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Abstract

Applications such as Facebook, Twitter and Foursquare have brought the mass adoption of personal short messages,
distributed in (soft) real-time on the Internet to a large number of users. These messages are complemented with rich
contextual information such as the identity, time and location of the person sending the message (e.g., Foursquare
has millions of users sharing their location on a regular basis, with almost 1 million updates per day).
Such contextual messages raise serious concerns in terms of scalability and delivery delay; this results not only from
their huge number but also because the set of user recipients changes for each message (as their interests
continuously change), preventing the use of well-known solutions such as pub-sub and multicast trees. This leads to
the use of non-scalable broadcast based solutions or point-to-point messaging.
We propose Radiator, a middleware to assist application programmers implementing efficient context propagation
mechanisms within their applications. Based on each user’s current context, Radiator continuously adapts each
message propagation path and delivery delay, making an efficient use of network bandwidth, arguably the biggest
bottleneck in the deployment of large-scale context propagation systems.
Our experimental results demonstrate a 20x reduction on consumed bandwidth without affecting the real-time
usefulness of the propagated messages.

Keywords: Context propagation; Scalability; Publish-subscribe; Multicast trees; Peer-to-Peer; Aggregation

1 Introduction
Context-aware systems take into account the user’s cur-
rent context (such as location, time and activity) to enrich
the user interaction with the application [1,2]. In the last
decade, this topic has seen numerous developments that
demonstrate its relevance and usefulness; this trend was
further accelerated with the recent widespread availabil-
ity of powerful mobile devices (such as smartphones) that
include a myriad of sensors which enable applications to
capture the user environment for a large number of users
[3].
Following on this trend, we are watching a radical

change in the type of packets that travel on the Inter-
net. Facebook and Twitter (among others) brought the
mass adoption of personal short messages or posts, dis-
tributed in (soft) real-time to a potentially large number of
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usersa. These messages are complemented with rich con-
textual information such as the identity, time and location
of the person sending the message (following the con-
text model devised more than a decade ago [1] among
the CSCWcommunity). Context-aware applications were,
until recently, created solely in the academic realm and
were used by a handful of users. Now, we have very
popular applications like: Foursquare [4] which has mil-
lions of users sharing their location on a regular basis,
with more than 600.000 updates per day [5]; traffic mon-
itoring applications such as Waze [6] which relies on
continuous updates with geolocation and accelerometer
data from drivers’ smartphones; real-time context-aware
applications such as Highlight [7] which matches geoloca-
tion with social network data to provide “nearby friends”
updates in real-time. These are just some examples within
the growing group of applications that use the Internet to
propagate contextual information among a large number
of users.
The huge number of users leads to scalability prob-

lems as can be seen in several news articles (e.g., Twitter
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admitted that “record traffic” and “unprecedented spikes
in activity” led to problems with the site [8]). In addition to
the huge number of users and messages exchanged, con-
text propagation creates unique challenges in the realm
of distributed systems [9]: it is highly dynamic, does
not require user intervention, and has different levels of
urgency. We now detail each one of these challenges.

1.1 Highly dynamic
To better understand how dynamic context can be, con-
sider the case of capturing the geolocation of a moving
person or the speed at which he is moving. To achieve
a reasonable level of accuracy, the system must capture
and propagate this information very frequently, probably
at least once per minute. Since these systems usually have
hundreds of thousands if not millions of users, we are
talking about a huge volume of information being sent
to the server (assuming a centralized topology which is
the case in the vast majority of the commercial applica-
tions on this area). Moreover, the server must then be
able to propagate this context to whoever may be inter-
ested. The problem lies on the dynamics of those interests.
For example, if the user is interested in receiving infor-
mation about friends nearby, there will be a matching
rule between his location and the location of his friends.
However, if he’s moving, and his friends are also mov-
ing, the system has to continuously change that matching
rule.
For this reason (the dynamics of context), traditional

publish-subscribe approaches are unfeasible since they
assume a relatively fixed set of matching rules. On these
systems, users subscribe to topics (subject-based systems)
or predicates (content-based systems) [10]. Then, users
feed content into the system (publish) and the system
distributes events matching subscribers interest with pub-
lisher content. Therefore, developing a “friends nearby”
application using publish-subscribe requires each client to
continuously change his interests. In fact, every time the
user moves, the client application has to send three mes-
sages when just one should suffice: (1) publish the current
location; (2) unsubscribe from the previous location, and
(3) subscribe to the current location. This leads to wasted
resources and poor scalability.
Application-level multicast tree approaches [11] fall on

the same problem: they assume that distribution rules
do not change very frequently. Although they still work
on these conditions, the resources wasted by continu-
ously rebuilding the multicast trees lead to poor scala-
bility. For example, the Scribe system [12] relies on the
following message types: JOIN, CREATE, LEAVE and
MULTICAST. It is easy to see the resemblance with
publish-subscribe messages — changing the matching
rules implies the propagation of a LEAVEmessage, a JOIN
message and a MULTICAST message (the latter alone

should be enough to convey all the information we need,
e.g., the new location, in the “friends nearby” application).

1.2 Does not require user intervention
Context propagation does not usually require explicit user
intervention— it happens in the background thus increas-
ing the usability and effectiveness of the application [9].
Thus, context-aware applications continuously monitor
and propagate the user’s context. Moreover, context infor-
mation is transmitted unattended, i.e., without the user
having to explicitly give that command [13]. Contrast that
with the kind of traffic we are used to watch until recently.
Be it an email, a website or an FTP session, the communi-
cation is always deliberately initiated by the user. This has
been changing and the immediate consequence of unat-
tended communication is that it will happen a lot more
frequently. Humans can only send a small number of mes-
sages in a given period of time but computers do not have
these limits. To provide the best user experience, these
applications will try to propagate their context as much
and as often as possible, since they do not have to rely
on the user explicitly initiating the communication. This
inevitably leads to a huge number of messages being sent
to the server at a high rate, thus reducing the system’s
scalability.
Note that, although smartphone OSs and synchro-

nization tools (e.g., Dropbox) already do non-triggered
updates, they are not as prone to scalability issues as
context-aware systems. Non-triggered updates on smart-
phones are typically initiated by the server (e.g., a new
version of an installed app is available or a new email
has arrived). Synchronization tools are triggered after a
human interaction (e.g., editing or copying a file) so they
are bound by definition to the number of actions a human
can do. Context-aware systems are triggered by changes
in the user’s context such as his location, speed or heart
rate, which can potentially lead to a much larger number
of messages than the previous examples.

1.3 Different levels of urgency
Finally, the urgency of context delivery is also highly
dynamic. An application that enhances the cellphone’s
contact list with the current availability of others [14]must
propagate context as soon as possible while an applica-
tion that provides a noise map of the city [15] does not
require immediate propagation (specially if it’s not the city
where the user is currently located). Even within the same
application there exists different urgency levels. For exam-
ple, Cenceme [16] captures users’s activity (e.g., dancing
at a party with friends) and shares those in the social net-
work. It makes sense to propagate those activities to close
friends as fast as possible while acquaintances only receive
those updates a few hours later. This behavior resem-
bles traditional relaxed consistency systems [17] with the
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problematic difference of having some users requiring
strong consistency while others tolerate some temporary
inconsistencies.
In summary, context-aware applications have the poten-

tial to transmit a huge number of messages in a highly
dynamic environment therefore raising hard challenges
regarding scalability. We argue that current approaches
such as publish-subscribe [18,19], multicast trees [11]
or gossip-based protocols [20] are not adequate to han-
dle these dynamics, because they assume the matching
rules are fixed or change infrequently (therefore changes
are too expensive). Also, since such classic approaches
do not know how to extract semantic meaning from the
exchanged messages, they can’t decide what is the most
efficient way to distribute thosemessages— such a burden
becomes the application programmer’s responsibility.
We propose an adaptable middleware, called Radiator,

where context propagation is controlled by functions that,
given the context of the recipient, dictate in which con-
ditions a given context message should be propagated.
These functions are, by nature, dynamic matching rules
which change automatically if the involved clients change
their context. Moreover, the retained messages (messages
for which the functions have decided that they should
not be propagated immediately) are aggregated into sin-
gle compressed messages that can yield a substantial
reduction on the consumed network bandwidth. For this
reason, these functions are called aggregability functions
because they tell whether a message should be aggre-
gated or not, and to which level the aggregation should
occur.
It is important to note that the aggregability func-

tions (and therefore the propagation timing) are not only
dependent on the message itself but also on the current
context of both the sender and the receiver. This is a
crucial difference over other generic message propaga-
tion approaches: since we know that messages contain the
contexts of their senders, we have more information to
make decisions about their propagation. Also note that
aggregability functions are provided by the application
programmer. Even though the programmer may take into
account the user’s input, it is not the user’s responsibility
to provide such functions.
Finally, we are also able to avoid some limitations of the

centralized approach (e.g., less scalability due to resource
usage concentration) by allowing a hybrid mechanism:
using a centralized approach for defining the message
propagation strategy (e.g., deciding whether a message
should be retained or propagated) and a peer-to-peer
approach for the actual message propagation. Thus, the
decision of which clients receive the message and when
they do so is still responsibility of the server, but most
of the propagation is done through direct connections
between the clients following a p2p approach, therefore

reducing the outbound network bandwidth needs of the
server and increasing scalability.
Moreover, the propagation path is completely dynamic:

the set of recipients of each message is continuously
changing based on the result of the aggregability function.
This results in amore efficient use of the available network
bandwidth.
In short, this paper makes the following contributions:

• We present a model for context-aware applications
that relies on the concept of aggregability, a function
that tells how aggregated a message can be before
being propagated. This function takes into account
the current context of both the sender and the
receiver, making a more efficient use of the network
bandwidth and significantly improving the system
scalability.

• We present a hybrid dynamic propagation
mechanism, where a server decides if a message
should be retained or transmitted (based on the result
of the aggregability function) and clients
communicate directly between them to propagate it.

• We implement and evaluate the scalability of
Radiator, a pluggable local middleware and a server
that support the above mentioned model, i.e., it
supports the hybrid propagation mechanism while
still abstracting away from the application
programmer the underlying communication and
context management.

In the remainder of the paper, we start by describing
Radiator’s context aggregation model. In Section 3, we
present Radiator’s architecture and in Section 4 its
implementation. Section 5 presents evaluation results of
Radiator’s implementation and finally, in Sections 6 and 7,
we relate Radiator with previous work and draw some
conclusions, respectively.

2 Context aggregationmodel
In this section, we start by explaining the concept of con-
text aggregation and then we describe in detail the model
supported by Radiator.

2.1 What is context aggregation?
To help understand the concept of context aggregation,
consider a “popular spots” application example. This
application shows the most popular spots (e.g., pubs,
restaurants, discos) nearby a user’s current location,
where a popular spot is a place where a large number of
users is currently located. The context of those users (in
this case, the location) must be propagated to others but
it can be grouped before being propagated. In this case,
the user does not care about individual context updates
given that he only wants to know popular spots, not who’s
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in there. So, instead of propagating N messages, each one
saying “user U is now at location L”, we can wait until
there are N users at location L and only then propagate a
single message saying “users U1..UN are now at location
L” or (in case privacy is an issue) “N users are now at loca-
tion L”. In other words, we are delaying the propagation
of the first N - 1 users’ location to improve the efficiency
of the system, hence the concept of delayed propagation.
Note that the delay does not break user expectations
because, for some contextual information, he does not
mind receiving it with delay. For example, a spot does
not become popular in seconds and it certainly does not
stop being so in seconds, so a lag of some minutes is per-
fectly acceptable between the time when a spot becomes
popular and the time a user is informed.
However, if a friend is in one of those spots, the user

may no longer tolerate a delay — he may want to receive
that information as soon as possible. So, the model has
to accommodate multiple delay levels, depending on the
user’s context (the user’s friends are part of his context).
All the messages that are not immediately propagated

are said to be retained. The fact that these messages
are retained allows the system to aggregate them in the
most efficient way possible, thus increasing its scalability.
For example, if a group of users share a certain con-
text attribute (e.g., location or interest), we can aggregate
their messages based on that attribute. In some cases, this
aggregation leads to tremendous decreases in the mes-
sages’ size, thus increasing the system’s scalability (more
details in Section 5). Also, the aggregation reduces the
cognitive load that users typically suffer when using this
kind of applications (caused by the huge number of mes-
sages received) [21].
Radiator is a context propagation middleware that com-

bines the concepts of Delayed Propagation and Aggre-
gation to improve the performance and scalability of
context-aware applications. Moreover, these concepts are
applied in a completely dynamic manner: each message
may be subject to different aggregation levels, depending
on the current context of the users involved.

2.2 Model
Context-aware applications start by capturing context in
the following form, assuming that P is a person, t a
timestamp and A an attribute:

Context = (P1..Pn, t1..tn, {A1..An})

This triplet represents the attributes that characterize
the situation of P1 to Pn during the time span between
t1 and tn, roughly following the context definition coined
by Dey in his seminal paper [1]. An attribute can be
any name/value pair. For example, an application like

CenceMe [16] that shares social activities among a group
of friends, might capture context as follows:

(("Alice"), 22:30..01:00,{"location":

"Joe’s Pub", "activity":"dancing"})

A crucial concept in the Radiator design is the possibility
of aggregating multiple contexts into a single one while
retaining its basic format. For example, if Alice and Marc
are both dancing together at Joe’s Pub, their context can
be aggregated as follows:

(("Alice","Marc"),22:30..01:00,{"location":

"Joe’s", "activity":"dancing"})

This context could be further aggregated with other
contexts and so on and so forth. The advantages of this
aggregation are: (1) it reduces the cognitive load on the
user by presenting a summary of what’s going on instead
of multiple single activities, and (2) it significantly reduces
the necessary network bandwidth, specially if combined
with a compression algorithm.
Related to aggregation, the Radiator also introduces the

concept of delayed propagation, based on the principle
that some context messages may be temporarily retained
before being propagated while still fulfilling user expecta-
tions. For example, Paul won’t mind receiving a message
saying that Alice and Marc are dancing at Joe’s Pub with
a five minutes delay unless he’s just passing nearby, in
which case the delay could prevent him from stopping by
(when he receives the message he’s already too far from
the pub). In fact, the urgency level depends on many fac-
tors: location, social distance (e.g., if it’s a friend or an
acquaintance), current activity, mood, etc.
Radiator allows programmers to define the tolerable

propagation delay of each message based on the current
context of the users involved (sender and recipient). As
already mentioned, this is achieved through an aggrega-
bility function. Let CS be the current context of sender S
and CR the current context of receiver R. The aggregabil-
ity function G(CS,CR) represents how much aggregated
the message must be before being transmitted to R, tak-
ing into consideration both CS and CR. G returns a tuple
in the following format:

G(CS,CR) → {type : value}, type ∈ (volume, time, people)

The value is an integer (or a function returning an inte-
ger) representing a threshold of aggregatedmessages. This
threshold may represent a quantity (volume), a time range
(time) or the number of different users contained in the
aggregation (people). If the type is time, context messages
will be aggregated until the number of seconds between
the oldest and newest retained message is equal or greater
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than value. The types volume and people are similar in
the fact that they represent the maximum number of
aggregated messages: volume is the number of different
messages while people represents the number of differ-
ent senders involved on those messages. For example, if
G returns {people : 4}, the system will aggregate mes-
sages until there are four different users involved, before
propagating themb.
Since value can be a function, the aggregation threshold

can be very dynamic. For example, a certain application
may want to immediately propagate a person’s context to
her friends but aggregate messages up to 40 seconds when
they are being propagated to strangers. We could define
such function as follows:

G(CS,CRi) → {volume : 1} ⇐⇒ is_friend(Ri, S)

G(CS,CRi) → {time : 40} ⇐⇒ is_stranger(Ri, S)
To better illustrate the generality of the aggregability

concept, Table 1 shows some examples of aggregability
for real-world scenarios. For simple propagation needs,
such as traffic monitoring or hazards detection, we define
a simple threshold for the maximum delay (1st row) or
the number of retained messages (2nd row). Since traf-
fic congestion occurs during a relatively long period of
time it can be aggregated within 5 minutes (300 seconds)
periods without losing its usefulness and relevance. More
interesting scenarios are those in which the aggregation
depends on contextual information such as the social dis-
tance (3rd and 4th rows), the geographical distance (5th
row) or even the number of shares (6th row). This gener-
ality is possible because the aggregability function takes
two arguments: the context of the sender and the context
of the receiver. This gives great flexibility to the applica-
tion programmer who can easily fit the specific require-
ments of his application into a single function and start
benefiting from the Radiator middleware without further
effort.

Listing 1 Aggregability function that aggregates
messages based on how far the user is from the sender
(implemented in Python)

def aggregability(Cs, Cr):
return { ’volume’ : distance_in_kms

(Cs[’attributes’][’location’],
Cr[’attributes’][’location’])}

For example, the aggregability function for the scenario
#5 (see Table 1) can be implemented in the Python lan-
guage as shown in Listing 1. Cs represents the context of
sender and Cr the context of the recipient. We assume
that distance_in_kms is a function that returns an integer
representing the number of kilometers between two geo-

locations. This aggregability function returns a volume
that depends on that distance, i.e., messages becomemore
aggregated as users become further away from each other.
The effective aggregation of messages is also performed

by a function (aggregation function). If the developer does
not provide any aggregation function, Radiator applies a
simple concatenation of the messages to aggregate. To
achieve higher compression levels (and therefore reduce
network bandwidth), the developer should provide an
aggregation function that takes into account the specific
needs of his application. Table 2 shows some examples of
such functions. In the traffic monitoring case (first row
in Table 2), we are concerned about the average traffic
speed within a geographical region: if the average speed
is near zero, it is reasonable to assume that there is traffic
congestion within that particular region.

3 Architecture
The Radiator architecture has two main components (see
Figure 1):

1. A local middleware that acts as a pluggable
component to applications that completely abstracts
away the application from the underlying
propagation infrastructure;

2. A server, to which the local middleware connects,
that assumes three responsibilities:

(a) Client management—Keeps track of all the
clients (namely their identification and IP
address). It also manages the connection with
each one of these clients: IP renewal,
intermittent connectivity, dead/unreachable
client detection, etc. Most importantly, it
manages the current context of every client
which is crucial to the context aggregation
process.

(b) Context aggregation—Applies the
aggregability function to every incoming
context message, providing both the sender
and recipient’s contexts. It also manages the
list of retained messages and the thresholds
at which messages are no longer retained and
start being propagated.

(c) Context propagation—Delivers the
context messages to all clients triggered by
the context aggregation component. The
delivery can be done using direct connections
to the clients, peer-to-peer propagation
between clients, or a combination of both.

We now describe in more detail the key components of
the Radiator architecture: context aggregation and context
propagation.
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Table 1 Different context propagation scenarios and the corresponding aggregability functions

# Scenario Description Aggregability function

1 Traffic monitoring Aggregate speedometer and GPS data within 300 second
periods

{time : 300}

2 Road hazards detection Aggregate vertical accelerometer and GPS data until 5 hazards
detected

{volume : 5}

3 Popular spots + Friends’ location Aggregate location until 10 different people in the same spot
but for friends send immediately (non-aggregated)

{people : 10} if stranger
{volume : 1} if friend

4 Facebook likes Aggregate likes from strangers within 300 seconds periods, likes
from friends of friends until there are 5, and likes from direct
friends with a maximum delay of 30 seconds

{time : 300} if stranger
{volume : 5} if friend_of_friend
{time : 30} if friend

5 Friends’ location in crowded spaces
(concerts, street markets)

Aggregate location based on how far you are from the recipient
(further away implies more aggregation)

{volume : distance}

6 Stock market alerts Aggregate stock market information during a period of time
proportional to the number of shares owned by the recipient
(higher number implies less aggregation)

{time : 1000/(1 + num_of_shares)}

3.1 Server— context aggregation
The “Context Aggregation” component at the server is
responsible for applying an aggregability function to every
incoming context message. Depending on the result of
the aggregability function, the message may be put on the
immediate propagation queue or on a queue associated
with the threshold that will trigger the propagation.When
one of these queues satisfy the associated threshold (e.g.,
if the threshold is volume : 5, and the associated queue has
5 elements), its items are moved into the immediate prop-
agation queue. Algorithm 1 presents the pseudo-code for
this process.
There is a global data structure that stores all the pend-

ing messages per client (pending). For each received con-
text C, the Radiator server calls the algorithm, which may
decide, depending on the aggregability function (provided
by the application programmer) to append it to the pend-
ing data structure or return it through the to_send vari-
able. The to_send variable stores all the messages ready
for immediate propagation (line 20) and is passed by the
Radiator server to the context propagation component
(detailed in the next section).
Note that, as in many context-aware systems, Radiator

propagates every message to everyone (albeit some can

Table 2 Different context propagation scenarios and the
corresponding aggregation functions (see Table 1 for
corresponding scenarios)

# Scenario Aggregation function

1 Traffic monitoring avg(speed) by location

2 Road hazards detection sum(hazards) by location

3 Popular spots count(people) by location

4 Facebook likes sum(likes) by object

5 Friends location in crowded spaces list(people) by distance

6 Stock market alerts newest(values) by share

Algorithm 1 Pseudo-code of the context aggregation and
propagation process
1: procedure PROPAGATE(in C, in/out pending)
2: to_send ←NEW_DICTIONARY()
3: for all recipient ∈CLIENTS_TABLE do
4: pending[ recipient].append(C)

5: pending_queues ←NEW_DICTIONARY()
6: for all Cpending ∈ pending[ recipient] do
7: result ←aggregability(Crecipient ,Cpending)
8: pending_queues[ result].append(Cpending)
9:

10: if result[ “volume"] then
11: propagate ←

(len(pending_queues[ result] ) >= result[ “volume"])
12: else if result[ “users"] then
13: propagate ←

(users(pending_queues[ result] )) >= result[ “users"])
14: else if result[ “time"] then
15: propagate ←

(time_range(pending_queues[ result] ) >= result[ “time"])
16: end if
17:
18: if propagate then
19: Caggr ←join(pending_queues[ result] )
20: to_send[Caggr].append(recipient)
21: for all c ∈ pending_queues[ result] do
22: pending[ recipient].remove(c)
23: end for
24: pending_queues[ result].clear()
25: end if
26: end for
27: end forreturn to_send
28: end procedure

receive it with delay). In line 3, we can see the beginning
of the loop that iterates through all the clients previ-
ously registered. For each client (a recipient, in this case),
the message to propagate is first appended to its global
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Figure 1 Radiator includes a pluggable local middleware and a server. Client applications use the middleware to propagate and receive
context through direct calls. The aggregation/propagation is abstracted away from the application programmer.

pending list. Then, this list is iterated (from the oldest to
the newest) while the aggregability function is applied to
each pending message (line 7). We have to reiterate from
the beginning (line 6) because the current context of the
recipient may have changed since the last time the propa-
gate function was called. That is, the result of applying the
aggregability function to the same message may change
with time so we can never rely on previous results (due
to context’s dynamic nature). Note that if there is data
loss, either the message that was lost is recovered by the
underlying network layer or the application deals with that
message loss.
In addition, the result of the aggregability function may

vary with each message in the pending list, so we have
to group them by result. This is done using the variable
pending_queues, which stores every result of the aggre-
gability function along with the corresponding list of
messages (line 8). Lines 10–16 test the different scenarios
that can trigger the propagation: reaching the maximum
number of retained messages (volume), reaching the max-
imum number of different users (people), or reaching the
maximum time span since the oldest retained message
(time).
If one of these thresholds is reached, the propagate vari-

able will have the value True. In this case, the messages
that were retained because of that particular threshold
will be aggregated into a single message (line 19). The
join function has a default behavior: it joins all the users
involved into a single set, calculates the global time range
based on the difference between the oldest and the newest
message in the aggregation, and joins all the attributes into
single lists. This behavior can be overridden to achieve
more efficient aggregations. For example, if the mes-
sages contain geo-location coordinates, the application

programmer may decide to adopt a minimum bounding
box approach to condense multiple locations into a single
square that contains all the locations. (More examples of
aggregation functions can be found in Table 2.)
The aggregatedmessage is then appended to the to_send

variable (line 20). This variable stores a list of mes-
sages for immediate propagation and for each message it
stores the list of its recipients. This data structure is opti-
mized for the context propagation component described
in Section 3.2. Finally, the messages elected for immedi-
ate propagation are removed from the pending queues
(lines 21–24).

3.2 Server— context propagation
The “Context Propagation” component at the server is
responsible for distributing the contextmessages (possibly
aggregated) to their recipients. Every client will eventually
receive all context messages but, depending on the aggre-
gability function, some may receive the messages sooner
than others.
The propagation can be done through direct connec-

tions from the server to every recipient or through peer-
to-peer communication between recipients. In any case,
the communication is always initiated by the sender (push
approach) so there is no need for clients to poll the server
or other clients for new messages (causing unnecessary
traffic and delays).
The centralized approach, where the server is responsi-

ble for pushing messages to every client has the advantage
of being simple to implement and allowing clients with
network restrictions (e.g., those that are behind a firewall).
However, if the number of recipients is large, the server
starts suffering from scalability problems, since it has to
push the message to everyone.
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Radiator introduces an alternative propagation mecha-
nism that is highly dynamic (in the sense, that it auto-
matically adapts itself to the current context of the sender
and receiver, which can change very frequently). First,
all clients that can communicate directly with other
clients (i.e., are not subject to firewall restrictions) send
an attribute p2p_enabled to the server when they reg-
ister themselves into the system. Afterwords, for every
message ready for propagation, the server checks which
of the recipients are p2p_enabled. Those that are not
p2p_enabled receive the message through a direct push as
already described. The others are divided into groups of k
elements (k is configurable as a percentage). Each group
is processed as a chain of peers through which the mes-
sage must get through. The message is propagated from
the server to the first peer which then propagates to the
second peer and so on and so forth. From now on, we will
name these groups as chain of recipients. So, for each chain
of recipients, the server sends only one message which is
then disseminated directly between the recipients (p2p
propagation).
Figure 2 shows a possible scenario: there are five recip-

ients for a given message where only one of them is not
p2p_enabled (Client A). In this case, the chain of recipi-
ents size is setup to be 50%. We can see that the server
pushes the message directly to client A (not p2p_enabled)
and divides the remaining recipients in two groups. Then,
it pushes the message to client B that should push that
message further to client C, that does the same for client
D, which must push the message forward to client F. It is
obvious from this example that the server must do only 3
pushes instead of 5 if there wasn’t any p2p propagation. In

fact, the server will always push N messages, where (k is
the chain of recipients percentage):

N = Nnon_p2p + (Np2p ∗ k/100)

From this follows that the smaller the k, the fewer mes-
sages the server has to push although this comes at a cost.
The messages must contain the full chain of recipients for
each group so, if the group is very large, the chain sig-
nificantly increases the payload size therefore defeating
our main purpose: reducing server outbound bandwidth.
However, regarding scalability, this is not significant for
two reasons: (1) given that most of themessages are aggre-
gated, the relative weight of the recipients chain generally
decreases, since the main payload is much bigger, and (2)
compression is highly effective for this chain of recipi-
ents (for example, increasing the chain from 10 to 100
recipients only yields a 5× increase in the compressed
payload — more details in Section 5).
Note that, due to its dynamic nature, this chain of

recipients is very flexible making it specially suitable to
highly dynamic conditions such as those usually found
in context-aware applications. Since these conditions may
vary very frequently, Radiator continuously recalculates
the chain of recipients for each message.
If a client is unable to forward the context message to

the next in the chain of recipients, it informs the server
accordingly. Then, the server tries the next one in the
chain. The server will not include the unreachable client
in the next propagation to prevent wasting unnecessary
resources unless the client shows any sign that it is still
alive (e.g., by sending a message to the server).

Figure 2 Radiator uses an hybrid propagation model. Some messages are pushed directly to clients while others are pushed between peers
following a previously defined dynamic chain.
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Even though we included some mechanisms to cope
with network data loss such as the one explained above,
this is not the focus of the paper for two main reasons: (1)
there are well-known distributed systems techniques that
deal with this problem that can easily be used within Radi-
ator, and (2) some information that may be lost does not
have to be re-sent given its semantics (i.e., it is superseded
by the next messages).

4 Implementation
A prototype of Radiator is implemented in Python. The
Python language has excellent support for list manip-
ulation and anonymous functions (lambda functions),
very useful for defining aggregability functions in a com-
pact form. Its interpreter is also very lightweight (when
compared to Java or .NET, for example) which enables
experiments where we launch thousands of threads in
the same machine. Note that, in order to use Radiator,
the client application does not have to be implemented
in Python. The Radiator server provides an API through
HTTP Web Services which any application can easily
usec.

4.1 API
The local middleware is a pluggable component that runs
along the client application and is responsible for abstract-
ing away all the details of context aggregation and propa-
gation. It provides a very simple API with 4 functions:

setup(server_address) — Initializes the local middleware
and stores the server address that will be used for subse-
quent API calls. Application programmers must first call
this function before using other functions of the API.
register_client(client_id, receive_callback, attributes) —
Upon calling this function, the local middleware opens a
local HTTP port for receiving messages. It then sends a
registration message to the server indicating the client_id
and the local HTTP port. The server stores this infor-
mation in a clients’ table that will be used to propagate
context. The receive_callback parameter defines the func-
tion that will be called when the client receives a message
(see below for further explanation).

Note that from this moment on, the client may start
receiving messages propagated by others. It is also able to
send messages using the propagate_context function (see
below). The client is uniquely identified by the pair (ip
address, client id) so name collisions are infrequent. If a
collision occurs, the function raises an exception and the
client applicationmust try again with a different identifier.
The attributes parameter is optional and is used to inform
about specific information related to this client. One of
these attributes is the “p2p_enabled” attribute which, as
previously described, informs the server that the client is
able to connect directly to other peers (either by manual

configuration or by testing a connection with a dummy
client on well-known location/port).
unregister_client(client_id) — It signals that the client is
no longer interested in receiving messages propagated by
others (e.g., logout). This closes the local HTTP port that
was opened to receive incoming messages and sends a
message to the server to delete the client from the client’s
table.
propagate_context(context) — The application calls this
function whenever it wants to propagate the context asso-
ciated with a given client to others. The context parameter
is an object containing a set of clients, a time range and a
list of attributes (name/value pairs).

This object is marshalled into JSON format [22] and sent
to the server. Depending on the aggregability function,
the server may decide to propagate the message imme-
diately or aggregate it with other messages. In any case,
this is transparent to the client application — the function
returns as soon as it is able to deliver the message to the
server.
The application programmer must implement receive_

callback (the second parameter of the register_client func-
tion) according to the following interface.

receive_callback(context) —This function is called in the
client application for every received message. Note that
the context parameter is an object of the same type of the
one sent using propagate_context.

Also, the JSON message received from the server is
conveniently unmarshalled into an object before invoking
the callback. This process occurs asynchronously, follow-
ing the event-driven paradigm and it is highly convenient
for application programmers who want to refresh the
application’s UI with incoming messages.

4.2 Server— client management
The server keeps a table for each active client. For each
client, it stores its identification, IP address and local call-
back port as well as some attributes that may be sent using
the register_client. This table is kept in memory for fast
access (we opted for storing the table in memory since
the volume of data to store for each client is small and
the cost of memory is decreasing). If for some reason the
server is no longer able to establish a connection or send
a message to a client, the client is considered unreachable
and is therefore deleted from this table to prevent further
wasting of resources. The local middleware can reissue a
register_client anytime (e.g., if it does not receive any mes-
sages for a certain amount of time). If it already exists
in the clients’ table it will overwrite the previous entry
(e.g., it may have new local callback port or a different
attribute).
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The last context message received for each client is
also stored in the table. This effectively represents (pos-
sibly with some delay) the current context of each client,
which is used by the aggregability function to decide its
result.

4.3 Communication protocol
Radiator uses HTTP to communicate between the server
and the clients and between clients themselves. Besides
being a well-understood widely-adopted protocol, it has
several advantages over other protocols: (1) multiple
available libraries in many programming languages, (2)
works well within security-constrained environments
(e.g., behind firewalls), (3) it does not require a permanent
connection between the client and the server which would
hinder the server’s scalability, (4) it supports encryption
(HTTPS) and compression (through the accept-encoding
header).
Our prototype uses a fast and lightweight embeddable

web-framework called Bottle [23] in conjunction with
Paste [24], a high-performance multi-threaded HTTP
middleware.
The connections are accomplished through an HTTP

request initiated by the sender (the server or client) to
the local TCP port that every recipient opened during its
initialization (to receive incoming messages). This port is
registered in the clients table, as described in Section 4.2.
Note that, by default, all communications are compressed
using gzip. The use of the HTTP protocol allows clients
behind firewalls, and since the server initiates the connec-
tion (push approach) there is no need for clients to poll the
server for new messages, causing unnecessary traffic and
delays.

4.4 Compression
As already mentioned in Section 2, most of the mes-
sages compression results from applying an aggregation
function to each message. If the developer provides such
function, it can achieve high compression levels by taking
into account the specific context attributes of his appli-
cation (e.g., using the average speed instead of individual
speed information in a traffic monitoring application).
Besides the aggregation function, Radiator also uses

standard compression mechanisms (e.g., gzip) to increase
the efficiency gains of aggregating multiple messages
into one. The HTTP protocol supports compression
through the headers Accept-Encoding and Content-
Encoding. There is a negotiation between client and server
where the client sends an HTTP Request containing the
header Accept-Encoding: gzip and, if the server supports
the request compression scheme, responds with a gzip
[25] compressed response along with the header Content-
Encoding: gzip. Note that this only works for responses —
requests are never compressed. Since most of the HTTP

traffic lies on responses, this does not usually constitute a
problem.
However, in Radiator, requests make up the biggest slice

of traffic, because it follows a push model: clients push
context to the server, which then pushes that context to
other clients. Also, when a chain of recipients is used (p2p
propagation), clients push messages between them. The
HTTP protocol does allow a Content-Encoding: gzip in
the request but most of the implementations ignore this
header. So, we had to develop: (1) an extension to the stan-
dard HTTP python lib that optionally compresses request
on the client, and (2) a plugin to handle compressed
requests on the server.

5 Evaluation
This section presents results of several experiments to
evaluate the scalability of the Radiator implementation.
In particular, we measure the tradeoff between network
bandwidth consumption and the average propagation
time (i.e., the time it takes for a message to go from the
sender to the recipient). To study this tradeoff, we take
three approaches:

• We evaluate different aggregability functions (using a
non-chained approach)

• We evaluate chained (p2p) and non-chained
(broadcast) message propagation scenarios using the
same settings

• We evaluate several chained message propagation
scenarios using different chain of recipients sizes

5.1 Experimental setup
We developed a traffic monitoring and hazard detection
application (scenarios #1 and #2 in Table 1) because it is
the kind of context-aware application that usually suffers
from the problems outlined on this paper: huge number
of messages (e.g., 70.000 cars per day on US expressways
[26]) and highly dynamic matching rules (cars in transit
are, most of the time, changing their location and speed).
For this experiment, the application produces random

context messages (related to traffic information) — we
used a standard python random function (within bounds)
for each of the context variables: location, speed and
number of hazards. Each message contains information
about the current location, speed and number of haz-
ards detected by the client. The application then uses
the Radiator local middleware to propagate these mes-
sages to other clients. The experiment was conducted
using 7 machines (each one is a 2× 4-Core Intel Xeon
E5506@2.13GHz running Ubuntu 10.04.3) connected
through a Gigabit LAN switch. The server runs on a
dedicated machine; the other 6 machines run the applica-
tion (with multiple threads where each thread simulates a
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client). All these machines have their clocks synchronized
using NTP.
Several metrics such as CPU, memory and network

bandwidth consumption are captured using the sysstat
tool [27]. The average delay between message transmis-
sion and reception was also recorded (the average delay
between the moment a client sends a message and the
moment another client receives the message).

5.2 Aggregation/compression
To measure the impact of the aggregation on the system
scalability (as related to the consumed network band-
width), we launched 60.000 clients (threads) across 6
different machines, each client propagating 1000 mes-
sages (each one ranging between 300 and 500 bytes) at 1
msg/sec rate. We experimented with different aggregabil-
ity/compression settings:

• Vol: 1 (no gzip)—Messages are immediately
propagated, uncompressed. All other scenarios are
performed with compression turned on using gzip
(the default settings). We decided to include an
uncompressed experiment to understand the impact
of compression on the bandwidth.

• Vol: 1—Messages are immediately propagated.
• Vol: 20—Messages are retained in the server until

there are 20 pending messages, which are then
propagated in a single message.

• Vol: 50—Messages are retained in the server until
there are 50 pending messages, which are then
propagated in a single message.

We decided to change the volume parameter (as
opposed to the time parameter, for example) because it
is easier to manipulate. However, as we observed exper-
imentally, changing the time and volume parameters
should have the same effect w.r.t. the performance values
obtained.
Figure 3 and Table 3 show the results concerning the

server outbound bandwidth and average delay (between
a client sending a message and another client receiving
it), under these settings. As expected, the non compressed
scenario is the worse performer in the experiment. We
can see in Figure 3 that even without aggregation (vol 1),
the mere act of compressing achieves a 25% reduction
on consumed bandwidth. Aggregating with vol 20 yields
another 8% decrease and with vol 50we achieve a substan-
tial reduction of 40% over the non aggregated compressed
scenario. This is because, as we aggregate more mes-
sages, the compression algorithm becomes more effective
because of the increased redundancy [28].
We can also see in Figure 3 that the consumed

bandwidth is much more uniform on the unaggregated
scenarios, because messages are immediately propagated

(i.e., constant flow of data). On aggregated scenarios, mes-
sages are retained in the server and propagated in batches,
originating big fluctuations on network usage. Neverthe-
less, the average consumption is relatively stable (around
the values presented in Table 3).
Another important insight from these results is the

impact of the different aggregability settings on the aver-
age message propagation delay. Table 3 shows that even
in the scenario with vol 1 (where messages are not being
retained in the server) there is already a substantial aver-
age lag of 42 seconds (between sending and receiving
a message) caused by 60.000 clients continuously push-
ing information and overloading the server’s outbound
network link. The stress on the network link is key
to explaining why the aggregated scenarios (vol 20 and
vol 50) actually decrease the lag even though messages
are being retained at the server. By sending many fewer
messages the server is reducing the stress in the out-
bound network link and increasing the throughput. In a
sense, we can say that under heavy load, it is unavoid-
able that there will exist message retention on the net-
work link so we might as well retain them at the server.
Moreover, Radiator is able to perform this retention with-
out breaking user expectations because, for some con-
textual information, he does not mind receiving it with
delay.

5.3 Hybrid propagation
Even with aggregation, the server outbound bandwidth
can easily become the bottleneck on large-scale dis-
tributed context-aware systems. We use the same setup
(simulating 60.000 clients) to evaluate the hybrid propaga-
tion mechanism described in Section 3.2 under different
chain of recipients sizes. As already mentioned, this size
(represented as a percentage) is the maximum number
of clients in a group (chain) for which the server sends
only one message which is then disseminated directly
between them (p2p propagation). We tested the following
chain sizes (represented by the k parameter described in
Section 3.2):

• no chain — server sends messages to every client
individually.

• k = 0.02 — server sends messages to 5000 groups of
12 clients each.

• k = 0.05 — server sends messages to 2000 groups of
30 clients each.

• k = 1 — server sends messages to 100 groups of 600
clients each.

• k = 5 — server sends messages to 20 groups of 3000
clients each.

• k = 10 — server sends messages to 10 groups of 6000
clients each.
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Figure 3 Server outbound network usage over time, under different aggregability settings.

Without lack of generality, to simplify the analysis, we
started by conducting the experiment without aggregation
(vol 1).
Figure 4 shows the outbound network usage over time

(during the experiment) under these chain sizes. Even
with a chain size of 0.02% there is already a significant
decrease over the no chain scenario (aprox. 26%). Note
that, even if the server sends messages to 12× less clients,
we incur in the overhead of including all the recipients’
IDs and addresses in themessage (messages becomemuch
bigger). As we increase the chain size, the server out-
bound bandwidth decreases, since the server send fewer
messages. Obviously, the outbound bandwidth consump-
tion on the other (client) machines increases but in a
real scenario we expect this not to be a problem since
each client will have his own machine/device to run the
application.
We can also see that the decrease is logarithmic — the

reduction that we get when we go from a chain size of
0,02% to 0,05% is much greater than the reduction we
get when we go from 1% to 10%. This is because the
cost of including information about the members of the
group (increasing the message size) no longer justifies
the gain of establishing fewer connections. It is worthy

Table 3 Average outbound network usage (from the
server) and lag under different settings

Settings Avg. outbound bandwidth (kB/s) Avg. lag (sec)

Vol 1 (no gzip) 1751 41

Vol 1 1324 42

Vol 20 1222 34

Vol 50 797 36

noting that even though message size increases (due to
the inclusion of the recipients chain), this allows a highly
dynamic reconfiguration capability of the propagation
paths (the propagation path is calculated for each individ-
ual message); this solution is better than using a specific
protocol (with specific control messages) for the propa-
gation paths reconfiguration (e.g., as in multicast trees —
more details in Section 6), specially if it occurs very
frequently.
It is also important to understand the impact in the

propagation time as we change the sizes of recipients
chains. Table 4 shows the average lag in seconds under
different sizes of recipients chains. We can observe that
there is an increase in the average lag as we go from a non-
chained (direct push) model to a chained (p2p) model.
This is due to the fact that, in the latter, the messages must
travel through the chain of recipients instead of being
directly pushed from the server to each recipient. Never-
theless, the average lag only grows 66% (from 42 ms to
70 ms) even though the message has to travel through 60
clients (k=0,1%).
Even propagating themessage among 600 clients (k=1%)

does not add much to the average lag (76% over the non
partitioned scenario, i.e., from 42 ms to 74 ms). This is
because this propagation occurs in 6 nodes that do not
include the server node (which is the node that is being
stressed out with these experiments). Although we do not
have yet real-world results, we expect this delay to be even
less significant in those conditions, where each node cor-
responds to a single client. If we grow too much the size
of the chain (above 5%), the number of hops the mes-
sage has to travel starts to severely penalize the average
lag and the technique is no longer effective. In this case, a
good equilibrium seems to be achieved with a chain size
of 1%: the consumed outbound is reduced to 4,4% of the
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Figure 4 Server outbound network usage over time, under different sizes of recipients chains.

non-chained scenario while the corresponding delay only
increases 76%.
Using the chain size of 1% (the one that reached

the best compromise between bandwidth and lag),
we experimented with different aggregability functions,
more specifically, setting different volumes. The results
are shown in Table 5. We can see that aggregating mes-
sages has the same effect it had in the non chained exper-
iment: the lag decreases from vol 1 to vol 20, and while it
increases again with vol 50, it remains smaller than the vol
1 lag. The explanation is the same: since the server is send-
ing many fewer messages (and note that these messages
are bigger as they now carry the chain of recipients), the
server’s network link is less stressed out, allowing a greater
throughput.
Although this is a simulated experiment (due to the

lack of publicly available real traces), we believe it reflects
a real-world scenario of a traffic monitoring application
capturing and propagating the location and speed of cars
in transit on a medium-sized city. We conducted the
experiment with 60.000 nodes which is close to the aver-
age number of cars onUS expressways, according toUSGS
data [26].

Table 4 Average lag under different
chain of recipients sizes (vol 1)

Chain size Avg. lag (sec)

No chain 42

0,1% 70

1% 74

5% 223

10% 295

6 Related work
In this section, we review the literature for the usage of
aggregation on context-aware systems and some large-
scale context propagation techniques.

6.1 Aggregation
The term “aggregation” is usually identified with the
inference/reasoning component of typical context-aware
systems. Although this component’s primary goal is to
provide application developers with data on a higher level
of abstraction [9], this usually materializes on some kind
of semantic aggregation. A classic example is the Activity
widget provided by the Context Toolkit [2] that senses the
current activity level at a location such as a room, using
a microphone. Instead of producing raw audio data cap-
tured by the microphone, it provides a high-level attribute
“Activity Level” with three possible values: none, some or a
lot. In a sense, we can say that a sample of raw audio data
was semantically aggregated into a single attribute.
Another type of aggregation can occur at the distri-

bution stage, when context was already captured and
processed, and is now in the process of being sent to
the client application. This aggregation consists of gath-
ering into a single large message the content of multiple
smaller messages before propagating it. Even though the
vast majority of the context-aware frameworks propagate

Table 5 Average lag with chain size 1% under different
volumes

Chain size Settings Avg. lag (sec)

1% Vol 1 74

1% Vol 20 41

1% Vol 50 53
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context in single disaggregatedmessages [9], recent exper-
iments with aggregation have achieved good results; for
example ReConMUC [29] combined a delayed approach
with aggregation resulting in a more efficient use of
resources on multi-user chat applications; similarly, Dyck
[30] referred aggregation as a commonly used technique
to improve scalability in network games that could be
equally effective on groupware applications. In both cases,
we are talking about syntactic aggregation: blindly con-
catenating single packets into a larger one and possibly
compressing it. Although this yields good compression
levels for text-based messages, we believe a higher-level
semantic aggregation would be much more effective with
other types of information (e.g., raw audio or image).
Radiator is able to perform both syntactic and semantic

aggregation based on the aggregation function imple-
mentation. Moreover, since the aggregation function is
executed on the server, the aggregation can be reused by
multiple client applications (e.g., an aggregation of geo-
localized messages by city region can be reused by a traffic
monitoring and a “popular spots” application).

6.2 Large-scale selective propagation
Even though Radiator is built upon the principle that every
client eventually receives everymessage from other clients
(i.e., as in a broadcast system), the propagation can occur
at different times and assume different forms (i.e., more
or less aggregated) depending on the current context of
the users involved. Thus, it makes sense to study current
solutions to the large-scale selective propagation problem.
The most popular approach is to rely on a publish-

subscribe paradigm. The publish-subscribe paradigm [10]
is a loosely coupled form of interaction suitable for large
scale settings. It consists of three components: publish-
ers, who generate and feed the content into the system;
subscribers, who receive content based on their inter-
ests in a topic or pattern; and an infrastructure that
distributes events matching subscriber interests with pub-
lishers content. Matching can be done either through
a subject-based approach or a content-based approach.
Subject-based approaches (e.g., Herald [31]) assume some
predefined channels/topics to which both publishers and
subscribers can connect. On content-based approaches
(e.g., Elvin [19] and Siena [32]), subscribers can issue
sophisticated queries or predicates to perform the match-
ing on a message-by-message basis. Note that the publish-
subscribe model can be implemented on a centralized
topology (e.g., Elvin [19]) or a distributed topology
(e.g., [33]).
Content-based matching is usually made at the syn-

tactic level (e.g., exact comparison of keywords) but this
requires that publishers and subscribers use the same
terminology defeating the decoupling nature of the pub-
lish/subscribe approach [34]. Some systems overcome this

limitation by performing the matching at the semantic
level (e.g., matching different keywords with the same
meaning such as school and university) [35,36]. Radia-
tor does not assume a specific kind of matching — it is
up to the developer to implement the aggregability func-
tion (responsible for matching and aggregating) using the
most appropriate techniques for his specific needs. Ful-
crum [37] also allows developers to provide their own
matching functions but does not provide any solution for
delayed propagation - the events are either discarded or
propagated immediately.
Even though content-based publish-subscribe systems

offer a reasonable level of flexibility and could be used
to implement context-aware applications, they lack a very
important feature — their predicates are fixed expressions
that do not depend on the current context of the pub-
lisher or subscriber. For example, a subscriber can’t issue
a predicate saying “I want to receive messages from users
(publishers) who are at most 1 km away fromme”. His only
option is to issue a predicate saying “I want to receive mes-
sages from users within a 1 km radius of the coordinates
(34.567, 3.566768)” assuming he’s currently located in that
position; but then, if he’s moving, he has to continuously
update the predicate. This causes severe scalability prob-
lems as the network is flooded with subscribe and unsub-
scribe messages since each predicate change implies an
unsubscribe from the previous predicate and a subscribe
to the new predicate.
Berkovsky [38] proposes a context-aware publish-

subscribe system that introduces the notion of automatic
subscription based on the user’s location, personal pref-
erences and interests. The system automatically translates
the user’s context (which may be changing frequently)
into a semantic query to perform the matching. In Radi-
ator, the aggregability function is responsible for this
translation with two important differences: (1) it may
decide to delay its propagation, and (2) it may aggregate
multiple events into a single one. These two character-
istics are key to the scalability improvements shown in
Section 5.
Another approach for selective propagation (or multi-

cast) of messages to multiple recipients is to use struc-
tured peer-to-peer (p2p) overlays that support many
members with high scalability [11]. In general, all pro-
posals fall into one of two categories: flooding or tree
building.
The flooding approach creates a separate overlay

network per multicast group. It leverages the rout-
ing information already maintained by a group overlay
to broadcast messages within that group (e.g., CAN-
Multicast [39]). So, for each set of recipients a separate
mini-overlay network is constructed, usually a costly oper-
ation involving JOIN messages and exchange/splitting of
neighborhood tables with the existing nodes. So, once
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again, this approach does not scale well for frequently
changing multicast trees.
The tree approach uses a single overlay and builds a

spanning tree for each group, on which the multicast mes-
sages for the group are propagated. Some examples of
this approach are Bayeux [40] and Scribe [12]. Multicast
messages related to a group are propagated through its
associated spanning tree. This form of application-level
multicast leverages the object location and routing prop-
erties of the overlay network to create groups and join
groups. For example, Bayeux uses Tapestry’s [41] unicast
routing to build a multicast tree using 4 message types:
JOIN, LEAVE, TREE and PRUNE. A node joins a mul-
ticast tree by first sending a JOIN message towards the
root node which responds a TREE message towards the
joining node. The TREE message sets up the forwarding
state at intermediate application-level nodes (in this case
acting as routers). The LEAVE/PRUNE messages reverse
this operation. Even though this approach scales well for
stable multicast trees, the amount of exchanged mes-
sages that would be necessary to maintain highly dynamic
trees (possibly changing every second) seriously reduces
its scalability.
Finally, it is also possible to implement gossip-based

multicast [42] by using membership protocols that man-
age the gossiping strategy, more specifically the nodes
to whom gossip messages are sent. Again, the problem
with this approach is that membership protocols are not
well-suited to dynamic situations where the set of recip-
ients change very frequently. Every time a member joins
or leaves, the membership tables must be updated in
multiple nodes, generating a lot of traffic.
In short, Radiator does not suffer from the rigidity

of these approaches, which either assume a fixed set of
matching rules or a set of recipients that does not change
very frequently, making them unsuitable for context-
aware applications.

6.3 Distributed stream processing systems
Traditional database management systems (DBMS)
assume a pull-based model: users submit queries to the
system and an answer is returned. In these systems, users
play the active role, and the system plays the passive role.
In contrast, stream processing systems (SPS) assume a
push-basedmodel: data is pushed into the system (as soon
as it become available) and it is evaluated in response
to detected events. Query answers are then pushed
to a waiting user or application [43]. This push-based
approach allows real-time processing of events, where
query processing is performed directly on incoming mes-
sages. Therefore, unlike in DBMS, messages are processed
before (or instead of) storing them [44]. Queries are built
from a standard set of well-defined operators that accept
input streams, transform them in some way and produce

one or more output streams. For example, Aurora, a
well-known SPS, supports a simple unary operator (Fil-
ter), a binary merge operator (Union), a time-bounded
windowed sort (WSort), and an aggregation operator
(Tumble) [45].
Distributed stream processing systems (DSPS) extend

SPS to distribute their operators across multiple
machines, providing several benefits: (1) stream process-
ing performance can be scaled to handle increasing input
loads; (2) it enables high availability because the machines
can monitor and take over for each other when failures
occur; and (3) they can take advantage of geographic and
administrative distribution that is inherent to certain SPS
such as wireless sensor networks [46]. Some examples
of DSPS include Medusa [46], Borealis [47] and Stream
Mill [48]. More recently there have been proposals for
implementing DSPS on Cloud infrastructure such as
Stormy [49], taking advantage of its elastic characteristics
(i.e., easily adding and removing nodes from the system).
Additionally, systems such as Naiad [50] combine DSPS
with batch processing techniques, allowing complex
incremental computations on streaming data.
DSPS can, and have already been used to, handle mes-

sage context propagation in distributed systems. However,
DSPS are generic systems (they can handle all kinds of
data), which is simultaneously their biggest strength and
weakness. In fact, since they do not know how to extract
semantic meaning from context messages, they can’t infer
the current context of their users. All the dynamism in
Radiator is a consequence of knowing and using the cur-
rent context of both the sender and recipient, which
not only allows more complex propagation scenarios (see
Table 1) but also improves scalability in applications
where context is frequently changing. To illustrate the last
point, take for example how Borealis handles dynamic
query modification. If we use Borealis in a context-aware
system, every time the user’s context changes we have
to potentially change the attributes of one or several
queries. Borealis supports these changes through a mech-
anism called control lines [44], which carries messages
with revised parameters and functions for the deployed
operators. Hence, as in other large-scale selective propa-
gation systems (described in Section 6.2), there is always
an overhead associated with transmitting the new param-
eters. In Radiator, the message itself already carries those
parameters, since the current context is implicit in the
message.

6.4 Summary
We now summarize the conclusions from this section
into Table 6, where we compare the main feature of each
system with Radiator.
It is clear from Table 6 that Radiator does not have

the limitations of traditional CSCW systems on how
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Table 6 Comparison between radiator and the surveyed systems

System Main feature How it compares to radiator

Context Toolkit [2] Inference leads to semantic aggregation Radiator performs semantic aggregation both at the
inference layer and at the distribution layer

ReConMUC [29] and Dyck [30] Syntactic aggregation at the distribution layer Radiator is able to perform both syntactic and semantic
aggregation at the distribution layer

Content-Based Pub-Sub Matching is made at syntactic level or at limited
semantic level (keywords with the same meaning)

In Radiator, the matching algorithm is more flexible because
it can be defined as a function provided by the developer.

Fulcrum [37] (Pub-Sub) Allows developers to provide matching functions Radiator also allows events propagation to be delayed.

Berkovsky [38] (Pub-Sub) Automatic subscription based on user context Radiator adds to the automatic subscription the possibility of
aggregating and delaying messages, improving scalability.

Multi-cast trees Message propagation using P2P overlays Radiator does not incur the cost of rebuilding P2P overlays
every time the context changes.

DSPs Efficient push-based propagation of messages Radiator is able to extract semantic meaning from messages
and infer the current context of its users, therefore adapting
its propagation characteristics more efficiently.

context data is aggregated since the aggregation is per-
formed by functions defined by the programmer. Adi-
tionally, the aggregability function (equivalent to the
matching function in Pub-Sub systems) is also defined by
the programmer, allowing Radiator to have much more
flexible rules and to take advantage of the current con-
text of its users. Unlike Pub-Sub systems, Radiator also
introduces the notion of delayed propagation, improving
the applications’ scalability. Finally, unlike generic dis-
tributed systems approaches (Pub-Sub, Multicast trees,
DSPS), Radiator is able to extract semantic meaning from
the exchanged messages thus does not need to perform
costly “reconfiguration” operations every time the context
changes.

7 Conclusions
In this paper, we present Radiator, a dynamic adaptable
middleware for efficient distribution of context messages.
Unlike current selective message distribution approaches
which rely on relatively stable sets of matching rules (the
rules that dictate who receives a certain message), our
approach relies on functions that, given the current con-
text of sender and receiver, decide under which conditions
should a message be distributed.
Moreover, we introduce the concept of propagation

based on a chain of recipients that, unlike pub-sub and
application-level multicast tree approaches, can quickly
react to highly dynamic ever-changing rules. In fact,
as our experiments have shown, the chains of recipi-
ents can be continuously rebuilt and still achieve signifi-
cant bandwidth reduction and no penalty on the average
propagation time. This is only possible because of our
delayed propagation mechanism that, when paired with
compressed aggregated messages, makes a much more
efficient use of the network bandwidth.

By combining both techniques (aggregation/compres-
sion and chain-based propagation) we were able to reduce
the server’s outbound bandwidth 20× (when compared to
the usual centralized and non-aggregated approach) with-
out penalizing the average propagation delay in a given
scenario (partition 1% and vol 20).
Regarding future work, we envisage to also use the

current clients’ context to build more efficient chains of
recipients. The system will accept a chainability function
(similar to the aggregability function) that can decide if
two clients should belong into the same chain (e.g., based
on their network-level proximity). We also plan to exper-
iment parallelizing the context aggregation and propa-
gation algorithm (Algorithm 1), since it can potentially
become a bottleneck for systems with many clients.

Endnotes
aAs of 2012, there are 175 million tweets (Twitter

messages) being sent per day and some of these messages
are distributed to over 19 million users (the number of
followers of Lady Gaga) - http://bit.ly/zOiX8k.

bThe people type can be useful to implement
k-Anonymity [51] style privacy mechanisms; the idea is
to aggregate as many messages as needed to ensure
anonymity. It is out of the scope of this paper to analyze
these mechanisms.

cThe source code for the prototype is available at
https://bitbucket.org/anonymousJoe/radiator.
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