context manager sends this state along with the
application download url to start the application with. In
this case the user gets a message during the application
launching to choose either to resume the application with
the previous state or to initiate a clean start.

7 Performance evaluation
Several experiments are conducted to evaluate the per-
formance of AppaaS including the overall response time,
system overhead and footprint, and system scalability.
The first experiment investigates the response time of
the various system activities such as the user authentica-
tion, location identification, and the OnExit procedure, in
which the system applies certain actions on the current
application upon leaving its designated space. The sec-
ond experiment studies the overhead of state preservation
and access constraints. The third experiment explores the
system scalability. Each experiment is repeated 10 times
and the average of the respective performance parameters
is calculated. We remark that confidence intervals were
found to be small and hence not reported.

Figure 6 Prototype screenshots: (a) user login screen, (b) location identification using NFC technology, (c) application download to a
user’s smartphone, (d) mCalc shows access denial message for restricted functionalities.

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 9 of 12
http://www.jisajournal.com/content/4/1/17

The AppaaS user interface is installed on a 3G-enabled
Samsung I9100 Galaxy II (Dual-core 1.2 GHz Cortex-
A9, 1 GB RAM, Super AMOLED Plus 480 x 800 pixels
display, 4.3 inches) with a rooted Android 4.0.4 plat-
form. Although we conducted most of our experiments
while the smartphone is connected to a WiFi network,
the response time of the various activities of AppaaS
user interface is evaluated against both 3G and WiFi
connectivity for comparison. The server component of
AppaaS implements the context manager and storage and
is deployed on the Amazon EC2 cloud. We created a pool
of instances of virtual machines of the type ‘m1.large’
[33] with an EC2 pre-configured image (AMI) of ‘Ubuntu
Server 12.04 LTS, 64 bit’. The server maintains the system
database, which includes locations and their associated
applications. We use two RFID tags to identify the loca-
tion boundaries, one tag represents the location entrance
and the other tag represents the exit.

7.1 Response time
This experiment measures the end-to-end response time,
including both communications and processing time, of
the various system activities involving communications
between the user interface and the back-end server. A
user logs into the system with a valid login ID and pass-
word. The user authentication module sends a query to
the server to validate the user’s credentials and checks
whether the user has access to the system. When the
user taps the location entrance tag, the location iden-
tification module reads the location code and sends a
query to the system with the location ID and the user
status, including whether the user is entering or leaving
the location. The server checks if there are applications
associated with this location and responds with a list of
download links of relevant applications, if found. When
the user exits the location, the OnExit module sends the
location ID, user ID and an exit status to consult the con-
text manager on the appropriate actions to apply on the
user’s mobile devices, whether to uninstall or deactivate
the associated application. The default action of the cur-
rent prototype upon exiting a location is uninstalling the
location-specific application and saving the user current
state on the server side. The main reason behind choos-
ing this default action is to prevent the accumulation of
outdated or unused applications. However, disabling the
application or allowing the user to make the decision are
possible options, if the application has an open access.
Figure 7 shows the response time of the threemain com-

ponents of the user interface: the User Authentication,
Location Identification, and OnExit Action. This response
time is measured for both WiFi and 3G connectivity with
a bandwidth of 17.3 MB/sec and 2.5 MB/sec, respectively.
Each of these activities sends a query to the server with
an average size less than 0.5 KB. The average query time

176.4 176.4 182.8 182.8 199.4 199.4

63.7

439.5

64.1

461.5

67.5

492.8

0

100

200

300

400

500

600

700

800

WiFi 3G WiFi 3G WiFi 3G

User Authentication Location Identification OnExit Action

R
es

p
o

n
se

 T
im

e
(m

s)

Communications
Processing

BW 3G: 2.5 MB/sec
BW WiFi: 17.3 MB/sec

Figure 7 The response time of various AppaaS activities.

on the server side in our case is 145 ms. This time basi-
cally depends on the size of the database (10 KB in our
case) and the number of concurrent requests. While the
processing component of the response time is the same
in both cases, the communication component varies sig-
nificantly. The WiFi connectivity yields a 3-fold better
response time than the 3G. This gap between theWiFi and
3G increases with higher data transfer requirements due
to communication speed.
The overall download time of selected applications

depends on the network conditions and the size of the
application package. For example, an application package
with a size of 1.9 MB takes about 2.5 Sec on WiFi and
19 Sec on 3G. This time is much higher than all other
activities. Frequent application download comes at a high
cost on mobile resources, specifically battery power and
bandwidth. This leads to a debate on which is better,
uninstalling unused applications in order to free up the
occupied space and prevent unauthorized access, or deac-
tivating their functionalities and avoid frequent down-
loads of same applications if used regularly. The tradeoff
between overhead and convenience is an issue for future
consideration.

7.2 Performance overhead analysis
This experiment investigates the overhead that AppaaS
incurs on mobile applications should they implement

177.6

25.7

77.5

56.7

0

40

80

120

160

200

240

280

Access restrictions apply No access restrictions

R
es

p
o

n
se

 T
im

e
(m

s)

Communications

Processing

Network: WiFi

Figure 8 Overhead of applying access restrictions.

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 10 of 12
http://www.jisajournal.com/content/4/1/17

475.3

251

75.1

55.2

0

100

200

300

400

500

600

With state loading Without state loading

L
au

n
ch

in
g

 t
im

e
(m

s)

Communications

Processing

Network: WiFi

Figure 9 Overhead of state preservation.

access restrictions or launch with a previous state. We
employ the mCalc to further investigate these aspects
since it provides AppaaS with two APIs to capture and
restore its internal user state. Figure 8 shows the cost
of applying user access control of the mCalc operations.
When a user tries to access a certain function of mCalc,
AppaaS checks if the user is allowed to perform such an
operation or not. AppaaS queries the context manager
with the user ID and context. If the user has access to the
requested operation, AppaaS sends back a confirmation
to the application that the user can perform the opera-
tion. Otherwise, the application dispatches a message to
the user interface showing that access to the requested
functionality is denied. Applying access constraints is
performed at the expense of application performance.
Figure 9 illustrates another overhead caused by applica-
tion state preservation. This overhead comes from loading
a previous user state, in contrast with starting the same
application with no previous state. The size of state file is
relatively small in the range of 1 KB. Therefore, fetching
this state object from the server side over a reliable net-
work link takes a short time. Such overhead comes with
the two benefits: providing users with the appropriate
application of a particular location according to the user’s

context, and gaining more control over the application
behavior according to the user’s access rights.

7.3 Scalability
We conduct two experiments to evaluate the scalabil-
ity of AppaaS. The first experiment tests the scalability
when a fixed hardware setting is dedicated to serve incom-
ing requests. In this case, we use only one Amazon EC2
instance of the type m1.large. The second experiment
shows how AppaaS takes advantage of the cloud comput-
ing elastic resource provisioning to accommodate increas-
ing number of users while satisfying certain quality of
service (QoS) constraints. In this case, the AppaaS system
is served by a pool of cloud server instances. In both cases,
we apply a varying stress load to evaluate the performance
of AppaaS context manager. We use theWAPT load stress
tool [34] to apply various loads (number of users) while
measuring the system response time. Figure 10 shows
the results of the first experiment. We observe that the
response time rapidly increases as the number of incom-
ing requests increase in a nonlinear relation. Although
AppaaS context manager can serve a relatively high num-
ber of concurrent requests, mobile users might not afford
long delays. In such cases, the system administrator may
set a threshold value after which the server rejects any
upcoming requests to maintain a certain level stability and
responsiveness.
In the second experiment, we set a response time

threshold of 2 seconds as a QoS measure. This means that
when a violation occurs, our cloud setup launches another
instance of the type m1.large from our pool of VMs. In
this case no matter how large the number of requests
becomes, the response time does not exceed the prespec-
ified threshold value. Figure 11 shows how AppaaS scales
up to accommodate increasing requests, while maintain-
ing the response time below the desired threshold. We
observe that the new instance takes up to 60–90 sec-
onds to become active and ready to handle requests. This

0

2

4

6

8

10

12

50 100 150 200 250 300 350 400 450 500

A
va

ra
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

Number of Concurrent Users

Figure 10 The response time versus varying numbers of concurrent users.

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 11 of 12
http://www.jisajournal.com/content/4/1/17

0

0.5

1

1.5

2

2.5

20 70 170 250 350 400 500

A
va

ra
g

e
R

es
p

o
n

se
 T

im
e

(s
ec

)

Number of Concurrent Users

New VM Instances

Figure 11 AppaaS uses the cloud autoscale feature to improve scalability.

explains why the response time reaches beyond 2 seconds.
The EC2 load balancer (ELB) then splits the load between
participating instances. Figure 11 also shows that there is
a non-negligible overhead incurred by the scheduling of
the load balancer, which explains why the response time
of 2X requests with 2 instances is slightly more than the
response time of X requests with a single instance. How-
ever, the scheduling overhead is constant and does not
increase with further addition of instances.

7.4 AppaaS footprint
Since mobile devices are resource-constrained, mobile
applications and services must be highly efficient in
resource consumption. The mobile resources of specific
concern are CPU cycles, memory, storage, and battery
power. These resources indicate how efficient an applica-
tion is with respect to system resource consumption. In
this experiment, wemeasure the system footprint in terms
of memory usage, storage required, and average CPU
cycles that are used in cases when AppaaS runs in idle
mode (i.e. no activities are performed), and when AppaaS
is in active mode (i.e. at least one activity is running). We
are concerned with the system footprint at the user side.
Table 1 shows the AppaaS system footprint in terms of
CPU usage, memory and user application size in both idle
and active modes. The energy consumption of the mobile
user interface varies according to the running activity and
the required data transfer between the interface and the
backend server. The lower the data transfer requirements,

Table 1 AppaaS system footprint in terms of CPU usage,
memory, and the size of the user application in both idle
mode and active mode

AppaaS Avg. CPU Memory Storage
(user side) usage (%) usage (MB) space (KB)

Idle mode 0.00 35.20 96.00

Active mode 6.65 45.96 96.00

the higher the energy efficiency of the system while in
activemode. However, AppaaS has a low energy consump-
tion profile in the idle mode, as it consumes on average
350 mj/minute.

8 Conclusion
This paper presents AppaaS, a system for provisioning
context-aware mobile applications as a service. AppaaS
uses various context information including location, user
information, user ratings, device profile, and time to pro-
vide the appropriate mobile applications to such a con-
text. AppaaS also supports access control over application
functionality according to users’ privileges and access
rights. Currently, AppaaS supports this capability only
for applications that implement embedded policy control.
However, part of our future extension of this research is
to provide an application-wrapping capability to enable
this feature for applications that lack support for embed-
ded policy control. A prototype is developed to highlight
three features of AppaaS, specifically finding the appro-
priate application to a certain context, controlling access
over an application’s functions, and preserving the appli-
cation’s state that is relevant to a particular user for
future use purposes. Performance evaluation shows that
AppaaS can scale up to accommodate increasing number
of users while maintaining desired QoS levels. Experi-
mental validation demonstrates that with little overhead,
AppaaS can bring benefits to both users and providers of
mobile applications with robust and flexible provisioning
models.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KE proposed the main idea, provided implementation guidance, put the
layout of experimental validation and performance evaluation, and drafted the
manuscript. AE implemented the prototype and carried out the performance
evaluation. HH suggested some modifications on the architecture and
recommended the implementation of state preservation. All authors read and
approved the final manuscript.

Elgazzar et al. Journal of Internet Services and Applications 2013, 4:17 Page 12 of 12
http://www.jisajournal.com/content/4/1/17

Acknowledgments
This research is funded by a grant from the Ontario Ministry of Economic
Development and Innovation under the Ontario Research Fund-Research
Excellence (ORF-RE) program.

Received: 16 April 2013 Accepted: 25 October 2013
Published: 4 November 2013

References
1. Google Play Store. https://play.google.com/store?hl=en. Accessed:

February, 2013
2. Apple Store. http://store.apple.com/ca. Accessed: February, 2013
3. Toutain F, Bouabdallah A, Zemek R, Daloz C (2011) Interpersonal

context-aware communication services. Commun Mag IEEE 49(1): 68–74
4. Elgazzar K, Ejaz A, Hassanein HS (2013) Appaas: Provisioning of

context-aware mobile applications as a service In: The IEEE International
Conference on Communications (ICC)

5. Elgazzar K, Hassanein H, Martin P (2011) Effective web service discovery in
mobile environments In: P2MNETS, The 36th IEEE conference on Local
Computer Networks (LCN), pp 697–705

6. Ahn C, Nah Y (2010) Design of location-based web service framework for
context-aware applications in ubiquitous environments In: IEEE
international conference on sensor networks, ubiquitous, and
trustworthy computing (SUTC), pp 426–433

7. Chatterjee L, Mukherjee S, Chattopadhyay M (2011) A personalized
mobile application using location based service In: Advances in
computer science and education applications, pp 413–419

8. Junglas IA, Watson RT (2008) Location-based services. Commun ACM
51(3): 65–69

9. Mokbel MF, Levandoski JJ (2009) Toward context and preference-aware
location-based services In: Proceedings of the 8th ACM international
workshop on data engineering for wireless and mobile access, pp 25–32

10. Husain W, Dih LY (2012) A framework of a personalized location-based
traveler recommendation system in mobile application. Int J Multimedia
Ubiquitous Eng 7(3): 11–18

11. Shi X, Sun T, Shen Y, Li K, Qu W (2010) Tour-guide: providing
location-based tourist information on mobile phones In: The IEEE 10th
international conference on computer and information technology,
pp 2397–2401

12. Stuedi P, Mohomed I, Terry D (2010) Wherestore: location-based data
storage for mobile devices interacting with the cloud In: The 1st ACM
workshop on mobile cloud computing and services: social networks and
beyond, MCS’10, Co-located with ACM MobiSys, pp 1–8

13. Chow CY, Mokbel MF, Liu X (2011) Spatial cloaking for anonymous
location-based services in mobile peer-to-peer environments.
Geoinformatica 15(2): 351–380

14. Amoli A, Kharrazi M, Jalili R (2010) 2ploc: preserving privacy in
location-based services In: The IEEE 2nd international conference on
Social Computing (SocialCom), pp 707–712

15. Puttaswamy KPN, Zhao BY (2010) Preserving privacy in location-based
mobile social applications In: HotMobile: The 11th workshop on mobile
computing systems and applications, pp 1–6

16. Quah JTS, Lim LR (2011) Location based application distribution for
android mobile devices In: Proceedings of the IASTED international
conference on wireless communications, pp 118–123

17. Costa-Montenegro E, Barragáns-Martínez AB, Rey-López M, Mikic-Fonte F,
Peleteiro-Ramallo A (2011) Which app? A recommender system of
applications in markets by monitoring users’ interaction In: Proceedings
of the IEEE International Conference on Consumer Electronics (ICCE),
pp 353–354

18. Toye E, Sharp R, Madhavapeddy A, Scott D (2005) Using smart phones to
access site-specific services. IEEE Pervasive Comput 4(2): 60–66

19. Dey AK (2001) Understanding and using context. Pers Ubiquitous
Comput 5: 4–7

20. Ahn J, Heo J, Lim S, Kim W (2008) A study on the application of patient
location data for ubiquitous healthcare system based on lbs In: 10th
international conference on advanced communication technology, vol. 3,
pp 2140–2143

21. Xin C (2009) Location based service application in mobile phone serious
game In: International joint conference on artificial intelligence, pp 50–52

22. Altintas B, Serif T (2012) Indoor location detection with a rss-based short
term memory technique (knn-stm) In: IEEE International Conference on
Pervasive Computing and Communications Workshops (PERCOM
Workshops), pp 794–798

23. Diaz J, de A Maues R, Soares R, Nakamura E, Figueiredo C (2010) Bluepass:
an indoor bluetooth-based localization system for mobile applications In:
IEEE Symposium on Computers and Communications (ISCC), pp 778–83

24. Al-Masri E, Mahmoud QH (2010) Mobieureka: an approach for enhancing
the discovery of mobile web services. Pers Ubiquitous Comput 14:
609–620

25. Biswas S, Neogy S, 2010 A mobility-based checkpointing protocol for
mobile computing system. Int J Comput Sci Inf Technol 2(1): 135–151

26. Tuli R, Kumar P (2011) Analysis of recent checkpointing techniques for
mobile computing systems. Int J Comput Sci Eng Surv 2(3): 133–141

27. Sevinç PE, Strasser M, Basin D (2007) Securing the distribution and storage
of secrets with trusted platform modules In: Proceedings of the 1st IFIP
TC6 /WG8.8 /WG11.2 international conference on Information security
theory and practices: smart cards, mobile and ubiquitous computing
systems. Springer-Verlag, Berlin, Heidelberg, pp 53–66

28. Hung SH, Shih CS, Shieh JP, Lee CP, Huang YH (2012) Executing mobile
applications on the cloud: framework and issues. Comput Math Appl
63(2): 573–587

29. Android APIs (Bundle). http://developer.android.com/reference/android/
os/Bundle.html. Accessed: August, 2013

30. Android Activity Lifecycle. http://developer.android.com/reference/
android/app/Activity.html. Accessed: February, 2013

31. Android SDK. http://developer.android.com/sdk/index.html. Accessed:
February, 2013

32. MySQL Database Server. http://www.mysql.com/. Accessed: February,
2013

33. Amazon EC2 Instance Types. http://aws.amazon.com/ec2/instance-
types/. Accessed: August, 2013

34. Web Application Testing (WAPT). http://www.loadtestingtool.com.
Accessed: February, 2013

doi:10.1186/1869-0238-4-17
Cite this article as: Elgazzar et al.: AppaaS: offering mobile applications as a
cloud service. Journal of Internet Services and Applications 2013 4:17.

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

https://play.google.com/store?hl=en
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/os/Bundle.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/sdk/index.html
http://www.mysql.com/
http://aws.amazon.com/ec2/instance-types/
http://aws.amazon.com/ec2/instance-types/
http://www.loadtestingtool.com

	Abstract
	Keywords

	Introduction
	Motivating scenarios
	Background & related work
	Context management
	State preservation

	AppaaS: system architecture
	Implementation details
	User interface
	State preservation
	AppaaS server-side components

	Experimental validation
	Performance evaluation
	Response time
	Performance overhead analysis
	Scalability
	AppaaS footprint

	Conclusion
	Competing interests
	Authors' contributions
	Acknowledgments
	References

