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Abstract

Organizations face the ever growing challenge of providing security within their IT infrastructures. Static approaches
to security, such as perimetral defense, have proven less than effective — and, therefore, more vulnerable — in a new
scenario characterized by increasingly complex systems and by the evolution and automation of cyber attacks.
Moreover, dynamic detection of attacks through IDSs (Instrusion Detection Systems) presents too many false positives
to be effective. This work presents an approach on how to collect and normalize, as well as how to fuse and classify,
security alerts. This approach involves collecting alerts from different sources and normalizes them according to
standardized structures — IDMEF (Intrusion DetectionMessage Exchange Format). The normalized alerts are grouped
into meta-alerts (fusion, or clustering), which are later classified using machine learning techniques into attacks or
false alarms. We validate and report an implementation of this approach against the DARPA Challenge and the Scan of
the Month, using three different classifications — SVMs, Bayesian Networks and Decision Trees — having achieved
high levels of attack detection with little false positives. Our results also indicate that our approach outperforms other
works when it comes to detecting new kinds of attacks, making it more suitable to a world of evolving attacks.
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1 Introduction
Protecting IT infrastructures against the attack of crack-
ers is an increasing challenge in the present time, and
promises to continue so in, at least, the near future.
According to ISO/IEC 17799, there are a number of fac-
tors that augment this challenge: (1) IT infrastructures
have become increasingly complex with the advent of new
technologies (wireless and P2P networks, ever shrinking
devices such as memory keys, cameras, etc); (2) Complex
attacks have been productized and are available for down-
load in the Internet; (3) Business challenges demand new
services offered faster and on the net.
This trend is corroborated by Joosen at al [1] who state

that the increasingly complexity and dynamicity of sys-
tems and applications is linked to the Internet of Things.
Hale and Brusil [2] also raise the impact of virtualization
and service-orientation on security management.
In this context, classic defense techniques, such as

firewall-based architectures and stand-alone IDSs, are
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no longer effective to protect the IT infrastructure, as
noted by Ganame et al [3]. A more modern approach
requires the cooperation of many IT security devices,
with an emphasis on IDSs. Unfortunately, IDSs generate
a high number of events (Perdisci et al [4]) and many
false positives, making it difficult to determine which
real attacks caused some subset of those events. There-
fore, managing all the alerts generated by these devices
overwhelms the security staff of most organizations, as
observed by Ning et al [5], Boyer et al [6], Julisch [7] and
Liu and Zang [8].
The difficulty imposed by IDSs generating a high num-

ber of alarms has been raised by many authors, such as
Sabata and Orneds [9], Chyssler et al [10], among others.
In this same line of research, Ohta et al [11] defend the
necessity of decreasing false positives in order to reduce
the cost of operation and increase the reliability of the
system.
To tackle the excess of false positives, we propose a

machine learning solution based upon two major con-
cepts: (1) event fusion into meta-events: collecting, nor-
malizing and fusing together events that are likely to be
part of the same attack; (2) classification of meta-events:
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based upon the attributes of a meta-event, decide whether
it represents an attack or a false alarm, using different
machine learning techniques.
An implementation of this approach was tested against

the DARPA Intrustion Detection Evaluation 1999 [12] and
the Scan of the Month 34 from the Honeynet Project
[13]. The results indicated that this approach can pro-
vide high levels of detection with lower levels of false
positives. It also provides the ability to detect some new
kinds of attacks (for which there was no previous infor-
mation in the testing data), outperforming other works in
this aspect. This is an important feature, as it makes our
solution more flexible and suitable to an ever changing
scenario of cyber attacks.
The contribution of the paper is proposing an approach

to correlating security alerts based on machine learning
techniques, a security event taxonomy and the fusion of
different alerts into meta-alerts. We did experiments that
verify how effective this approach is to detect real attacks
while generating low levels of false positives, and how
good it is in detecting new and stealthy attacks when
compared to other works.
This work sets apart from most of the applied machine

learning techniques on IDSs, once we do not analyze
network traffic or series of system calls. Instead, we pro-
cess alerts generated by sensors (IDSs such as Snort,
applications, etc). By doing so, we work on a different
level of abstraction, that carries more meaning to our
machine learning approach, helping bridge the “semantic
gap” (Paxson and Sommer [14]). We also apply specific
security concepts to our fusing technique, which renders
meta-alerts that are more relevant. These meta-alerts,
appropriately filtered by machine learning algorithms,
help reduce the “high cost of errors” [14] that overwhelm
security groups nowadays.
This document is organized as follows: Section 2

presents related works in security alert correlation;
Section 3 describes our approach to correlating alerts,
including the layers of processing, a security alert
taxonomy and an algorithm to fuse alerts into meta-
alerts; Section 4 presents the experiments used to test our
approach and the corresponding results; finally, Section 5
summarizes the conclusions derived from this work and
indicates possible future works.

2 Related work
Ever since the Lincoln Laboratory at the Massachusetts
Institute of Technology launched the DARPA Intrusion
Detection Evaluation 1998 and 1999 [12], many teams
around the globe have put efforts into the develop-
ment of IDS technology. As a matter of fact, this very
work (by the Lincoln Laboratory) became the main
data set reference for intrusion detection systems testing
ever since.

Some research groups focused on misuse detection
systems. Bowen et al, for example, developed a domain-
specific language, called BSML (behavioral monitoring
specification language), to specify relevant properties for
intrusion detection [15]. A similar approach is presented
by the STAT Tool Suite, where a machine state-oriented
language - STATL - is used to describe attack scenarios
[16]. Systems based on misuse detection tend to be more
precise in pinpointing specific attacks, generating less
false-positives, while presenting more difficulty to detect
previously unknown attack patterns.
On the other hand, other teams, like Lee et al, have used

anomaly detection techniques for intrusion detection [17].
This particular team proposed the use of data-mining
techniques and its concepts (accuracy, efficiency, usability,
ROC, ensembles, among others) to the IDS challenge.
Solutions based on anomaly detection present the ability
to potentially detect new attack patterns at the cost of a
higher false-positive detection rate.
Hybrid approaches, encompassing anomaly and mis-

use detection, have also been proposed, as in EMERALD
[18], where a building-block architectural strategy hosts
potentially different correlation, inference and reason-
ing systems, varying from signature engines to Bayesian
analysis.
Interest in intrusion detection systems can also be per-

ceived in Europe, where Safeguard (European project
for information security in telecommunications and elec-
tricity networks) has fueled research in IDS technology.
Chyssler et al propose a framework for SIEM (Security
Information and Event Management), comparing the pos-
sible use of Neural Networks, K-Neighbours and Naive
Bayes in detecting attacks [10]. Ganame et al [3] propose a
distributed architecture named DSOC (Distributed Secu-
rity Operation Center) to improve the detection of more
complex attacks such as coordinated ones.
In a military and defense context, Grimaila et al [19]

also propose a distributed approach to security event cor-
relation in order to “identify potential threats in a timely
manner”. Rieke and Stoynova [20] present a blueprint
of an archtitecture for predictive security analysis that
uses process models in extension to security policies and
models.
One of the most inspiring works in this area has been

the probabilistic alert correlation presented by Valdes
and Skinner [21]. This work, developed at SRI Interna-
tion, proposes a hierarchy of correlations. Security alerts -
detected by sensors spread over a network - are fused into
meta-alerts at three different processing levels: (1) intra-
sensor or synthetic threads - alerts from a single sensor are
fused together according to a high minimum expectation
similarity on the sensor itself, the attack class, and source
and target IPs; (2) security incidents - alerts that belong to
the same class and target the same IP are fused together
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despite the expectation of similarity on the sensor iden-
tifier; (3) correlated attack reports: multistage attacks are
possibly detected by relaxing the minimum expectation in
similarity on the attack class.
Detecting multistage attacks is also handled by Ning et

al, where prerequisites and consequences of attacks are
represented as predicates of first order logic [5]. Alerts
that represent different stages of a single attack are fused
together into hyperalerts. This concept diminishes the
number of alerts to be analysed by the security team.
Julisch proposes reducing the number of alerts by using

clustering techniques [7]. He observes that a few dozens
of rather persistent root causes generally account for over
90% of the alarms that an IDS triggers. He suggests the
use of generalized attributes for an offline process of alarm
clustering. This process indicates the root causes of alarm
storms, enabling a security officer to tackle these causes
and reduce the amount of alarms.
Asif-Iqbal et al [22] address the clustering of security

logs by using data mining techniques, where the clus-
tered logs are further filtered to remove unneeded entries.
Corona et al [23] present a broad review on information
fusion (clustering) for computer security.
Burroughs et al propose applying BMHT (Bayesian

Multiple Hypothesis Tracking) onto fusing sensor process
output in order to achieve situational awareness and allow
security teams to respond to attacks more quickly [24].
Sabata, on the other hand, handles BayesianNetwork frag-
ments to correlate events and reduce the number of alerts
analysed by security officers [9,25].
This work extends the concepts introduced by Julish

[7] by having the algorithm run in real time instead of
batch. It also does event correlation and fusion, like Valdes
and Skinner [21], but it introduces hierarchies of event
taxonomies to support the fusing process. This provides
for a flexible, yet powerful, way of describing security
events and meta-alerts. Deciding whether a meta-alert is
an attack or not is implemented using machine learning
techniques, similarly to Chyssler et al [10]; we, how-
ever, introduce more modern techniques such as SVMs
and Bayesian Networks. Finally, not only do we com-
pare our results to the ones of the DARPA challenge [12],
but we also use real data from a honeynet to test our
approach.

3 Proposed approach
Processing and correlating security events is key to
an effective security management solution. Here, one
seeks to achieve situational awareness, that is, the abil-
ity to analyze alerts in a broader and more holistic
context.
Actually, a more precise and widely accepted definition

of situational awareness is “the perception of elements in
the environment within a volume of time and space, the

comprehension of their meaning, and the projection of
their status in the near future” [26].
Put in simple words, the more different the evidences

that a security incident is taking place, the more likely
it is true. Thus, we want to collect events from different
sources and normalize them, so that they can be processed
homogeneously.
The normalized events are fused (or clustered) into

groups, or meta-events. Meta-events present a more
complete description of a possible attack scenario than
single events. They constitute a more refined expres-
sion of the underlying attack when compared to isolated
alerts.
Grouping events into meta-events leads to better sit-

uational awareness, improving the classification between
real attacks and false alarms; it also enhances the per-
formance of the system, as the classification operates on
meta-events rather than events (events tipically outnum-
ber meta-events by orders of magnitude).
Meta-events enable the contrast between new scenarios

to previously learned attack scenarios. Machine learning
techniques can be used to automate this process.

3.1 Hierarchical layers
Our approach encompasses three layers of processing
stages: Collection (and Normalization), Fusion and Clas-
sification. Figure 1 shows the three layers.
Each stage provides a level of abstraction to the fol-

lowing one. Raw data are processed and transformed
into standardized IDMEF [27] -like records by the Col-
lection stage. The fusion stage takes these IDMEF-
extended records and groups them into standardized
meta-alerts. Finally, it is up to the Classification stage
to take these meta-alerts and sort them into attacks and
false alarms.

Figure 1 Processing in stages or hierarchical layers.
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3.2 Collection and normalization
The Collection and Normalization layer is linked to the
event sources: IDSs, firewalls, system logs, SNMP traps,
and so on.
Collection elements are divided into two groups: passive

and active. Passive elements gather alerts by the simple
observation of evidences, events or element states. Exam-
ples of passive collection are the parsing of systems logs
or the receival of SNMP traps. Active elements, on the
other hand, interact with the managed objects in order
to sinthetize alerts. Examples are ICMP probes or SNMP
pollers.
Collection elements also differ on the cardinality of the

generated alerts. In some scenarios, for each incoming
event or element state (an SNMP trap, e.g.), there is an
outgoing alert. In others, the collection element is respon-
sible for filtering the incoming events, in order to generate
fewer outgoing alerts. One typical example of the latter
is the processing of operating system calls; only a sub-
set of the logs of system calls correspond to potential
threats.
Normalization guarantees that the outgoing alerts are

represented in a standardized way. Our approach uses
a linearized extension of the IDMEF standard. It corre-
sponds to a string representation of the IDMEF record
with minimum overhead. Overhead, here, meaning any
character that does not relate to content data. Lineariza-
tion provides for a better perfomance of the system when
compared to the originally XML bus prescribed by the
IDMEF standard, since the latter would be too heavy
and resource consuming, as also noted by Ganame et al
[3]. This is key, once it has to process millions of events
a day in real time. Its extension regards the introduc-
tion of the new fields ext class, ext src node addr type,
ext tgt node addr type, ext priority and ext taxonomy.
This scheme is similar to the one presented by Lan et al
[28].
Field ext class partitions the alert space into five groups:

denial of service (DoS), probing (Probe), remote acess
(R2L), superuser access (U2R) and data theft (Data).
On the other hand, fields ext src node addr type and
ext tgt node addr type classify, respectively, source and
target nodes among: external, internal or pertaining to the
Demilitarized Zone (DMZ).
Each alert is also given a priority in the ext priority

field. This attribute takes values from one (1) to three
(3), where one is the highest priority, and three, the
lowest; this scheme is analogous to the one employed
by Snort [29]. Sensors usually fill this attribute with
the information defined by its source. That is, when-
ever an alert source contains an attribute named
severity or priority, their value is mapped onto the
ext priority field. There are, however, cases where the
event source does not present its own view about

the priority of the alert. In these cases, the sensor
will define the priority based on the type of the given
alert. This implies that the sensor developer needs to
have a good understanding of security alerts in order
to consistently define this attribute. Also notice that
priorities are pre-defined by sensors or alert sources,
being, therefore, immutable regarding its operating
environment.
Arguably the most important extension to the model is

the introduction of the ext taxonomy field. Taxonomy is
the subject of research for many years, dating back to the
work of Debar et al [27] . These works have resulted in
the genesis of the IDMEF model. Despite its importance,
the IDMEF model lacks a semantic description of the
types of its events. Al-Fedaghi and Mahdi [30] have also
observed the need for categorizing security log entries
[30].
We need a simple way of identifying alerts that pro-

vides support to the fusion and classification processes.
We want to identify each alert with a single value that
depicts what that alert means. The naming space of
ext taxonomy needs to be finite, so that it can be fur-
ther applied in some of the algorithms of the classification
layer.
To achieve these two requirements (expressiveness and

finitude) we derived a scheme based upon the observation
of real-world alerts and its expression in natural language.
This provides for a method of describing event types that
is meaningful, yet well-structured.
By observing alerts coming from different sources (IDSs,

system calls, web server access logs, Windows security
events and firewall events), we have divided them into
three main groups:

1. An action against an object (<object>:<action>).
2. A condition of an object (<object>:<condition>).
3. A suspicion of the state of an object (<object>:<state>).

Every group is, therefore, characterized by an object plus
an action, a condition or a state. Objects are represented
in a multilevel hierarchy. The most top level element of an
object is a system, a network element, a protocol, a user, a
file or security. Each of these elements is then subdivided
into more granular concepts. Figure 2 describes an exam-
ple of a hierarchy of objects as used in our experiments.
This hierarchy may be extended to suite other managed
elements and objects as necessary.
An action resembles a method to which an object

is associated. Therefore, an alert about the shutdown
of the operating system would be represented as sys-
tem.os:shutdown. As with objects, actions are also rep-
resented in a multilevel hierarchy. The lower levels of
the hierarchy qualify the upper ones. Qualifications may
be adverbs associated with the action, the result of the
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Figure 2 Hierarchy of objects.
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action, or something similar. For example, a failure in
the attempt to login as the administrator of a system —
due to a wrong password — would be represented as
user.admin:login.fail.pwd.
Actions are typically used to represent sentences of the

following constructions:

• Subject + Intransitive Verb (+ Adverbial Clause);
• Transitive Verb + Direct Object (+ Adverbial 4

Clause).

The differentiation of both cases is dependent on the
transitiveness of the verb. Nonetheless, this ambiguity
does not present a practical impact in the use of the
taxonomy. Solving this ambiguity would invariably make
our notation more complex, without real gains to our
approach.
Some alerts do not represent actions against objects,

but states (or conditions) in which those objects are.
These conditions are tipically represented by construc-
tions like: Subject + Copulative Verb + Complement. For
example, if one wants to represent that a TCP port is unac-
cessible, the taxonomy would render: protocol.tcp.port:
unreachable.
Finally there is a category of alerts that represent

suspicions towards a given activity or evidence. It dif-
fers from the previous cases in that it represents not
a fact but deductions associated with facts. Given the
inherent uncertainty, our taxonomy set suspicions apart
from actions and conditions. An example would be
the suspicion that there is an attempt to use a back-
door in a system. This would be described as: system.
os:malware.backdoor.attempt.
Note that objects, actions, conditions and suspicions are

all represented in multilevel hierachies. This allows cor-
relations to operate on the level of granularity that is
more convenient in each scenario. For example, if it is
irrelevant to check if a login failure occurred due to an
invalid user or an invalid password, than, the follow-
ing taxonomies would be equivalent: user.admin:login.fail,
user.admin:login.fail.pwd, and user.admin:login.fail.user.
The use of hierarchical levels addresses this issue in
an elegant manner, by making it possible to completely
ignore the third level of the action hierarchy, reduc-
ing all the previous options simply to: user.admin:login.
fail.
The result of this scheme is the ability to assign a single

finite description to each security alert. This descrip-
tion is meaningful (is it was derived from real alerts),
well-structured (use of hierarchy and natural language
concepts) and finite.
Another advantage is that it establishes a new dictio-

nary to be used when classifying alerts. Therefore, it does
not matter whether the original source uses the term

login, logon or begin user session; it does not matter
if the original system classified the login as failed or
denied; it also doesn’t matter if the administration user
is called root, superuser or administrator; in our taxon-
omy (and system), the fact that an administrator user tried
to access a system and failed will always be described as
user.admin:login.fail.
Therefore, our taxonomy provides the final tool to nor-

malize events coming from different sources while still
maintaining a proper, meaningful, description of the alert
type.
Since our proposed taxonomy conforms to the structure

we have outlined above (specially derived from natural
language), developers can more easily associate an alert to
an existing taxonomy entry or, better, create new entries to
address new alert types that take place in his/her specific
environment.

3.3 Fusion or clustering
This layer takes alerts provided by the collection and nor-
malization layer and groups them into meta-alerts. This
clustering process is an extension of the concepts intro-
duced by Valdes and Skinner [31]. Its design fulfills the
following requirements:

1. Efficience: operate under the shortest subset of alert
attributes and limit searches to meta-alerts in time.

2. Intelligibility: the resulting meta-alerts must make
sense to human beings.

3. Coherence: clustering mechanism must adhere to
the types of attacks supported by the model.

We decided on using a deterministic, straightfor-
ward, algorithm to fusion. It enables the clustering
of the alerts in real time as they are made available
by the undelying layer. The resulting meta-alerts are
simple and intelligible to human beings, as shown in
Table 1.
Arguably, the most important field in the meta-alert

structure is the alert taxonomy set. This is a bit array that
represents each of the supported alert types of the tax-
onomy. If one (or more) alert(s) of a given type is (are)
present in the meta-alert, its corresponding bit is set.
Otherwise, it remains clear.
Think of this bit array as the set of all the possible clues

in a crime scene. Potential attacks (or crimes), depicted by
meta-alerts, present a subset of these clues. Themore a set
of clues resembles a previous known scenario, the more
likely it is to be a real attack.
The use of an array bit provides support to internal

product techniques that verify the similarity between two
scenarios in the classification layer.
Filling in the meta-alert record is a natural result of the

clustering algorithm below:
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Require: j cache > 0, j dos > 0, j probe > 0, j r2l > 0, j u2r > 0
Require: a ∈ Alertas, M set of Meta-Alerts
Ensure:M updated with alert a

1: f ← ∅
2: for allm in M do
3: if a.ext class �= m.ext class then
4: nop
5: else if a.ext class = DoS then
6: if (a.src node addr ∈ m.src network addr) and

(a.tgt node addr ∈ m.tgt node addr list) and
(a.create time ≤ (m.end time + j dos)) and
(a.create time ≥ (m.init time − j dos)) then

7: f ← m
8: end if
9: else if a.ext class = Probe then
10: if (a.src node addr ∈ m.src node addr list) and

(a.create time ≤ (m.end time + j probe)) and
(a.create time ≥ (m.init time − j probe)) then

11: f ← m
12: end if
13: else if a.ext class = R2L then
14: if (a.src node addr ∈ m.src node addr list) and

(a.tgt node addr ∈ m.tgt node addr list) and
(a.create time ≤ (m.end time + j r2l)) and
(a.create time ≥ (m.init time − j r2l)) then

15: f ← m
16: end if
17: else if a.ext class = U2R then
18: if (a.src node addr ∈ m.src node addr list) and

(a.tgt node addr ∈ m.tgt node addr list) and
(a.create time ≤ (m.end time + j u2r)) and
(a.create time ≥ (m.init time − j u2r)) then

19: f ← m
20: end if
21: end if
22: end for
23: if f = ∅ then
24: n = new Meta-Alert
25: init n with data from a
26: a.meta alert = n
27: M = M ∪ {n}
28: else
29: a.meta alert = f
30: Update f with data from a
31: end if

Alerts are grouped according to their timestamps and
the time windows defined at the requirement lines. This
defines sliding windows within which correlated alerts
are fused.
Once an alert is received, the algorithm iterates

over a cache of meta-alerts looking for potential
candidates for fusion. Alerts are only fused together

if they share the same alert class. Further require-
ments stand for each individual alert class. In the
case of denial of services (DoS) attacks, the target
address of the alerts must match in order for their
alerts to be fused together. If it is a probing attack,
then it is the source address that must remain
unchanged.
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Table 1 Meta-Alert record

Attribute Type Description

meta alert id Integer Unique identification of a meta-alert

analyzer id list String List of sensors that generated the alerts of this meta-alert

analyzer count Integer Number of sensors that detected the alerts

init time Date Timestamp of the oldest event in this meta-alert

end time Date Timestamp of the most recent event in this meta-alert

time window len Integer Number of seconds between end time e init time

src network addr String Base address of the network that originatd the alerts

src node addr list LongText List of the addresses that originated the alerts

src node count Integer Number of different addresses that originated the alerts

src user id list String List of user identifications that originated the alerts

src user count Integer Number of users that originated the alerts

src proc id list String List of process identifications that originated the alerts

src proc count Integer Number of processes that originated the alerts

tgt node addr list LongText List of target addresses

tgt node count Integer Number of different target addresses

tgt port list LongText List of target ports

tgt port count Integer Number of different target ports

tgt user id list String List of target user ids

tgt user count Integer Number of different target user ids

tgt proc id list String List of target process ids

tgt proc count Integer Number of different target process ids

tgt file name list LongText List of target file names

tgt file count Integer Number of different target file names

ext class String Attack class of the meta-alert

ext max priority Integer Highest priority amongst the alerts in the meta-alert

alert count Integer Number of alerts in the meta-alert

alert taxonomy set BitArray One bit set per alert type present in meta-alert

If a matching meta-alert is found, the alert is fused into
it. Otherwise, a new meta-alert is synthetized with the
information from this single alert.
This simple algorithm has presented excellent results in

the Data to Information Ratio (DIR), and provides a good
support to the classification layer, as we will show later.
There is a price to be paid for the simplicity, though.

More refined attributes for fusion, such as sessions, users,
process and files are left behind. The algorithm does
not support the fusion of alerts pertaining to hybrid or
multistage attacks, and we left these scenarios as future
work.

3.4 Classification
Separating meta-alerts that represent attacks from false
alarms is an ideal task for machine learning techniques.
Here, we verify how modern techniques, such as SVMs

and Bayesian Networks, behave within the classification
layer.
Choosing the subset of the attributes of a meta-alert

to be used by these techniques is key. One must avoid
choosing too many attributes in order to avoid overfit-
ting. From the list of attributes presented in Table 1, we
have selected the following: alert count, ext max priority,
tgt node count, tgt port count, analyzer id list, ext class,
and alert type set.
Some attributes play important roles in the segrega-

tion between real attacks and false alarms. The number of
alerts, nodes and port help detect DoS and Probe attacks.
The list of sensors (analyzer id list) helps improve our sit-
uational awareness; the more sensors have detected traces
of an attack, the more likely it is to be real.
However, it is the bit array representing entries of

our taxonomy that plays the most central role in the
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Figure 3Model instantiation.

classification. This bit array is analogous to the bag of
words technique used for comparing text documents. The
internal product of two arrays represents the degree of
similarity between two documents, or, in our case, two
meta-alerts. This concept is very natural to SVMs, but
has proven very succesful with Bayesian Networks and
Decision Trees as well.
This approach was proven very flexible and resilient

in the detection of new attacks. Naturally, the result
is dependent upon the granularity of the taxonomy.
If it is too specific, the learning algorithm might end
up overfitting. If it is too generic, the classification is
jeopardized by the lack of information in the decision
making process.

4 Implementation and experiments
In order to test our approach, we had it implemented and
tested against two major, publicly available, data sources:
(a) the DARPA challenge [12], the de facto benchmark for
IDS testing; and (b) the Scan of theMonth (SotM) from the
Honeynet Project [13]. These two sources have different
and complemental characteristics.
The DARPA challenge was conceived by DARPA

(Defense Advanced Research Project Agency) in associa-
tion with MIT Lincoln Labs. It simulates an American Air
Force base local network that has been attacked in very
specific ways. Information about the traffic on the LAN
and about the attacks is provided in the form of tcpdump
files, BSM files, audit logs, Windows alerts and other

Table 2 DARPA event sources

Analyzer

Int. Snort Ext. Snort BSM Windows

Week 1 Records 142,674 143,098 2,063,809 581,192

Alerts 142,674 143,098 846 2,953

Week 2 Records 47,405 47,826 2,151,011 3,650,045

Alerts 47,405 47,826 728 405

Week 3 Records 18,742 21,687 2,147,384 3,574,791

Alerts 18,742 21,687 10,752 419

Week 4 Records 17,169 23,032 1,841,269 2,292,926

Alerts 17,169 23,032 701 643

Week 5 Records 34,652 53,612 2,949,363 2,476,508

Alerts 34,652 53,612 912 852
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sorts of audits. This set encompasses five weeks of activ-
ities, and has been used by many IDS research groups,
such as: Ohta et al [11], Mahoney and Chan [32], Bowen
et al [15], Mukkamala et al [33], Faraoun and Boukelif
[34,35], Tandon and Chan [36], Lee et al [17], Mukkamala
and Sung [37], Valdes and Skinner [31], and Sabata and
Ornes [25].
There has been some controvery regarding the use of

the DARPA dataset. Sommer and Paxson [14] state: “The
two publicly available datasets that have provided some-
thing of a standardized setting in the past - DARPA ...
KDD ... - are now a decade old...”. On the other hand,
Perdisci et al [4], states: “Even though the DARPA 1999
dataset has been largely critizicized, it is the reference
dataset in the evaluation of IDS performance”.
Our approach is less sensible to the age of the dataset,

as it relies on alerts derived from the network traffic
(by sensors such as Snort), instead of the network traffic
itself. Therefore, the changes that have taken place in the
characteristics of network traffic are masqueraded by our
sensors and have a lesser impact on the effectiveness of
our algorithms.
In order to further compensate for the limitations of the

DARPA dataset, we decided to add a second dataset to
our tests. The SotM data is provided by the The Honeynet
Project [13] and provides information about real attacks
that have been perpetrated against a honeynet controled
by the project. This data set complements the first one,
as it was originated in a real environment, and as it
contains newer types of attacks. Forms of data include
webserver logs, syslog, Snort logs and ipTables logs. Since
they correspond to real attacks against honey pots, the
noise ratio (data not related to attacks) is lower in these
logs.
This is a newer dataset and a more real one (not synthe-

sized). On the other hand, it is certainly a smaller one. As
we will show later, our implementation has achieved even
better results with this dataset.

4.1 Implementation
We implemented our model using Perl and three different
machine learning techniques. The implementation han-
dles the data sources of our test environments. Figure 3
shows a simplified view of the implementation.

Table 3 Event reduction in DARPA experiment

Entity Quantity

Records 24,278,195

Alerts 569,108

Meta-alerts 19,550

Indicated attacks 268

Data to information ratio 2,124

Basically, for each data source there is one module for
collection and normalization, namely: Windows Secu-
rity Log, BSM Log, tcpdump and Snort Log, Syslog and
Apache Access Log. These modules handle the specifics
of the data source and generate alerts in extended IDMEF
format.
The AlertFusion module clusters the normalized data

using the algorithm described in Section 3.3, generating
meta-alerts. The classification layer takes the resulting

(a) ROCLLSVMKFold

(b) ROCLLBayesKFold

(c) ROCLLJ48KFold

Figure 4 ROC curves for classifiers in DARPA KFold experiment.
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meta-alerts and processes them using three different
machine learning algorithms: SVM, Bayesian Network
and a Decision Tree.
For the SVM classifier we used the SVM imple-

mentation from libSVM [38]. We discretized attributes
alert count, tgt node count and tgt port count into four
different values in order to reduce the sensitiveness of
the algorithm to the learning data. Basically we do not
want the algorithm to overlook a DoS attack composed
of 200 alerts, just because it was previously trained with
a scenario that contained 500 alerts. We also linearized
attributes ext class and alert type set; we mapped each
possible value of the first and bit of the latter onto a
different dimension (dummy variables). We optimized
the resulting SVM using the guidelines proposed by Hsu
et al [39]. Finally, we induced the learning process using
different weights for false positives and false negatives;
basically, a false negative had a higher cost than a false
positive.
We implemented the Bayesian Network classifier and

the Decision Tree using Weka [40]. We coded the first
using weka.classifiers.bayes.BayesNet, while in the lat-
ter we used weka.classifiers.trees.J48, which implements
algorithm C4.5. We also implemented the assimetry of
costs described for the SVM classifier using weka. clas-
sifers.meta.CostSensitiveClassifier.

4.2 Experiments
We have performed three experiments:

1. DARPA kFold: using the DARPA database, we tested
the classifiers using a 5-fold cross validation.

2. DARPA 3x2: using the DARPA database, we trained
our classifiers with the three weeks of tagged attacks,
and tested their performance against the remaining
two weeks.

3. SotM kFold: using the SotM database, we tested the
classifiers using a 5-fold cross validation.

4.2.1 Experiment 1: DARPA kFold
Table 2 shows the result of the collection and normaliza-
tion processes on the DARPA data.
The Snort Sensor is responsible for most of the collected

alerts. In this sensor, every log entry corresponds to an
alert. This is a passive sensor, with an 1x1 cardinality. For
the BSM and Windows Sensors, we verify the results of
the applied heuristics, where only a subset of the records
is promoted to alerts. These sensors act as filters for the
upper fusion layer.
As a consequence, from a domain of over 24 million

records, sensors produce less than 570 thousand alerts.
Table 3 shows the performance of the Fusion layer

applied to the DARPA database. As you can see,
the implementation has reached a Data to Informa-
tion Ratio of 2,124, a value higher than the ones
obtained by Valdes and Skinner [21], and by Sabata and
Ornes [25].
The classifiers were first tuned based upon cost assime-

try, using different weights for false positives and false
negatives. In average, we have found that an assimetry
of 1:60 was the best solution for the classifers. These so-
tuned classifiers returned the results summarized in the
ROC curves depicted in Figure 4.
One can see that both the Bayesian and the Decision

Tree classifiers have presented good results, giving rise
to very steep inflexions in the graph. This translates into
achieving high values in TPR for low values in FPR. That
means more true positives and true negatives, for fewer
false positives and false negatives.
This can also be observed in Figure 5. There one can

see how the Bayesian Network classifier performs in
detecting specific types of attacks as our sensitiveness
variable is changed. High levels of detection have been
achieved in all categories, with a special remark for DoS
attacks. The detection of R2L attacks is the one that
is more impacted by the change in the sensitiveness of
the classifier.

Figure 5 Detection by attack type using Bayesian network in DARPA KFold experiment.
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4.2.2 Experiment 2: DARPAW3xW2
Performing the experiment against the two remaining
weeks, we have achieved the results in Figure 6.
The conformance of the curves summarizes the good

performance of the classifiers.
The combination of a generic taxonomy and the use

of these classifiers have demonstrated the possibility of

(a) ROCLLSVMW3xW2

(b) ROCLLBayesW3xW2

(c) ROCLLJ48W3xW2

Figure 6 ROC Curves for classifiers in DARPAW3xW2 experiment.

detecting new attacks, for which there had been no
samples in the training data. This can also be seen in
Figure 7.
The implementation managed to identify most of the

detectable attacks in the data set provided by DARPA.
We consider an attack detectable if some evidence
of its existence could be tracked in the alerts pro-
vided to the Snort and other sensors used in our
experiments.
Our implementation managed to detect attacks that

were not detected by any of the contenders of the ini-
tial DARPA challenge, like ipsweep, queso, snmpget and
ntfsdos. We also achieved a higher identification rate for
lsdomain, portsweep, ncftp and netbus. Table 4 shows
the results obtained for these attacks when compared to
the results of the best system of the DARPA Challenge
[12].
The results show that our approach improves the detec-

tion of new types of attacks, specially probe and R2L
ones.We also improved the detection ofWindows-related
attacks.

4.2.3 Experiment 3: SotM kFold
To complement our study, we tested our implementation
against a second data base: the Scan of the Month 34
[13].
This database reflects real attacks performed by crack-

ers against a honey net. Table 5 shows the sources used
in the experiment and the results from the Collection and
Normalization Layers.
Using the SotM database, we have achieved a lower,

although good, Data to Information Ratio, as shown in
Table 6. This reflects the fact that this database was col-
lected at a honeynet, that typically presents less noise in
the alerts.
The performance of the classifiers with this real-world

attacks has been remarkable, as presented in Figure 8.
Once again, high levels of true positives and true negatives
have been achieved with low levels of false positives and
false negatives.
These results derive from the good behaviour of the

classifiers, specially the SVM and Decision Tree, in a more
homogeneous attack environment. The DARPA data have
been synthesized to emulate more complex attacks than
the ones found on a daily basis in the real world. With the
SotM, we have a data sample that is closer to the behaviour
of an average cracker.
This scenario makes it easier for our machine learning

techniques to learn patterns and apply them to the new
attacks. Therefore, our results are even better in this more
realistic scenario.
As shown in Figure 9, the Bayesian Network classifier

was able to detect every single attack, with the exception
of the Probe attack class.
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Figure 7 Detection by attack type using Bayesian network in DARPAW3xW2 experiment.

4.2.4 A comparative analysis
This work encomprises one of the largest testbeds
in intrusion detection systems. We used two datasets
(DARPA and SotM), several event sources and three dif-
ferent classification techniques.
Most of the published works in intrusion detection use

only a subset of the event sources available in the DARPA
challenge [12]. Others process only a portion of the data
volume available: Faraoun and Boukelif use 10% of the
DARPA dataset [34,35]; Mukkamala et al use 20% of the
same dataset [33]. Our experiments made use of the five
weeks of data from the DARPA challenge, spanning from
the network data to the specific Solaris andWindows data
sources.
Our results indicate higher levels of detection for new

and stealthy attacks — ipsweep, queso, snmpget, ntfsdos,
lsdomain, portsweep, ncftp, netbus — when compared
to the contenders of the DARPA challenge, according
to Lippmann et al [12], as depicted in Table 4. This
is a consequence of the combined use of good classi-
fiers (specially the Bayesian Network) and an effective
taxonomy.
Detection rates were also better for the Probe attacks

against Linux boxes, and for R2L attacks against Solaris
servers. Our implementation also detected more R2L

and U2R attacks against Windows systems than the best
implementation in the DARPA challenge [12]. This can
verified in Table 7.
As noted by Kayacik and Zincir-Heywood, the number

of false positives generated by a Snort IDS, using state
of the art rules, is very high [41]. In all our experiments,
this module was the one responsible for most of our
alerts.Without the fusion and classification techniques we
applied, it would be impossible for a security operations
group to process the events generated by a Snort system
in this busy network. This would also be the case in any
real-world, enterprise-class, network.
Given the attacks for which there were evidences

(detectable attacks), our approach achieved higher detec-
tion rates than the ones presented by Lippmann et al
[12], even when the testing attacks did not match the
ones used for training. Detection rates in this scenario
approached 100% with a limited amount of false positives
(Figure 6).

5 Conclusions
Information security remains an unsolved challenge for
organizations. Old approaches, like perimeter defense, are
no longer effective in a new scenario of ever growing
threats and rapidly changing attack patterns.

Table 4 Detection of new and stealthy attacks

Attack name Category Details Total instances DARPA challenge Bayesian classifier

ipsweep Probe Stealthy 4 0 4

lsdomain Probe Stealthy 2 1 2

portsweep Probe Stealthy 11 3 8

queso Probe New 4 0 4

ncftp R2L New 5 0 1

netbus R2L New-windows 3 1 3

snmpget R2L Old 4 0 4

ntfsdos U2R New-windows 3 1 3
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Table 5 SotM event sources

Analyzer Records Alerts

Snort 69.039 69.039

Web logs 3.554 3.414

Syslog 1.158 953

Total 73.751 73.406

Facing this reality requires a more flexible and dynamic
approach, that provides quick responses to incidents.
Detecting incidents in real time is a challenge itself, once
there are millions of events to be handled, and many of
them correspond to false positives, that drain the energy
and time of a security team.
This work holds the following contributions to this

research area: (a) suggesting the use of a taxonomy
to better classify security alerts - and providing one
for the scope of our datasets; (b) applying a clustering
mechanism to security alerts; (c) experimenting different
machine learning techniques on top of these meta-alerts
– the ones provided by the clustering mechanism–, spe-
cializing the classification module suggested by Perdisci
et al [4].
Our work differs from most of the applied machine

learning techniques on IDSs, as we do not analyze net-
work traffic. Instead, we rely on alerts provided by sensors
(IDSs such as Snort, logs, etc). Therefore, we work on
a different level of abstraction, that carries more seman-
tics to our machine learning approach. We believe this
addresses part of the “semantic gap” raised by Sommer
and Paxson [14]. It also seems to render us more inde-
pendent on the “diversity of network traffic” (also crit-
icized by Sommer and Paxson [14]) as it is no longer
our subject of analysis. We also don’t rely on “anomaly-
detection”, which is the technique that has been heavily
criticized by Sommer and Paxson [14]. We chose to fol-
low the classification path of machine learning, which
seemed more natural and more semantically relevant.
Finally, the fact that we provide meta-alerts composed
of the underlying alerts also addresses the “high cost
of errors” brought up by Sommer and Paxson [14], as
we drastically reduce cardinality (1000x less meta-alerts
than alerts to classify), properly classify them (low level

Table 6 Event reduction in SotM experiment

Entity Quantity

Records 73,751

Alerts 73,406

Meta-alerts 8,528

Indicated attacks 1,469

Data to information ratio 50

(a) ROCSotMSVMKFold

(b) ROCSotMBayesKFold

(c) ROCSotMJ48KFold

Figure 8 ROC Curves for classifiers in SotM KFold experiment.

of false positives) and provide the underlying alerts of a
meta-alert for faster analysis (more actionable piece of
information).
We have been able to verify that the combination of a

taxonomy and the fusing of alerts into meta-alerts pro-
vides a solid basis for the correlation of alerts. Using data
mining techniques, specially Bayesian Networks, has also
demonstrated to be a good approach to detecting new and
stealthy attacks.
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Figure 9 Detection by attack type using Bayesian network in SotM KFold experiment.

Our experiments have shown that it is possible to
achieve high levels of Data to Information Ratio, and
still be able to detect most of the attacks in our test-
ing data. On top of that, new attacks — some that were
not in our training datasets — have been detected by
our combination of taxonomy–fusion–machine learning
approach.
High detection rates have been achieved with low lev-

els of false positives (lower than the thresholds suggested
by the DARPA challenge [12]), making our approach a
viable option for use in a scenario of intense, ever chang-
ing, attack types that constitute our reality and the near
future.
This work can be extended in several dimensions;

notably:

• Allow meta-alerts to be clustered into higher level
meta-alerts, providing for the fusing of distinct attack
types and multi-stage attacks;

• Research the use of incremental clustering as an
alternative to the alert fusion algorithm;

• Analyze the possibility of using pre-defined
topologies in the Bayesian Network classifier, in order
to provide more deterministic and
easier-to-understand classification criteria;

• Extend the taxonomy for different domains,
including physical security;

Table 7 Comparison regarding the detection rate in
different operating systems and attack types

OS Attack type Best in Darpa [12] Bayesian classifier

Linux Probe 60% 78%

Solaris R2L 50% 67%

Windows R2L < 40% 78%

Windows U2R < 40% 50%

• Enhance the approach to integrate service level
management practices, using CMDBs (Configuration
Management Data Base) to analyse the impacts of
security incidents.
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