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Abstract

Botnets are now recognized as one of the major security threats to start various security attacks (e.g., spamming,
DDoS). Although substantial research has been done towards botnet detection, it is becoming much more difficult
today, especially for highly polymorphic, intelligent and stealthy modern botnets. Traditional botnet detection (e.g.,
signature, anomaly or flow based) approaches cannot effectively detect modern botnets. In this paper, we propose a
novel active integrated evidential reasoning approach called SeeBot to detect modern botnets. SeeBot can seamlessly
and incrementally combine host and network level evidences and incorporate active actions into passive evidential
reasoning process to improve the efficiency and accuracy of botnet detection. Our experiments show that both
performance and accuracy of botnet detection can be greatly improved by the active evidential reasoning, especially
when the evidence is weak, hidden or lost.
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1 Introduction
The total number of computers belonging to botnets
increased from 3 millions in April-June 2009 to 6.5 mil-
lions during April-June 2010 [1]. Apparently, traditional
botnet detection (e.g., signature, anomaly or flow based)
approaches [2-6] cannot effectively detect and stop mod-
ern botnets. Based on a 2010 poll with chief informa-
tion security officers and senior IT security directors at
Fortune 500 corporations, all respondents stated that they
considered malware and botnet to be a serious threat to
their enterprise IT security.
Botnets are collections of infected computers that

are controlled remotely by cyber-criminals. Originally
botnets were created for a specific purpose such as send-
ing spam, identity theft or DDoS (distributed denial-of-
service) attacks. However, in 2010 bots that were designed
to provide the cyber-criminal with the ability to build
designer botnets (e.g., Zeus-based botnets) were rented
out to other cyber-criminals for specific purposes (spam,
identity theft, DDoS, etc). These criminal organizations
invest significant building logical groupings of compro-
mised systems that are organized around a sophisticated,

*Correspondence: ytang@ilstu.edu
1School of Information Technology, Illinois State University, Normal, IL 61790,
USA
Full list of author information is available at the end of the article

resilient Command-and-Control (C&C) infrastructure or
even through social networks [7]. Such criminal networks
are exceptionally stealthy and easily evade signature or
behavior-based defenses. They can mimic normal appli-
cation and traffic patterns, and can change their core
software far faster than traditional security solutions can
update their signature-based systems. We refer to such
professionally designed and cyber-criminal oriented bot-
nets asmodern botnets, which have the following features:

• Highly polymorphic: The characteristics of botnets
are varying even faster (e.g., via polymorphism or
code obfuscation) than the signature update from
security vendors. The prevalence of improved
do-it-yourself (DIY) botnet construction kits and
associated exploit packs make this feature much
more evident in 2010 [8].

• Highly intelligent: The bots, used to be called
zombies, are powered with much more intelligence
now, such as Honeypot-aware botnets [9]. Modern
botnets can run multiple simultaneous infection
mechanisms, update the malware installed on their
victims systems regularly, and optimize their serial
variant malware production systems to release
“personalized” and one-of-a-kind malware with
each new victim infection.
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• Highly stealthy: Because of commerical motivation,
modern botnets are designed to be more stealthy via
many different mechanisms, such as randomly
selected ports, traffic encryption and peer-to-peer
based C&C.

Substantial research work has been done towards botnet
detection. However, most botnet detection approaches
attempted to follow and catch the trend of new bot-
net design, and then develop certain understanding or
assumptions about the corresponding botnets. For exam-
ple, (1) assuming certain botnet has a trackable pay-
load pattern, payload signature based solutions [10] were
developed; (2) assuming the existence of certain abnor-
mal network activity or specific flow statistics, network
anomaly detection based [6], flow feature [5] or commu-
nication pattern [4,11,12] detection based solutions were
also developed; and (3) assuming the existence of sim-
ilarities among bots, several behavior correlation based
solutions have also been proposed [13,14]. In general,
the more assumptions we make on botnets, the more
restriction the corresponding botnet detection solutions
suffer from, and accordingly, the easier being bypassed by
modern botnets.
No matter how a botnet may change its behavior or

appear differently, the motivation of botnets stays the
same, which is to conduct certain profitable activities
in underground market. Among all changeable appear-
ances (e.g., spreading and control methods) of botnets, we
classify them into three levels:

• Polymorphic appearance: Some features or
characteristics of botnets are highly variable as
designed. For example, the malware signatures.
Various new system and network vulnerabilities will
keep being discovered and exploited. The large
number of software vendors and service providers
will continue to contribute to this trend.

• Changeable appearance: C&C provides the channel
between a botmaster and bots. Once certain C&C
mechanism being well-studied and effective detection
methods becoming available, new C&C mechanisms
will show up soon. However, this type of changing is
not as fast as we can find in polymorphic appearance
of botnets. On the other hand, common infection and
spreading methods may be more effective. Thus, for a
certain time period, C&C can be still regarded as
reliably recognizable appearance.

• Stable appearance: the final goal of a botnet is to
perform certain profitable attack activities, such as
spamming and DDoS attack. Even such behavior has
become well-understood, botnets will not change it.
New profitable activities may be discovered later.
However, comparing to another two types of

appearance, Stable Appearance becomes the directly
recognizable one.

In this paper, we advocate a rather different approach
called SeeBot to show another niche in detecting mod-
ern botnets. SeeBot is built upon a new active evidential
reasoning model, which integrates the advantage of both
passive and active monitoring and detection into one
framework. In this framework, SeeBot focuses on recog-
nizing stable appearances, which are related to Infection
and Attack actions (I&A), and Command and Control
activities (C&C), as its initial detection targets (i.e., pas-
sive reasoning). In our approach, if the passive evidential
reasoning is not sufficient to detect botnets, SeeBot auto-
matically selects optimal verification actions to discover
relevant symptoms that are important to collect the most
critical evidences.
Our contribution in this work is twofold:

• We propose an active multi-layer causality model to
seamlessly integrate active detection actions into
passive evidential reasoning process, such that the
robustness and resilience of a botnet detection
system can be significantly increased, especially when
initial symptoms are weak.

• We design an open and incremental evidential
reasoning framework to be adaptive and extensible to
a variety of different monitoring sources, such that
the applicability and practicability of the system can
be greatly improved, especially for detecting new
botnets.

The rest of the paper is organized as the following.
Section 2 discusses related work on botnet detection.
Section 3 proposes an active evidential reasoning based
botnet detection model. Section 4 evaluates SeeBot per-
formance using simulations and controlled experiments
with real traffic traces, and the conclusion is given in
Section 5.

2 Related work
Sustantial research work has been done in botnet detec-
tion. In the following, we briefly discuss several related
work.
Extensive studies have been conducted on understand-

ing the characteristics and behaviors of various botnets.
To collect and analyze bots, researchers widely utilize
honeypot techniques [15-17]. Freiling et al. [16] used hon-
eypots to track botnets in order to explore a root-cause
methodology to prevent DoS attacks. Nepenthes [15] is
a special honeypot tool for automatic malware sample
collection. Rajab et al. [17] provided an in-depth measure-
ment study of the current botnet activities by conduct-
ing a longitudinal multi-faceted approach to collect bots
and track botnets. Cooke et al. [18] conducted several



Tang et al. Journal of Internet Services and Applications 2013, 4:20 Page 3 of 10
http://www.jisajournal.com/content/4/1/20

basic studies of botnet dynamics. In [19], Dagon et al.
proposed to use DNS sinkholing technique for botnet
study and pointed out the global diurnal behavior of bot-
nets. Barford and Yegneswaran [20] provided a detailed
study on the code base of several common bot families.
Collins et al. [21] presented their observation of a relation-
ship between botnets and scanning/spamming activities.
Several recent papers proposed different approaches to

detect botnets. Ramachandran et al. [3] proposed using
DNSBL (DNS blacklist) counter-intelligence to find bot-
net members that generate spams. This approach is useful
for specific types of spam botnets. In [22], Reiter and
Yen proposed a system TAMD to detect malware (includ-
ing botnets) by aggregating traffic that shares the same
external destination, similar payload, and that involves
internal hosts with similar OS platforms. The correspond-
ing aggregation method based on destination networks
focuses on networks that experience an increase in traffic
as compared to a historical baseline. Different from [14]
that focuses on botnet detection. The scheme proposed in
[22] aims to detect a broader range of malware.
Livadas et al. [4,11] proposed a machine learning

based approach for botnet detection using some general
network-level traffic features of chat-like protocols such as
IRC. Karasaridis et al. [5] studied network flow level detec-
tion of IRC botnet controllers for backbone networks
by matching a known IRC traffic profile. Rishi [10] is a
signature-based IRC botnet detection system by matching
known IRC bot nickname patterns. Binkley and Singh [6]
proposed combining IRC statistics and TCP work weight
for the detection of IRC-based botnets. Gu et al., 2007 [23]
described BotHunter, which is a passive bot detection sys-
tem that uses dialog correlation to associate IDS events
to a user-defined bot infection dialog model. Different
from BotHunter’s dialog correlation or vertical correlation
that mainly examines the behavior history associated with
each distinct host, BotMiner utilizes a horizontal corre-
lation approach that examines correlation across multiple
hosts. BotSniffer [12] is an anomaly-based botnet C&C
detection system that also utilizes horizontal correlation.
However, it is used mainly for detecting centralized C&C
activities (e.g., IRC and HTTP).
Many botnet detection solutions were designed based

on certain assumptions on botnets with specific directly
observable evidence (e.g., IRC botnet detection) or indi-
rectly derivable evidence (e.g., correlation based botnet
detection, a pattern of sequential observable network
activities). Behavior similarity correlation based approach
[13,14] cannot adapt to modern multi-function botnets
with polymorphic behaviors.
More recently, p2p has been exploited as a new C&C

mechanism in many modern botnets, which brings to a
botnet detection system new challenges mainly on two
aspects: (1) how to detect p2p traffic from background

traffic; (2) how to distinguish C&C p2p traffic from legiti-
mate p2p applications. Several solutions [24,25] have been
proposed. Yen and Reiter, 2010 [24] showed that the differ-
ent goals and circumstances, the features related to traffic
volume, “churn” among peers, and differences between
human-driven and machine-driven traffic make distin-
guishable behaviors in these p2p applications. Zhang et al.,
2011 [25] proposed a novel botnet detection system based
on statistical fingerprints to profile P2P traffic and identify
stealthy P2P botnets.
In summary, we categorize those existing solutions

designed based on certain pre-conditions (e.g., C&C
mechanisms, sequential activities, behavior correlations)
as condition-constrained botnet detection approach. All
the solutions discussed here are in this category. To the
best of our knowledge, SeeBot is the first active eviden-
tial reasoning framework for botnet detection that only
assumes the intrinsic botnet activities. Many proposed
solutions can work perfectly on detecting certain type
of botnets as long as the expected pre-conditions are
valid. The advantage of SeeBot lies in its high robustness,
adaptability and applicability.

3 Active evidential reasoning
As discussed in Section 1, the three characteristics in
modern botnet, namely highly polymorphic, intelligent
and stealthy, make current botnet detection approaches
miscellaneous and manifold. Botnet detection is essen-
tially a process of detecting exposed botnet activities
based on collected evidence.
An evidential reasoning approach usually uses a belief

structure to model an assessment with uncertainty. In this
section, we will formalize botnet detection as an eviden-
tial reasoning process. Accordingly, we will propose a new
belief structure called Active Multi-layer Casuality Graph
as shown in Figure 1, which seamlessly incorporate multi-
ple components with different roles and levels, including
Botnet, Evidence, Symptom and Actions, into the same
active evidential reasoning framework.
In the following, we first introduce Active Multi-layer

Casuality Graph, which is developed up the concept
of casuality graph commonly used in evidential reason-
ing. Then we present the active evidential reasoning
framework called SeeBot, and elaborate its functional
modules.

3.1 Causality graph
A casualty graph [26] is a bipartite directed acylic graph
to describe the Symptom-Cause correlation, which repre-
sents the causal relationship between each cause ci and a
set of observable symptoms Sci that may be triggered by
ci. Symptom-Cause causality graph provides a vector of
correlation likelihood measure called likelihood indicator
I(sj|ci), to bind a root cause ci to its relevant observable
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Figure 1 Active multi-layer casuality graph.

symptoms Sci . In a causality graph between root causes C
and symptoms S, if I(sj|ci) = 0 or 1 for all (i, j), we call
such causality model a deterministic model; otherwise, we
call it a likelihood model.
However, a general casualty graph cannot satisfy the

requirements in botnet detection, which can be mainly
shown in the following two aspects.
First, the flat symptom structure in a casualty graph

cannot completely represent the complicated relations
among symptoms. A symptommay be the result from sev-
eral other observed symptoms. For example, spamming,
a symptom of common botnet attack, can be observed as
the symptoms like (a) high volume of outbound TCP traf-
fic with destination port TCP/25, and (b) multiple queries
on different DNS MX records, etc. Accordingly, we break
the original flat symptom structure into a two layer hier-
archy between Symptom and Evidence to represent such
complexity. Thus, a indirectly unobservable evidence can
be jointly manifested by several directly observable symp-
toms. On the other hand, a symptom may contribute to
believe the existence of different evidence.
Second, a general casualty graph can only represent a

passive reasoning process. If any evidence is missing due
to various reasons (e.g., packet loss), the passive reasoning
result is commonly not satisfiable. Accordingly, in addi-
tion to the change made in the first step, we extend an
action layer that is associated directly with the symptom
layer to meet such requirement, which can selectively take
actions to verify the most likely existed but lost evidence.

3.2 Active multi-layer causality graph
Active Multi-layer Causality Graph, denoted as AMCG
and shown in Figure 1, consists of three bipartite directed
acylic graphs hierarchically connected by different rela-
tionships. We use B = {b1, b2, · · · , bn} to denote the cause

set representing different types of botnet (e.g., IRC or P2P
botnet), E = {e1, e2, · · · , em} to denote the evidence set
that can be jointly used to detect the occurrence of bot-
net (e.g., P2P traffic, spamming), S = {s1, s2, · · · , sk} to
denote the symptom set that can be directly observed, and
used to determine the existence of evidences (e.g., high
Max degree ratio [27], high volume of SMTP traffic), and
A = {a1, a2, · · · , aq} to denote the action set used to check
the symptoms.
There are two casualty correlations between B and E

denoted as MB×E , as well as between E and S denoted as
ME×S. MB×E is used to define causal certainty between
various botnet bi (bi ∈ B) and evidence ej (ei ∈ E). ME×O
is used to define causal certainty between evidence ej (ei ∈
E) and symptom sk (sk ∈ S). Evidence-Botnet causality
graph provides a vector of correlation likelihood measure
denoted as indication measure I(ej|bi) to bind a type of
botnet bi to a set of its evidences Ebi . Similarly, Symptom-
Evidence causality graph provides a vector of correlation
likelihood measure denoted as indication measure I(sk|ej)
to bind an evidence ej to a set of its symptom Sej .
We also use A = {a1, a2, · · · , aq} to denote the list

of actions that can be used to check symptoms. We
describe the relation between actions and symptoms using
Action Book represented as a bipartite graph as shown
in Figure 1. For example, the symptom s1 can be verified
using action a1 or a2. The Action Book can be defined by
network managers based on symptom type, the network
topology, and the available symptom validation tools.
The active multi-layer hybrid causality graph Botnet-

Evidence-Symptom-Action graph is viewed as a 6-tuple
(B;E; S;A;C1;C2;C3), where botnet set B, evidence set E,
symptom set S, and action set A are four independent ver-
tex sets. Every correlation edge in C1 connects a vertex
in E and a vertex in B to indicate causality relationship
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between evidences and botnets. Every correlation edge in
C2 connects a vertex in O and a vertex in E to indicate
causality relationship between symptoms and evidences.
Every correlation edge in C3 connects a vertex in A and
a vertex in S to indicate verifiable relationship between
actions and symptoms, referred as the Action Book.

3.3 Active evidential reasoning framework
SeeBot consists of four modules as shown in Figure 2,
which are Evidence Mining (EM), Evidential Reasoning
(ER), Plausible Reasoning (PR) and Action Selection (AS)
modules. Evidence Mining module processes received
symptoms from a passive network monitoring system and
generate the corresponding evidences for all hosts in a
monitored network based on Symptom-Evidence casual-
ity relationship specified in AMCG. Evidential Reasoning
module passively analyzes evidences, shows botnet likeli-
hood evaluation for all hosts identified in from Evidence
Mining module, and dynamically constructs a plausi-
ble graph presenting a plausible relationship between
those hosts and each botnet category. Plausible Reasoning
module identifies the smallest set of botnets to explain
observed evidences for all related hosts, verifies if the
confidence level of the reasoning result is satisfactory.
If the current related evidence is strong enough to

explain the botnet hypothesis, then the reasoning pro-
cess terminates. Otherwise, a list of most likely missing
symptoms that can increase confidence on the botnet
hypothesis is sent to Action Selection module. Selected
actions are conducted to determine which unobserved
symptoms have actually occurred and accordingly adjust

Figure 2 Active evidential reasoning framework.

hypothesis confidence level. If the new confidence level is
satisfactory, then the reasoning process terminates; oth-
erwise, the new symptom is fed into the fault reasoning
module to create a new hypothesis. This process is recur-
sively invoked until a highly credible hypothesis is found.

CF(bi) = CF1(bi) × CF2(bi)

=
∏

t∈{1,2}

⎡
⎣1 −

∏
ej∈Et

(1 − I(ej)I(bj|ej))
⎤
⎦ (1)

CFn+1(bi|e) = [
1−(1−CFT(e))(1−I(e)I(bi|e))

]
CF1−T(e)

= I(e)I(bi|e)CF1−T(e) + (1−I(e)I(bi|e))CFn

(2)

3.3.1 Evidencemining
In this paper, we characterize a botnet using two essen-
tial coexisted behavior or evidence categories, namely (1)
Infection and Attack (I&A) evidence denoted as E1 that
reflect botnet motivation, and (2) coordinated command
and control (C&C) evidence denoted as E2 that show the
fundamental difference of botnet from other malwares.
For detecting a botnet, we should observe evidences from
E1 AND E2.
We use Symptom-Evidence bipartite casuality graph, as

discussed in Section 3.1, to represent the complex rela-
tionships among various observations from different net-
work and security monitoring systems. For I&A evidence
category, we choose 10 E1 evidences in the current version
of SeeBot, denoted as E1 = {e11, · · · , e1A}, including scan-
ning activity, spamming, DDoS, portable executable (PE)
binary downloading, etc. For C&C evidence category, we
choose 4 E2 evidences in the current version of SeeBot,
denoted as E2 = {e21, · · · , e24}, including P2P, IRC, HTTP,
DNS. We use a parameter Evidence Degree (or ED) to
indicate the number of associated symptoms. For exam-
ple, as shown in Table 1, ED(e11) = 2 and ED(e21) = 3.
More specifically, if we have observed {s1, s6, s7}, we
strongly believe there is P2P communication among cer-
tain investigated hosts [27]. Please note that Table 1 just
shows an example of Evidence-Symptom-Action Casuality
graph. Our current implementation of SeeBot has the
average evidence degree 23 among all defined evidences.
In our model as the example shown in Table 1, multiple

symptoms are required to verify the existence of evidence,
denoted as e11 ⇐ {s1, s2}; on the other hand, one symptom
may also be used as supportive observation for differ-
ent evidence, denoted as s1 → {e11, e21}. Furthermore,
our Symptom-Evidence causality adopts a deterministic
model, which implies I(sk|ej) = 1 if ej exists (∀sk ∈ Sej ).
We believe such simplification via the deterministicmodel
is a necessary and effective step to release many typical
botnet detection solutions from the burden in keeping
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Table 1 An example of evidence-symptom-action casuality

Category Evidence Symptom Action

E1(I&A)

e11(Scanning)
s1(high TCP failure rate) a1 (snort)

s2(fast varying dest ports ) a2 (argus)

e12(Spamming)

s3(high volume TCP/25) a3 (NetFlow)

s4(multi DNS MX queries) a4 (DNS log)

s5(multi SMTP dest) a5 (snort)

E2(C&C) e21(P2P)

s1(high TCP failure rate) a1 (snort)

s6(high In-and-Out degree) a6 (Script 1)

s7(high Max Degree Ratio) a7 (Script 2)

track of the difference and details of various botnets. The
input of this module is various tracking symptoms, and
the output is all related evidences and their indication
strength for each host relating to those symptoms.

3.3.2 Evidential reasoning
Evidence shows certain indication that leads to a decision
with more or less uncertainty. The stronger indication an
evidence shows, the less uncertainty a conclusion remains.
Traditional uncertainty reasoning approaches based on
Bayesian Network and Dempster-Shafer theory are inap-
plicable to intrusion detection due to lack of prior knowl-
edge [28]. In our system, we adopt the scaling mechanism
proposed in [28] to classify available evidence into three
levels: strong (S), moderate (M), and weak (W) indica-
tions. Further, we evaluate a decision on botnet detection
into three likelihood levels as well: strong, moderate and
weak confidence. To facilitate the reasoning process and
practical operation, we empirically quantify each evidence
level with numerical values S = 0.9,M = 0.5 andW = 0.1
for strong, moderate, and weak likelihood levels.
In evidential reasoning, the confidence on botnet detec-

tion (CF), as shown in Eq. 1, depends on the confidence on
the detection of I&A (CF1) and C&C (CF2). Furthermore,
CF1 and CF2 rely on the joint events and their likelihood
levels (i.e., S,M,W ) from E1 and E2 respectively. In Eq. 1,

I(ej) = |Soej |
|Sej | , is denoted as evidence indication strength. If

one type of evidence is completely missing, we use a null
evidence (eu) to represent, and I(eu) = 0. In such a case,
CF = 0.

Figure 3 Plausible Bot graph.

Next, we present a method to incrementally update cur-
rent confidence level denoted as CFn to a new level CFn+1

when a new evidence ewith I(e) = x is observed. Here, we
use a variable T(e) (T(e) ∈ {0, 1}) to represent the event
category. If T(e) = 0, e ∈ E1; otherwise, e ∈ E2. Since
CFn = CF1 × CF2 = (1 − (1 − CF1))(1 − (1 − CF2)),
we derive the method as shown in Eq. 2 to incrementally
update current confidence.

3.3.3 Plausible reasoning
After the process of Belief Reasoning, a Plausible Bot
Graph as shown in Figure 3 is constructed as the fol-
lowing to represent the dynamic relationship between the
potential faulty components and the evidence.

- For each botnet in B, to associate a botnet vertex bi.
- For each investigated host component, to associate a

host vertex hj. with its total belief metric �c.
- For each investigated host component hj, to associate

a link to all its related botnets with the weight I(bi|hj)
(here, I(bi|hj) = CF(bi)).

A plausible botnet reasoning problem is to find the min-
imal number of most likely botnets based on Plausible Bot
Graph that explain all related evidences with investigated
hosts.

Theorem 1. A plausible botnet reasoning problem is
NP-complete.

Proof. A plausible botnet reasoning problem can be
reduced to a Weighted Set Cover (WSC) problem as fol-
lows. For a set of investigated hosts H = {h1, h2, · · · , hn},
a cover is defined as a subset of hosts Hbi that can be
explained by one botnet bi. Each cover Hbi is assigned a
weight as W (Hbi) = 1/

∑
hj∈Hbi

I(bi|hj). Obviously, the
less weight a cover is, it is more likely that the corre-
sponding botnet is the cause. Thus, the plausible botnet
reasoning is to find a collection of covers (i.e., botnets)
such that

⋃
bi∈B Hbi = H with min(

∑
bi∈B W (Hbi)). This

is aWeighted Set Cover problem that is NP-complete.

We adopt greedy heuristic algorithm [26] for the plau-
sible botnet reasoning problem as shown in Algorithm 1,
where B is a set of potentially botnets; H is a set of
investigated hosts; R is a set of inferred botnets.

Algorithm 1 Plausible Botnet Reasoning Algorithm.
Step 1. R ← ∅;
Step 2. Find a botnet bi (bi ∈ B) withmin(W (Hbi));
Step 3. R ← R ∪ {bi};
Step 4. H = H − Hbi ;
Step 5. Go to Step 2 until H = ∅.
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a b c

Figure 4 Performance evaluation. (a) Detection time (s) (b) Detection rate (c) False Positive Rate.

3.3.4 Action selection
Figure 1 presents the verification relationship between
evidence {e1, e2, · · · } and actions {a1, a2, · · · }. For exam-
ple, Evidence e1 can be verified by taking a combination of
action a1, a2 and a3, which can be denoted as a new vir-
tual action vertex v1 associated with a cost of the sum of
C(a1),C(a2) and C(a3). Action v1 can verify all symptoms
(s1, s2) that are verifiable by either a1, a2 or a3. After con-
verting joint actions to a virtual action, Symptom-Action
correlation can be represented in a bipartite graph.
The goal of the Action Selection algorithm is to select

the actions that cover all evidences EUO with a minimal
action cost. Based on Symptom-Action bipartite graph,
we can model this problem as WSC problem to solve
it [26].

4 Evaluation
In this section, we present our evaluation metrics, experi-
ment methodology and experiment results.

4.1 Evaluation metrics
We evaluate SeeBot from the following three aspects:
performance, accuracy and sensibility.
The performance of SeeBot is measured by botnet

detection time τ , which is the time between receiving the
first evidence (i.e., when malware becomes active) and
identifying the actual botnets. The accuracy of SeeBot

depends on two factors: (1) the detection ratio (μ), which
is the ratio of the number of true detected botnets (Bd
is the total detected fault set) to the number of actual
occurred botnets Bh, formally μ = |Bd∩Bh|

Bh ; and (2) false
positive ratio (ν), which is the ratio of the number of false
reported botnets to the total number of detected botnet,
formally ν = |Bd−Bd∩Bh|

Bd . We have also analyzed system
sensitivity showing the impact of the number of evidences
and their evidence degrees on the system performance
and accuracy.

4.2 Experiment methodology
One challenge in evaluating botnet detection solutions is
the lack of group truth. The evaluationmethod adopted in
our evaluation is called active evaluation, in which we exe-
cute real botnet binaries in a controlled network environ-
ment. By properly selecting different type of botnets, we
can clearly demonstrate the applicability and robustness
of SeeBot in detecting botnets.
Our controlled experiment environment has the fol-

lowing configuration: a Cisco ASA firewall with NetFlow
enabled, a Cisco switch with SPAN port connecting a
Snort IDS, and a event monitoring server with SeeBot
installed for analyzing various symptoms, including Snort
alerts, syslogs, DNS logs and host events (e.g., IRC activ-
ity log, HIDS events, AVG anti-virus application, malware
alerts) from distributed systems. In our system, network

a b

Figure 5 Evidence degree impact. (a) The impact of evidence degree on detection rate. (b) The impact of evidence degree on false positive rate.
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a b c
Figure 6 The impact of evidence indication strength on (a) Detection time (s), (b) Detection rate, and (c) False Positive Rate.

related evidence is adaptively combined with host related
evidence. More specifically, network evidence will be ini-
tially analyzed at the first stage. The confidence evaluation
on the generated detection hypotheses will be consis-
tently conducted and incrementally updated with new
evidence either passively input to actively collected from
the monitored network system. Host based evidence such
as security logs will be collected only when the passively
input network related evidence is insufficient.
The testbed consists of eight physical workstations

and 20 virtual machines, with Ubuntu and Windows XP
installed. The system has been directly connected to th1e
Internet for several months to record all traffic traces
that will be used later as the background traffic when
we disconnect the testbed from public network and run
malicious software. More than 500 different type of bot-
net binaries have been collected over one year, and we
selected 24 binaries among them, including 9 IRC botnet,
8 HTTP botnet, and 7 P2P botnets. In each test, the num-
ber of infected machines M increased from 3 to 27 at a
speed 3 each time. For each test run, we randomly copied
1, 2, 4, 8 botnet binaries to the selected infectionmachines
and execute them. In order to evaluate the impact of See-
Bot parameters, we set up SeeBot with 3 different E1/E2
configurations as: 4/4, 8/4, and 12/4. For each event con-
figuration (e.g., 4/4, standing for 4 E1 and 4 E2 events), the
average event degrees (ED) are set to 5, 10, 15, and 20.

4.3 Experiment results
Figure 4 shows the performance evaluation results.
Figure 4-(a) indicates SeeBot can detect botnets effectively
(average in 5s), especially when more hosts infected. This
is one obvious feature in an evidential reasoning sys-
tem. Since SeeBot is not designed for any specific type
of botnets, the evidence from multiple mixed botnets
can jointly increase the detection performance, which is
also clearly shown in Figure 4-(a). Figure 4-(b) shows the
detection rate is above 90% on average with false posi-
tive rate less than 5% on average as shown in Figure 4-(c).
In our framework, we identify the I&A and C&C related
behaviors represent intrinsic botnet activities. If the evi-
dence related to one of these two behaviors is signif-
icantly missing, SeeBot will not perform well initially.
However, active reaction feature in SeeBot can effec-
tively improve its detection rate by searching for missing
evidence.
Figure 5 implies that with the increase of evidences and

the corresponding associated symptoms, the overall per-
formance of SeeBot is evidently increased. However, the
improvement due to increasing evidences and symptoms
becomes much slow after certain thresholds as the total
evidences |E1| = 8, |E2| = 4 and the average evidence
degree 15. Such an observation shows SeeBot can perform
equivalently good as long as certain amount of evidence
available to the system.

a b c
Figure 7 The performance comparison between SeeBot and the passive approach on (a) Detection time (s), (b) Detection rate, and (c)
False Positive Rate.
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As shown in Figure 5 and the following experiment
results, the false positive rate sometime can be high. The
main reason of causing false positive results is due to
the multi-association (i.e., one symptom may associate to
multiple evidence) between the elements in the evidence
and symptom sets, especially when some symptoms are
not detected or lost.
SeeBot provides an open framework such that differ-

ent symptoms, evidences and botnets can be selected
and associated together. Apparently, the evidence indi-
cation strength (as defined in Sec.3.3.2) between associ-
ated evidences and botnets can directly affect the system
performance. Apparently, the general rule is to asso-
ciate “Strong” evidences with botnets. However practi-
cally, the feasibility of constructing such a framework
may depend on the configuration of a real network
system. To clearly characterize the impact of the evi-
dence indication strength on the performance of SeeBot,
we have conducted experiments in three cases with all
weak, all mediate and all strong evidences to validate
the SeeBot performance. In our experiments, the dif-
ferent infection rates show the similar results. Thus,
we only show the experiment results with two bot-
nets per infection. As shown in Figure 6, the dif-
ferent evidence indication strength does cause some
differences (10%–20% difference) on both detection time
and detection rate, and makes significant difference on
false positive rate (50%–500% difference). The time
difference is caused by the consumed time in active
reasoning process when SeeBot tries to increase the
confidence level on the detection results. Even with
weak evidence, SeeBot can still localize relevant botnets
the same way as its receiving strong evidence. Thus,
the difference on detection rate is not obvious. Since
weak evidence is typically associated suspicious botnets,
the false positive rate can be really high due to such
ambiguity.
Many existing botnet detection tools were designed

based on various assumptions, e.g., the existence of dia-
log model in BotHunter. The advantage of SeeBot lies
in its reasoning capability in botnet detection, especially
when available evidence is incomplete, which does not
rely on certain botnet behavior to work. Since various
botnets are used in our evaluation, for a fair comparison
to the related work, we have implemented the essential
passive reasoning system based on the proposed solution
from [2,23,27]. To illustrate the difference in the passive
approach and SeeBot, we further created two scenarios:
(1) with incomplete evidence; (2) with complete evidence.
As shown in Figure 7, when the observable evidence is
complete, the difference between the two approaches are
not obvious. However, when we only provided incomplete
evidence to the two systems, the advantage of SeeBot over
the passive approach is very significant. For instance, the

passive approach cannot even start working (we set two
minutes as a timeout threshold) when the evidence avail-
ability (i.e., 80% of evidence missing in our experiment)
is low. Even when evidence availability rate increase to
50% such that the passive system started working, SeeBot
is clearly superior to the passive approach as shown
in Figure 7.

5 Conclusion and future work
In this paper, we advocate a rather different approach
called SeeBot to show another niche in detecting mod-
ern botnets. SeeBot is built upon a new active evidential
reasoning model, which integrates the advantage of both
passive and active monitoring and detection into one
framework. The experiments show that SeeBot can effec-
tively detect modern botnets, especially when the initial
evidence is not evident. Our future work includes the
development of an uncertainty evaluation model to pro-
vide a confidence measurement on the detection results.
We also feel it is important that SeeBot can detect hidden
common characteristics embedded in collected evidences
to characterize new botnets. The future version of SeeBot
could be enhanced with certain effective learning mech-
anism such as reinforcement learning to achieve such a
desirable feature.
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