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Abstract

The Internet of Things (IoT) is a promising concept toward pervasive computing as it may radically change the way
people interact with the physical world, by connecting sensors to the Internet and, at a higher level, to the Web,
thereby enacting a Web of Things (WoT). One of the challenges raised by the WoT is the in-network continuous
processing of data streams presented by Things, which must be investigated urgently because it affects the future
data models of the IoT, and is critical regarding the scalability and the sustainability required by the IoT. This
cross-cutting concern has been previously studied in the context of Wireless Sensor Networks (WSN) given the focus
on the acquisition and in-network processing of sensed data. However, proposed solutions feature various proprietary
and highly specialized technologies that are difficult to integrate and complex to use, which represents a hurdle to
their wide deployment. At the other end of the spectrum, cloud-based solutions introduce a too high energy cost for
the envisioned IoT scale, considering the energy cost of communication over computation. There is thus a need for a
distributed middleware solution for data stream management that leverages existing WSN work, while integrating it
with today’s Web technologies in order to support the required flexibility and the interoperability of the IoT. Toward
that goal, this paper introduces Dioptase, a lightweight Data Stream Management System for the WoT, which aims to
integrate the Things and their streams into today’s Web by presenting sensors and actuators as Web services. The
middleware specifically provides a way to describe complex fully-distributed stream-based mashups and to deploy
them dynamically, at any time, as task graphs, over available Things of the network, including resource-constrained
ones.
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1 Introduction
The Internet of Things (IoT) is a promising concept
toward pervasive computing and one of the major
paradigm shifts that the computing era is facing today [1].
In the IoT, everyday objects, the “Things”, get networked
so that they can cooperate autonomously, and allow
humans to interact with the physical world as simply
as they do with the virtual world [2,3]. However, the
IoT paradigm raises tremendous challenges, including the
ability to perform continuous processing of data streams
presented by Things. Data stream management is indeed
a cross-cutting concern for the IoT [4], which must be
studied urgently because it affects the future data mod-
els of the IoT. Specifically, applications aimed at the IoT
have to manage data acquired from the physical world and
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thus deal with the consumption of continuous data that
evolve over time, as opposed to consuming data of the tra-
ditional Internet that are primarily discrete. Hence, in the
IoT, data become volatile since they are useful only when
they are produced and processed, while requests become
persistent since they are permanently executed.
The continuous processing of sensed data has been

extensively studied in the context of Wireless Sensor
and Actuator Networks (WSAN) given the focus on the
acquisition of data from the physical world. This has
resulted in the introduction of dedicated Data Stream
Management Systems (DSMS), which are, in the case
of WSANs, tools to manage and process streams across
a sensor network [5]. Historically, DSMSs were part of
relational database research, as extension of Data Base
Management Systems (DBMS), establishing a theoreti-
cal background for data stream management. In contrast
to DBMS, WSAN research focuses on very low-power

© 2014 Billet and Issarny; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: benjamin.billet@inria.fr
http://creativecommons.org/licenses/by/4.0


Billet and Issarny Journal of Internet Services and Applications 2014, 5:13 Page 2 of 19
http://www.jisajournal.com/content/5/1/13

devices and emphasizes in-network processing in order to
save energy and increase the lifetime of the networks [4],
as one exchanged bit is sometimes equivalent to 1000
CPU cycles [6]. WSAN-based DSMSs thus adapt formal
algebras and data models of DBMSs [4,7], while featur-
ing custom operations for continuous stream processing
as well as probabilistic operators [8,9] that are designed
to reduce the device’s processing load (CPU, memory and
energy) and correct the errors that occur within mobile
and distributed sensing environments (transient errors).
Still, WSAN-based DSMSs are facing major challenges
which prevent them from being used directly in the IoT:

1. They are characterized by various levels of
in-network processing, with the use of fully or
partially centralized approaches based on a single
or many collection points. The systematic use of
proxies in WSANs to solve resource constraints is
indeed a bottleneck and a threat to the scaling up
aim, a mandatory criterion of the IoT.

2. They introduce many proprietary technologies
(from both network and development perspectives)
which can be used only in specific sensor networks
and are difficult to use for developers who are not
expert in the domain [2,4]. As a solution, given that
today’s Web connects smoothly a huge number of
highly heterogeneous devices [10], Web-based
DSMSs for the IoT promote interoperability,
standardization and openness by using Web-based
techniques and methods that enable stream
management [11], making the IoT part of the
greater Future Internet as a Web of Things (WoT).
However, existing approaches do not suit well the
energy- and resource-efficiency requirements of
resource-constrained Things, because of the
overhead associated with Web technologies that
makes them working only on the most powerful
Things [3], or “smart Things” (typically smartphones
or plug computers).

3. Due to the limited resources of the devices,
WSAN-based DSMSs are dedicated to specific
tasks composed from a fixed set of operations
(e.g., relational operators). As a result, it is either not
possible, or at least very difficult, for developers to
apply new operators once the network has been
deployed. The developer can only compose a fixed
set of existing operators provided by the DSMS. This
is not appropriate for dynamic and large networks
like the IoT, which is expected to run various
contextual tasks that are not predefined.

Most of the above problems are related to the resource
constraints of the existing sensor technologies. However,
moderately powerful Things, or “average Things”, are

emerging, pioneered by sensor technologies like Imote2
[12] and Sun SPOT [13]. These devices are likely to expand
drastically in the near future while their cost will decrease,
as more and more IoT appliances are expected to be
released by the industrial world [14]. Typically, this class of
devices can accommodate Web technologies provided the
technologies are adequately revisited, knowing that only a
subset of these technologies are useful for implementing
Web services in order to achieve theWeb of Things (WoT)
vision. Hence, we argue thatWSAN- andWeb-based tech-
niques need to be integrated within a fully-distributed
streaming middleware that is able to run directly onto
every type of average and smart Things. As a benefit, the
IoT will be more interoperable, each Thing will be more
autonomous and the need of proxies will be mitigated.
Toward this end, this paper introduces a customizable

distributed DSMS middleware, called Dioptase, whose
contributions are as follows:

• Dioptase adds flexibility to state of the art DSMS
solutions for resource-constrained devices, by
introducing a high-level application model that can
map any IoT/WoT application onto the entities of
the network (sensors, actuators, users, services,
databases, etc.). In this model, each Thing is
abstracted as a generic device that can be dynamically
assigned communication, storage and computation
tasks according to its available resources, enabling the
applications to be directly executed in the network
without any proxy (in-network processing).

• Dioptase features a customizable middleware
architecture that is versatile enough to be deployed on
a large class of Things that vary significantly in terms
of resource availability (e.g., sensors, smartphones or
plug computers), provided these Things are able to
communicate directly through the Internet
infrastructure (typically the average Things that use
6LoWPAN) [15]. Unlike WSAN-based DSMSs that
target specific sensor networks, Dioptase enable
developers to use the samemiddleware on moderately
powerful sensors (e.g. Sun SPOT), smartphones,
personal computers, servers and the cloud.

• From a technical perspective, the flexibility of
Dioptase is based on a lightweight domain-specific
language (DSL) designed to express continuous
processing tasks. The DSL syntax is specifically
optimized to be interpreted on the huge number of
average Things that are more powerful than small
sensors but very limited compared to smart Things.
This mechanism enables the dynamic deployment of
tasks in isolated sandboxes which are naturally safer
than arbitrary binary-code deployment [16,17]. As a
benefit, developers can build applications composed
of tasks deployed in the network at any time, using
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standard Web services. To achieve this, Dioptase
features relevant optimizations of Web technologies
(small Web server, subset of protocols, compression,
etc.) and leverages advanced stream management
techniques (in-network processing, approximation
and dynamic reconfiguration).

As detailed in the following, Dioptase makes it pos-
sible: (i) to integrate the Things with today’s Web by
exposing sensors and actuators as Web services, (ii) to
manage physical data as streams, and (iii) to use any
Thing as a generic pool of resources that can process
streams by running tasks that are provided by developers
over time. The rest of this paper is organized as follows:
Section 2 first discusses the role of proxies in WSANs and
reviews related work in the area of streaming solutions
for WSANs and IoT/WoT, highlighting required capabili-
ties for data streaming middleware in the future IoT/WoT
context. Section 3 then presents the Dioptase application
model for the WoT, which allows the design of mashupsa
that compose the streams flowing in the WoT. Follow-
ing, Section 4 describes the architectural design of the
Dioptase middleware together with its implementation,
while Section 5 provides an evaluation of Dioptase for
both average and smart Things. Finally, Section 6 draws
some conclusions and sketches our perspectives for future
work.

2 Background
Our work is motivated by the two following main goals:

• We want to make Things able to execute complex
tasks that are not predefined at the Things’
deployment time so as to enable developers to use
the WoT as a pool of generic resources, without
unneeded intermediaries (proxies, gateways, base
stations, etc.). The role of such intermediaries is
specifically discussed in Section 2.1.

• We want to integrate the work done on data
streaming for wireless sensor networks with the
Web in order to actually achieve the Web of Things
(WoT) vision [18], which has led us to base our
research on the work on data streaming as part of the
Web and of WSANs. Existing DSMSs for WSANs are
presented in Section 2.2 with their related advantages
and drawbacks.

Our solution specifically lies in enabling stream-
oriented mashups that may be dynamically deployed and
reconfigured, which suits well the real-world use cases
that are commonly presented in the IoT/WoT litera-
ture and highlights the increased autonomy of Things
(e.g., see [2]).

2.1 Intermediaries in WSANs
Usually, a WSAN is composed of (i) several motes
equipped with one or more sensors and a wireless inter-
face, and (ii) more powerful devices, typically fixed and
continuously-powered, that embed actuators [4]. In addi-
tion, a WSAN leverages proxies, gateways or base stations
for carrying out collection and computation tasks, as
well as communication with other networks, such as the
Internet. Nowadays, the above intermediaries are not any-
more required for communication between motes and the
Internet, thanks to the standardized stack composed of
IEEE802.15.4 and 6LoWPAN, which is intended to replace
proprietary communication proxies (application level) by
standardized IP routers (network level) [15]. As a bene-
fit, motes have an IPv6 address, or an equivalent made
of the network identifier and a small address, and can
communicate directly with the Internet.
Regarding data collection, proxies are still needed in

order to enhance the sensor network capabilities, e.g.,
for implementing heavy computation (offloading), cen-
tralized management and task deployment, caching and
security/privacy (access control, key management, etc.).
However, offloading data collection and processing to
proxies is energy-consuming due to the wireless com-
munication, which holds for any wireless device, includ-
ing smartphones [6,19]. Similarly, cloud-based stream
processing is quite popular today, and there are some
attempts to use it with sensor networks and IoT: cloud of
sensors, cloud-based IoT, cloud-assisted remote sensing,
etc [20,21]. However, the same problems arise regarding
communication costs, availability (specifically for mobile
Things with sparse connectivity), latency and privacy.
As a solution to the above problems, it has been pro-

posed to let the sensor network performs as much in-
network processing as possible before sending anything to
a proxy or the cloud, in order to: (i) reduce the amount of
transferred data and (ii) make use of the motes at their full
potential. For example, structural health monitoring is a
case where a huge amount of measurements is produced
quickly because of the vibration sensors. These types of
sensors are very sensitive and detect a lot of 3-axis acceler-
ations, saturating the network and exhausting the sensors’
batteries. In such a case, pre-aggregation, pre-filtering and
compression can be performed within the motes instead
of the base station [22].
Consequently, in our opinion, centralized intermedi-

aries (proxies, surrogates, cloudlets and the cloud) should
be leveraged primarily for heavy computation, while in-
network processing should be favored for common and
simple tasks (filtering, merging, etc.) as well as for com-
plex tasks when powerful/specialized enough Things are
available. To this end, Dioptase is intended to avoid
reliance on those intermediaries whenever possible, by
running on devices that support 6LoWPAN or IPv6 and
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communicate directly with the Internet. Nevertheless, in
cases where intermediaries are needed, Dioptase can be
deployed on them and run as a middleware layer for
deploying tasks dynamically and managing data streams.

2.2 DSMSs for WSANs
The work most related to ours may then be classified
into three major families of DSMSs for WSANs, which
are respectively based on: (i) the relational model, (ii)
macro-programming and (iii) Web services.
We also identify related work on supporting the con-

struction of mashups in the WoT although focused on
the exchange of discrete data like Actinium [23], COM-
POSE [24], Eywa [25] and the Thin Server architec-
ture [26]. However, these solutions consider Things as
passive data providers and shift the computation logic into
powerful servers or into the cloud. As we said before, in
our opinion, centralization is not suitable for the WoT
from a scaling up perspective, even in the cloud, as it
weakens the entire network and increases the overall
energy consumption.

Relational DSMSs extend the relational model by adding
concepts that are necessary to handle data streams and
persistent queries, together with the stream-oriented ver-
sion of the relational operators (e.g., selection or union).
The sensor network is then managed as a large database
that can be queried using a SQL-like language, with some
specific operations. The database may further be dis-
tributed (each node runs a part of the query), centralized
(a powerful node collects all the data and applies queries)
or partially centralized (with many powerful nodes) [27].
From a practical perspective, queries are translated into
query plans that are distributed in the network. State of
the art DSMSs primarily differ with respect to: the expres-
siveness of the query language, the associated algebra,
and assumptions made about the underlying network-
ing architecture. A well-known DSMS is TinyDB [28],
which exposes the sensed data as a relation (i.e., table)
on which it is possible to apply queries over the sensed
values as well as the metadata associated with the sen-
sors. During the handling of queries, all the nodes execute
the queries that are distributed in the network and the
results of each query get aggregated as they traverse the
routing tree maintained by the system. In the same vein,
Cougar [29] acts as a database of sensors where the query
plans are provided to proxies that take care of activating
the relevant sensors and applying the operations on the
collected data. MaD-WiSe [30] offers a runtime system
for queries that is fully distributed, and each sensor may
directly execute part of a query plan and then deal with
sensor-specific tasks. Borealis [31], previously Aurora,
uses data stream diagrams, which express the combina-
tion of relational operators over the streams received by

the system. From a theoretical perspective, various sys-
tems propose custom extensions to the relational model
as well as custom implementations of the relational oper-
ators. For instance, STREAM [32] distinguishes streams
from relations, where the latter can be handled by classical
relational operators. New operators then deal with trans-
lation from stream to relations (typically using windows),
and vice versa (using streamers). EQL [33] moves a step
forward, by enabling the developers to express composite
queries in a very concise way, in order to detect and track
complex events which involves various types of sensors
(e.g., gas leak). Other proposals [7-9,34] deal with issues as
diverse as blocking and non-blocking operators, windows,
stream approximation, and various optimizations.
State-of-the-art WSAN-based DSMSs suffer from pro-

prietary protocols and technologies specifically designed
to handle the characteristics of resource-constrained
devices. As a consequence, proxies are often used to col-
lect, process and present sensed data on the Internet,
creating (i) an unwanted bottleneck, (ii) a single point of
failure and (iii) an increased energy consumption if no
proper in-network processing technique is used. To alle-
viate such effects, a DSMS for the WoT should include
a middleware layer designed to run directly on Things
without any intermediary (except for conversions at phys-
ical and link levels), given that modern device classes are
emerging and allows more flexible data stream manage-
ment based on the use of Web technologies. In addition,
such middleware must reuse and extends the rich the-
oretical background of relational DSMSs, especially the
data models proposed to describe streams and the non-
blocking operators initially designed for WSANs.

Macroprogramming-based DSMSs enable users to
express tasks over the WSAN using a DSL instead of a
query language. The resulting tasks, or macroprograms,
are compiled into microprograms to be run on the net-
worked nodes, hence easing the developer’s work who no
longer has to bother with the decomposition and further
distribution of the macroprograms. Macroprogramming-
based DSMSs are overall similar to classical macropro-
gramming approaches aimed at WSAN. However, they
feature additional primitives and mechanisms oriented
toward stream management. For instance, Regiment [35]
introduces a functional language that enables program-
ming the WSAN and manipulating the streams that flow
in the network. As for Semantic Streams [36], it defines a
declarative language based on Prolog, which features data
structures to handle streams, together with mechanisms
to reason about the semantics of sensors. For instance, the
system is able to compose or adapt data according to the
available sensors and the given request.
As outlined above, existing macroprogramming-based

DSMSs follow a static approach where the macropro-
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grams are compiled into microprograms that are deployed
once for all. Specific techniques can be used to dynami-
cally update the network: (i) dynamic reconfiguration and
(ii) dynamic deployment. However, the former techniques
usually assume that the tasks are already implemented
on the devices [37], while the latter techniques usually
support binary deployment (e.g., Deluge [16]). Instead, a
DSMS for the WoT must provide a high-level of dynam-
icity by making possible to change both the global and
the local behaviors of the network at any time. To this
end, the developers should be provided a way to rep-
resent WoT applications as abstract programs that are
distributed dynamically in the actual network. In addi-
tion, sandboxes should be used to increase the overall
reliability, as an attacker can benefit from arbitrary binary
deployment to deploy malicious code on any open device.

Service-oriented DSMSs aim to integrate with classical
service-oriented architectures, thereby taking advan-
tages of the existing infrastructure (interaction and dis-
covery protocols, registries, service composition based
on orchestration or choreography, etc.). Similarly to
database-oriented relational DSMSs, the simplest service-
oriented DSMSs are centralized with a unique point
of data collection [11,38,39], or semi-distributed based
on a set of data collection points [40,41]. However,
these DSMSs focus mainly on the problem of present-
ing streams as services, without reusing the existing and
valuable theoretical work fromWSANs. In practice, these
approaches are based on well-known Web service tech-
nologies. For RESTful services, some studies use specific
mechanisms of the HTTP protocol, like Web hooks, long
polling and HTTP streaming [11]. As for SOAP services,
some work extends the SOAP architecture by adding new
message exchange patterns (MEP) designed for stream
communication (e.g., the capability for a service to receive
multiple requests and produce multiple responses in par-
allel when invoked) [42]. Usually, sensors are presented
as Web resources, identified by URIs [11,38,41]. The
paradigms used to broadcast streams vary from one solu-
tion to another. Stream Feeds [38] uses pull requests to
gather historical data and push requests to receive new
data issued by the sensors. RMS [11] goes a step further by
building upon a topic-based pub/sub infrastructure, while
WebPlug [41] uses an infrastructure based on pollers that
periodically check the state of resources.
Integrating data stream management into service-

oriented architectures is a logical evolution of sensor
networks, as Web technologies provide a greater flexibil-
ity, ease of use and interoperability compared to existing
WSNs technologies. The proposed solutions, in particu-
lar, enable Things to communicate through the Internet
and expose their resources as standardized Web services.
As simple as the present Web, these services can be used

to build mashups that interact with the physical world.
However, existing solutions are limited by their scope.
Indeed, much research is focusing on how to present
streams as Web services, and neglects many complex
aspects like continuous processing of streams (merging,
filtering, adaptation, approximation, etc.). Reusing theo-
retical and practical foundations that were established by
the two other families of DSMSs is a crucial step to enable
the IoT to take advantage of WSAN capabilities together
with the flexibility, the reliability and the interoperability
of theWeb, which guided the design of theDioptase appli-
cationmodel and supportingmiddleware toward theWoT
vision.

3 The dioptase applicationmodel for theWoT
TheDioptase applicationmodel for theWoT allows devel-
opers to easily build mashups able to manage, process and
compose streams produced within networks of Things.
This model is oriented toward the high-level description
and distribution of stream-based mashups as components
over the network, enabling the dynamic deployment of
these components over resource-constrained Things.

3.1 Dioptase component model
As illustrated by the WSAN work, we identify four high-
level roles that each Thing may play, usually in com-
bination, depending on its resources: (i) A production
role where the Thing presents sensor data as streams,
(ii) a processing role where the Thing continuously pro-
cesses streams, (iii) a consumption role where the Thing
acquires streams and drives actuators, and (iv) a storage
role where the Thing saves data extracted from streams
(in its memory, or persistently).
A Dioptase mashup is thus composed of distributed

components, called atomic components, derived from the
above roles: producer, processor, consumer and storage.
These components interact (are connected) by continu-
ously exchanging data as streams. The mashup can then
be easily described as an acyclic directed graph (VL,EL)

where the nodes vli ∈ VL are producers (sources), pro-
cessors, consumers (sinks) and storages, and the edges of
the graph, elj ∈ EL, are streams that link components
together.
The mashup graph is equivalent to the query plan that

can be found in DSMSs that present sensor networks
as databases. However, query plans are strongly cou-
pled to the query language capabilities that are limited
w.r.t. the set of operations that can be executed. In con-
trast, the high-level nature of the Dioptase components
makes it possible to easily represent any element of a
WoT application as components that produce and con-
sume streams. For example, end-users, GUI and actuators
can be abstracted as consumers while sensors, databases,
crowd-sensors and any other type of data source (e.g., a
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Web service that gives information about the weather) can
be abstracted as producers. In addition, processors may
implement any type of continuous computation, or task.
This flexibility allows the representation of mashups that
can describe complex tasks for a wide variety of entities
(sensors, actuators, servers, users, services, etc.).
As an illustration, Figure 1(a) presents an example of a

simplemashup that analyzes outdoor light in order to con-
trol an indoor lighting system. In this mashup, a producer
1© reads the light value and another producer 2© moni-
tors the lighting system state. These data are acquired by a
processor 3© that produces an event stream for the light-
ing system 4©. At the same time, the light measurements
are saved by a storage 5© and are consumed by the light-
ing control application 6© that presents historical values
to the administrator.
We call this graph a logical mashup graph because

it describes the tasks that the network has to perform.
This graph is provided by the developer either directly
or expressed as a query that is translated into a mashup
graph. Using information provided by a discovery system
(e.g., registry or distributed protocol [43]) that is aware
of Things’ locations and available resources, the logical
mashup graph is automatically converted into a physi-
cal mashup graph (VP,EP), were each vpi ∈ VP is a
pair (vl, n) that maps a component vl onto a host device
n, as depicted in Figure 1(b). In particular, depending
on its capabilities, a Thing can be assigned either a sin-
gle component or an entire subgraph. The problem of
computing the physical mashup graph from the logical
mashup graph is a variation of the task mapping problem,
where a set of communicating tasks with several prop-
erties (constraints, requirements, resource consumption,

etc.) have to be mapped to a set of connected nodes given
their characteristics (location, hardware capabilities, etc.).
Task mapping within Dioptase is beyond the scope of this
paper, and the interested reader is referred to [44] for rel-
evant baseline together with [45] for a specific Dioptase
solution.
In our componentmodel, each component defines some

input ports for the consumption of streams, depending
on the component type, and at most one output port
where new stream items are produced. Provided the data
types specified for the input and output streams match,
any output port can be connected to any input port
through a one-to-one connection. Theoretically, stream
communication between components can be achieved
in three ways: (i) pull, where a consumer requests a
producer to send the data stream, (ii) push, where a
producer requests a consumer to process its data, and
(iii) hybrid, which allows the two previous modes. The
choice of either mode is not important from a functional
perspective and defines only which component should
initiate the transmission. In our work, we consider that
a consumer must be autonomous and does not have
to process an unwanted stream. As a consequence, the
data exchange between two components is pull-based, as
a component always decides how to connect its input
ports.

3.2 Data stream
According to the literature [5,32,46], a stream is a
sequence of discrete items that are linked by some proper-
ties (e.g., same source, same type, time coupling, etc.). The
size of this sequence is theoretically infinite and it is not
possible to know its end a priori. In Dioptase, each stream

Figure 1 Logical and physical mashup graphs for lighting control. (a) Logical mashup graph. (b) Physical mashup graph.
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item is a tuple associated with a timestamp that can be
explicit, if generated with the tuple, or implicit, if defined
when the tuple is received [5,32,46]. Then, as for relations
in relational databases, a Dioptase stream adheres to a
schema that defines the attributes of each tuple. In addi-
tion, the Dioptase schema is intended to take into account
semantic aspects of the sensed data and the characteristics
of the data source. In practice, the schema is composed of:

• The Semantic concept of the attribute (e.g.,
temperature or pressure), which helps Things to
reason about the produced data in order to, e.g.,
compose them automatically (e.g., kinetic energy =
1
2 × mass × speed2) or select the most relevant
algorithms for approximation, prediction or
interpolation.

• The Concrete type of the attribute, i.e., the data type.
The most simple types are integer, real or boolean,
but more complex types can be considered, like
image or audio/video sequence.

• Metadata that are specific to the semantic concept,
and make the system more adaptable. For example,
the unit of measurement can be used to adapt
automatically to requests that involve different units
for the same semantic concept (e.g., kelvin, celsius
and farenheit for temperature).

The properties defined in the schema can be defined
using a standard vocabulary in order to reason automat-
ically about these data, according to external knowledge
provided by the developers. For example, the unit and
semantic type can refer to ontologies of physical concepts
and related models (prediction, interpolation or error
models) [47].
The connection between a component’s output port

to the input port of another component is established
through a connector, i.e., a software component that man-
ages the transport, adaptation and presentation of the data
as streams, between two components. We introduce two
types of connectors for stream transportation in Diop-
tase: local connector and remote connector. The former
manages connections between two components that are
running on the same Thing and optimizes communica-
tion accordingly, while the latter acquires data from a
component that is running on another Thing.
Various specializations of the remote connector may be

envisioned, notably for interfacing the Dioptase middle-
ware with other data stream management systems, sensor
networks (e.g., a CoAP connector) [15] or existing ser-
vices (e.g., a meteorological database). This remains an
area for further extension of the Dioptase middleware,
while our current middleware implementation supports
HTTP-based streaming (polling, hooks and websockets
[48,49]).

3.3 Stream processing
Stream-based communication requires dedicated support
for data processing. Indeed, as streams are unbounded, it
is not feasible to store the entire stream before applying
any operation. Although some operations are naturally
non-blocking, i.e., able to produce tuples without detect-
ing the end of input streams (e.g., set intersection),
some other operations are unable to produce any item
before the acquisition of the entire streams (e.g., set
difference) [50]. The current Dioptase middleware han-
dles blocking operations using windows, although this
is not detailed in the paper; the interested reader may
refer to [46] for classical windowing techniques. Concern-
ing non-blocking operations, traditional WSAN-based
DSMSs fix the set of operations that can be applied (typ-
ically relational operators). However, this is too restric-
tive, especially in light of the increasing capabilities of
Things. Instead, the developers should be provided means
to dynamically specify complex tasks for execution by
Things. Hence,Dioptase introduces the processor compo-
nents, which perform non-blocking processing.
Thanks to processor components, Things are able to

perform any computation over data streams that is not
necessarily defined at the time the Things are deployed.
Specifically, a processor executes a given task, i.e., a
sequence of operations, over one or more streams, where
the task may be provided at any time. A task can be
either compiled (directly implemented on the Thing by
the developer, using the platform’s native language) or
interpreted, i.e., described in a lightweight DSL, which is
directly interpreted by the middleware. While the Diop-
tase DSL, called DiSPL (Dioptase Stream Processing Lan-
guage), supports generic-purpose structures (control flow
statements), specific primitives are provided to manipu-
late data streams (e.g., read/write into streams or build
new stream items) and atomic components (e.g., create
new storages or migrate a processor). As a benefit, DiSPL
enables the developer to describe a wide range of complex
tasks and dynamically send them to any known Thing,
at any time. Technical details about DiSPL to describe
interpreted tasks are provided in the next Section.
Compiled tasks are less flexible than interpreted ones,

but they are more efficient (native code) and are useful to
implement the library of common processing tasks (e.g.,
compute an average value, count the number of items)
which we refer to as operators. These operators are often
used in practice by developers and it is better to express
them as compiled tasks in order to improve the effi-
ciency ofWoT applications. In addition,Dioptase includes
various packages of operators dedicated to approxima-
tion (e.g., linear prediction [51], sampling), correction and
compression of sensed data.
The lifecycle of a processor is divided in three steps:

(i) deployment of the processor and initialization of the
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required resources (global variables, parameters, libraries,
etc.), (ii) processing of each new stream item, and (iii) ter-
mination of the component that frees all the resources
previously initialized. As shown in Figure 2, these three
steps are described by corresponding sections in the task:
initialization logic, work logic and finalization logic. Each
step is allowed to read and write data into the internal
state maintained by the processor, which is a structure
that can be serialized and moved into another Thing if
necessary.
In order to reason about the types of data a task can pro-

duce or consume, each task is characterized by a contract.
This contract defines the schemas of the input and output
streams that are compatible with the task and its oper-
ations. At deployment time, these information are used
by the processor to instantiate its ports and the related
schemas. The following JSON snippet presents an exam-
ple of contract for a simple operator that counts the tuples
(any type) of a single input stream: for each stream item
read from the input stream, the operator increments its
internal counter and writes the value of this counter in
its output stream. Accordingly, the contract expresses that
the output stream is composed of single-valued items
(attribute name is count) that do not have semantic type
and unit.

"operator": "dioptase.count",

"inputs": {

"main": {

"type": "any",

"scope": "tuple"

}

},

"output": {

"count": {

"semantic": "none",

"unit": "none",

"concrete": "integer"

}

}

However, in some cases, the output schema must be
built dynamically at deployment-time by the task, based
on the actual schemas of the input streams. For exam-
ple, the output schema could be identical to one of the
input schema, or the output schema could be composed
from some attributes of each input schemas. The follow-
ing JSON snippet presents an example of contract for an
inner join operator on two input streams. This opera-
tor admits a string parameter (called attribute) used for
performing the join on one attribute of the input schemas.

"operator": "dioptase.join",

"inputs": {

"input1": {

"type": "any",

"scope": "tuple"

},

"input2": {

"type": "any",

"scope": "tuple"

}

},

"output": "dynamic",

"params": {

"attribute": {

"type": "string"

}

}

4 Dioptase architecture and design
Figure 3 depicts, from a high-level perspective, the Diop-
tase middleware architecture supporting the dynamic
deployment of distributed mashups within theWoT. First,
to manage the specifics of different classes of Things
and platforms, Thing-specific low-level functionalities are
separated into Drivers. These drivers are loaded when the
middleware starts and are used by other modules. Drivers
have to be implemented for each class of Things and
provide, in particular, the communication routines, the
access to the Thing’s sensors and actuators and the storage
management functions.

Figure 2 Processor architecture (left) and lifecycle (right).
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Figure 3Middleware architecture.

At run-time, the Component Manager runs the com-
ponents that are deployed on the Thing. These compo-
nents produce and consume streams, locally and remotely,
through the connectors that manage data transport. The
processors run the tasks that are either provided by devel-
opers or obtained from a standard operator library (e.g.,
selection, join, sort). Non-predefined tasks are deployed
at run-time and are described using the DiSPLDSL that is
run by the embedded Interpreter.
Network communication is carried out through Web

services that expose the resources of the Thing (access
to streams and metadata, manage components, set-
tings, etc.). For this purpose, the middleware embeds a
lightweight all-in-one Web client/server optimized to run
with few resources. The services are written in native
code and are directly compiled with themiddleware. Their
implementations are well-decoupled from the Web server
and, instead of the costly TCP transport protocol, Web
services protocols for resource-constrained devices can be
used, such as CoAP or HTTPU (HTTP over UDP) [52].
Precisely, only a subset of HTTP is useful to imple-

ment a Web service [52] and, consequently, our small
HTTP implementation supports only a limited set of
requests (GET/POST only), headers, MIME types, encod-
ings (UTF-8 only), languages and mechanisms. Similarly,
lightweight formats are used whenever possible (binary
serialization or JSON) for describing services parameters
and responses’ content. Basically, only simple requests/re-
sponses are supported, with the smallest set of mandatory
HTTP headers. For the Thing with higher capabilities,
additional HTTP standard functions, like Compression
(e.g., gzip, deflate) or Cryptography (e.g., SSL, TLS), are

provided as Plugins that can be enabled or disabled
according to the Thing’s resources. Compression is partic-
ularly interesting, as it can reduce drastically the amount
of exchanged data and the energy consumption [22].
All the components presented in Figure 3 are intended

to be deployed directly on the Thing. However, in order to
run on a large number of Things and to handle the hard-
ware heterogeneity of Things (heterogeneous resources,
specific capabilities, etc.), Dioptase is highly modular and
can be adapted to the resources of the Things. Con-
cretely, the middleware deployment consists of two steps:
customization and deployment. Customization of themid-
dleware consists into removing irrelevant modules (e.g.,
compression/cryptography plugins or the interpreter
component) and adding or implementing new modules
based on the specific capabilities of the Thing (e.g., hard-
ware video decoding). For example, during this phase, the
Thing’s owner may implement new operators and register
them in the standard library, for future usage. Similarly,
the DiSPL DSL can be extended by defining additional
packages of instructions (e.g., a wrapper for a library
deployed onto the Thing). Ultimately, the customized
middleware is deployed onto the Thing and connected to
the network.
In fact, customizing the middleware is rather straight-

forward, as the modules are clearly identified. Neverthe-
less, even if it has to be done only once, this operation
can be time-consuming. Fortunately, a great deal of it
can be simplified, by providing pre-packaged and precon-
figured versions of Dioptase built for specific classes of
Things (depending on their hardware resources). Regard-
ing the development of Thing-specific components (e.g.,
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supporting a video decoding chip), widely used libraries
can be shared between developers or, in the future, pro-
vided by the vendors.

4.1 Middleware services
Dioptase is a service-oriented middleware that exposes
the Thing’s resources (sensors, actuators, components and
streams) as services, and more specifically RESTful ser-
vices because of performance constraints [52]. The main
middleware services are the streaming services that enable
access to streams, and themanagement services which are
used tomanage and control the Thing and themiddleware
modules.

Streaming Services are implemented using two different
techniques supported by the web server’s streaming plu-
gin: (i) HTTP streaming, where the connection is never
closed and each item is sent as chunks in the HTTP
response, and (ii) Web hooks, which establish a callback
service in the client in order to enable the server to send
new items as HTTP requests. We use both techniques
because of their respective advantages and drawbacks.
On the one hand, HTTP streaming implies maintaining
a TCP connection and Web hooks lead to a large over-
head (request headers) [11]. As a consequence, if the
stream’s data rate (i.e., stream items per second) is high,
HTTP streaming is more efficient as it introduces a con-
stant overhead (the TCP connection) independently of the
number of stream items. On the other hand, if the data
rate is low, Web hooks are more suitable because they
avoid the use of an infinite connection.
Access to a stream is done in two steps: access request

and streaming. The first step consists in calling the ser-
vice stream as a regular RESTful service with the desired
streaming method (HTTP streaming or Web hooks) as
a parameter. The second step is different according to
the method: in the case of HTTP streaming, the data are
embedded in the response and, in the case of Web hooks,
the callback service is invoked for each new stream item.
To illustrate this two step process, Appendices A and B
present an example of a simple stream of light values,
accessed over HTTP streaming and Web hooks.
This behavior is abstracted by using the remote con-

nector, which manages these low-level aspects by open-
ing or closing callback services transparently. However,
if it is not possible to directly access a Thing through
the network (e.g., because of NAT), using a proxy is
mandatory and Web hooks communication is disabled.
This problem, which is related to some networks (e.g.,
LAN, 3G), will be alleviated in the future because of
the use of IPv6 that solves the addressing problem. As
a benefit, NAT mechanisms will disappear [53], enabling
each Thing to be accessed directly through a public
address.

Management services enable developers and other
Things to control the components that are running on
the middleware and to deploy new ones, as shown
in Table 1 that summarizes the usual services and
their parameters. For example, a new processor can
be deployed by providing a task and a set of streams
to use as inputs. These streams are identified by a
specific URI that describes local and remote streams
(e.g., dioptase://localhost/stream-name, dioptase://server:
port/stream-name). Then, the middleware deploys the
processor, instantiates each connector according to the
given stream URI and starts the execution in accordance
with the lifecycle presented earlier. In addition, at deploy-
ment time, a processor or a producer can be asked to save
a history of their output streams that can be queried later.
Once deployed, a processor can be stopped and removed,
as well as any other component. As an example of task
deployment, Appendix C presents a deployment request
over HTTP for an interpreted processor that consumes
two streams and executes a given DiSPL program.
Deploying a storage component is a similar operation,

provided the storage type is supported by the Thing.
At present, the Dioptase prototype supports three types
of storage: (i) memory storage (fixed or extensible), (ii)
file storage, and (iii) database storage (for embedded
databases). Unlike producer and processor components,
storages have a memory of past states that can be queried
a posteriori. A storage component can produce a stream
only when it receives a query that expresses some con-
straints that can be temporal (items between two times-
tamps, items older than x, etc.), volumetric (the x last
items) or a combination of them. The complying results
are presented as a new stream that ends when the last
item is sent. Each storage type supports these constraints,
but some storages can accept specific parameters (e.g., the
database storage can handle a SQL query directly).
Similarly, actuators are presented as Web services and

are based on the information provided by theThing Driver
about the physical actions that the Thing is able to per-
form. Each action can receive specific typed parameters
that compose an actuation contract which defines the
name and the type of each parameter, and the type of the
returned result if any.
Other services can be used to access the Thing’s meta-

data about the embedded sensors and actuators, the
Thing’s capabilities (e.g., hardware, location, load, energy
level, operator library), and the components that are cur-
rently deployed (e.g., input/output schemas and load).

4.2 Dioptase stream processing language (DiSPL)
As already mentioned, non-blocking operations are exe-
cuted by processors, which are components dedicated
to the execution of (i) compiled tasks that are linked to
the middleware during the customization phase, and (ii)
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Table 1 CommonDioptase services and their parameters

Service path Description and parameters

/streams Access to a stream.
id=<stream id>, mode=stream|hook,
*hook=<hook name> (if mode=hook)

/thing/properties Get the properties of the Thing: sensors,
actuators, supported storage types and
metadata.
*sensors=true|false, *actuators=true|false,
*storages=true|false, *metadata=true|false

/thing/sensors Get identifiers, units, semantic/concrete types
and metadata of one or all the sensors.
*id=<sensor id>

/thing/actuators Get identifiers and parameters (names, types,
metadata) of one or all the actuators.
*id=<actuator id>

/thing/operators Get identifiers and contracts (name/type of
inputs, number of inputs) of one or all the
compiled operators.
*id=<operator id>

/thing/actuate Executes one of the actuation service.
id=<actuator id>, service=<service name>,
actuator-specific parameters (key/value)

/components/running Get the name and the input/output stream URIs
of deployed components (producer, processor,
storage).

/components/remove Stop and destroy a component.
id=<component id>

/processors Get identifiers and input/output streams
schemas of one or all the processors, possibly in
extended form (logic, state, schemas).
id*=<processor id>, *extended=true|false

/processors/state Get the content of the internal state of a
processor.
id=<processor id>

/processors/new Deploy a new processor and starts it.
id=<processor id>, code=<source code> or
operator=<operator id>, inputs=<URIs>,
*state=<start state>, *history=true|false,
*h-size=<history size>, operator-specific
parameters (key/value)

/processors/history Get a processor history as a stream.
id=<processor id>, *t-start=<timestamp>,
*t-end=<timestamp>|now, *nb=<nb of
items>

/processors/migrate Migrate a processor to another device.
id=<processor id>, to=<URI>,
*forget-state=true|false

/producers Get identifiers, sensor names and output
streams schemas of one or all the producers.
*id=<processor id>

/producers/new Deploy a new producer.
id=<producer id>, sensor=<sensor id>,
*sampling=<sampling rate>

/storages Get identifiers, types and input/output schemas
of one or all the storages.
*id=<storage id>

/storages/new Deploy a new storage.
id=<storage id>, type=<storage type>,
storage-specific parameters (key/value)

Legend: *xxx = optional parameter <yyy> = any value a|b|c = parameter
value can be a, b or c.

interpreted tasks that are described using the DiSPL DSL
and deployed during the execution. This makes it possible
to build logical and physical mashup graphs that use both
compiled and interpreted tasks. Using the management
services presented in the previous section, the developer
is able to ask any known Thing to create a processor that
executes either (i) a compiled task by providing its iden-
tifier, or (ii) an interpreted task by providing the DiSPL
source code of the task.
The literature in stream processing already features lan-

guages like IBM SPL [54] but, in our case, the programs
are intended to be interpreted directly onto the Things,
as opposed to resource-rich servers. As a consequence,
we introduce a new stream processing language, designed
to be parsed efficiently by resource-constrained devices.
Our language is based on the properties and the syntax
of the functional language Scheme [55], which we chose
for its simplicity and flexibility; S-Expressions have a very
small grammar. The core of the language remains the same
(variable definition, conditions, arithmetic and boolean
expressions, etc.) but without λ-calculus support, which
is not essential to describe continuous processing tasks,
and increases the resources consumption of the inter-
preter. The general-purpose nature of the language makes
feasible the description of a wide range of complex cus-
tomized tasks, enhanced by various primitives dedicated
to stream management. In addition, other instructions
are related to the Thing management and includes the
ability to create and deploy new components, connect
components’ ports and monitor the Things’ resources
(memory, CPU load, battery). As an example, the follow-
ing snippet of DiSPL code shows the implementation of a
simple COUNT program that uses instructions for read-
ing the new incoming stream items (getNewItems), build
new stream items (item), and write data into the output
stream (write). Please note that a larger example is given
in Appendix D, which consists in the implementation of a
Bloom Filter [56] using DiSPL.

;initialization section
init:

;creates a global variable for counting

(define count 0)

;work section
work:

;gets the set of new items
(define diff (getNewItems "inStream"))

(if (> (size diff) 0)

;computes the new total
((set count (+ count (size diff)))

;writes the total into the output stream

(write (item (now) "count" count)))

)
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As shown in Figure 4, interpreted tasks rely on a ded-
icated parser, which converts the source code into an
abstract syntax tree (AST). Then, the processor sends the
AST to the interpreter which builds an execution context
for the given task. This context is used to store informa-
tion like local variables or the call stack. Driven by the
processor, the interpreter runs each section of the task
and stores the global variables into the internal state of the
component (i.e., the set of variables that are required to
restore a component). Finally, the interpreter is monitored
by a watchdog that collects information about the running
task (execution time, consumed memory and CPU, etc.).
This watchdog can kill any processor when resources are
low, according to some policies provided by the user or the
administrator of the Thing.

5 Experimental results
In order to evaluate our system, we implemented a pro-
totypeb of Dioptase in Java and deployed it onto devices
with heterogeneous capabilities. The choice of Java is
motivated by (i) the advances in porting the Java Vir-
tual Machine to small sensors [57], (ii) the existence of
all-in-one Java sensors, such as Sun SPOT, and (iii) the
huge number of operating systems that supports Java,
enabling us to work directly with a wide range of devices
(computers, smartphones, embedded systems, etc.).
The experiments presented in this section have two

goals. First, we want to show that the customization phase
enables the use of the Dioptase middleware on heteroge-
neous Things in order to serve HTTP streams with suit-
able performances relative to available resources. Second,
we aim to analyze the overhead due to the code inter-
pretation mechanism, by comparing the consumption of
resources by compiled and interpreted tasks, respectively.
During our experiments, we focused on two Things:

a Galaxy Nexus and an Oracle Sun SPOT. The Galaxy
Nexus is a smartphone that we consider representa-
tive of today’s smart Things, i.e., a very powerful and
mobile Thing [3]. The device embeds a dual-core 1.2 GHz
CPU (ARM Cortex-A9), one gigabyte of memory, and it
runs with the Android 4.2.2 “Jelly Bean” operating sys-
tem. Sun SPOTs are wireless motes developed by Sun
Microsystems (today Oracle) that embed a small Java

Micro Edition virtual machine called Squawk. The Sun
SPOT v6 integrates a 400 MHz CPU (AT91SAM9G20)
and one megabyte of memory. These motes are a perfect
example of averagely powerful Things (or average Things
for short) that, from our perspective, will compose the
future IoT/WoT (average power, but modern execution
environment) and that are targeted by our middleware.
The same customized middleware (∼209 KB) is deployed
on both the Spot and the phone and embeds all the mod-
ules, except the compression and cryptography plugins
that are not used during the experiments.

5.1 Stream serving experiment
Our first experiment analyzes the ability of the Dioptase
middleware to efficiently serve streams. Toward that end,
a producer is deployed on the Thing and acquires data
from the embedded light sensor. Every 500 milliseconds,
the producer performs a new measurement and sends it
(∼100 B/s) to each consumer connected to the compo-
nent. Each consumer is deployed on a standard computer
and, because the Spot and the phone have very differ-
ent capabilities, the number of clients is different between
the experiments. All the experiments generate raw data
directly into the devices’ storages (the phone and the Spot
embed two flash storages of respectively 16 GB and 4MB).
These data are retrieved and processed a posteriori. Before
the beginning of the experiment, time informations are
broadcasted (UDP) to synchronize the internal clock of
each device; time error is less than ten milliseconds.
As depicted in Figure 5, communication between clients

and the Spot is done through a base station that is used
as a router between the Ethernet network and the radio
IEEE 802.15.4 network. The experiment is run in two
phases: (i) every 2 seconds, the client opens a new con-
nection to the Spot, with a limit of 10 connections, then
(ii) every 40 seconds, the client opens 10 new connections
in order to stress the device. The connection’s opening
time, the time interval between two messages (jitter),
and the time between the production and reception of a
light measurement (including the transmission time and
the middleware processing time) are collected. Figure 6
presents the average time used to open a connection and
the latency between the production and the consumption

Figure 4 Interpreter architecture.
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Figure 5 Experimental test bed.

of a stream item. Figure 7 shows the latency between two
stream items. Ideally, this time should stay close to the
production interval time (i.e., 500 ms).
The phone experiment is done through a direct WiFi

802.11 g connection (access point). The same data as in
the previous experiment are collected. However, the con-
nection’s opening phases are slightly different to take into
account the higher capability of the phone. The experi-
ment starts with 100 established connections and, every
20 seconds, 100 new connections are opened with a limit
of 1000. Figures 8 and 9 show the same information as the
previous Spot experiment. Unlike with Spots, it is possible
to read data about CPU and memory consumption, using
the system files /proc/stat and /proc/meminfo. Figure 10
presents these measures, acquired every 5 seconds (this
long duration was chosen in order to avoid influencing the
other readings).
As expected, the devices resources decrease as the num-

ber of connections increases, up to a critical threshold that
is clearly visible in Figure 6. After around 40 connections,
the latency increases significantly (packet loss and resent
many times) and, as a consequence of the Thing’s over-
load, the jitter grows quickly (Figure 7). For smart Things,
we can see that even with 1000 connections, network and
resource usage stay stable, as shown in Figure 8. These
results on smart Things are very encouraging, with regard
toWeb-basedDSMSs’ performances [11,38], whichmakes
Dioptase a good solution for data streaming, with the
benefit of advanced stream processing capabilities.
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Assessing the performances of our middleware against
other DSMSs is actually extremely difficult as the classes
of Things and the criteria considered in other work are
very different. Dioptase is designed to run on average
Things, provides an in-network interpretation mecha-
nism, and presents sensed data as embedded streaming
Web services. These features are unique and cannot be
compared to existing DSMSs. WSAN-based DSMSs typ-
ically focus on energy consumption for tiny Things but
not on the ability to handle many heterogeneous paral-
lel tasks. In contrast, Web-based DSMSs focus on smart
Things, powerful servers, desktop computers or even the
cloud. As a consequence, average Things provide inferior
performances, in terms of simultaneous connections and
processing speed.
Still, it is worth highlighting that the capability for an

average Thing to serve around 30 streams of twomeasure-
ments per second with a limited latency (< 500 ms) is, in
absolute terms, suitable for most of the envisioned IoT/
WoT scenarios [2]. For example, let us consider the sce-
nario of the SmartPark project [58], where informations
about parking space availability are collected in order to
synchronize and guide the drivers toward free parking
spots. Specifically, each vehicle is equipped with a wireless
communication device and exchanges informations with
the Things (presence sensors) that are deployed at each
parking spot. In this case, if each of these Things handles
30 streams, as shown in our performance experiments, it
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enables the entire parking network to manage and process
thousands of streams (which is clearly more than neces-
sary for this scenario). In addition, as in WSAN work,
limiting the amount of data exchanged between Things is
a goal of the IoT due to the energy constraints. In-network
processing, compression and approximation are therefore
used to ensure that only strictly useful data are exchanged
by Things, alleviating the need for many simultaneous
data streams.

5.2 Stream processing experiment
Our second experiment assesses the capability of Diop-
tase to support dynamic deployment of tasks, by evaluat-
ing the resource consumption of processors for compiled
and interpreted tasks. The chosen task is a hash-based
pipelined inner join [59], which is applied many times in
parallel on two light streams produced by two different
sensors: the light sensor local to the Thing, and a light
sensor available from another Spot. As in the first set of
experiments, the producer reads the light sensors every
500 ms.
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The pipelined inner join requires a memory space that
grows proportionally to the size of the input streams.
The operator is implemented using one hash table per
stream. When a new item x is received from an input
stream, the operator checks if it is present in the
tables of the other streams. If it is, the item is writ-
ten in the output stream and stored in the related
table.
The Spot experiment is run in two steps, both for com-

piled and interpreted joins: (i) every 5 seconds a new
processor is deployed, with a limit of 5 processors, then
(ii) 10 new processors are deployed every 40 seconds. As
we said before, we can not acquire the memory and CPU
consumption on Spots and, as a consequence, we mea-
sure only the time spent by each processor to run its
work section. This time is an image of the real resource
consumption, as it increases if the memory and the CPU
are overloaded. Figure 11 shows the average execution
time, and the experiment is stopped when the Thing load
becomes too high (after around one hundred processors).
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The phone experiment starts with 10 processors and,
every 10 seconds, 10 new processors are deployed. When
the Thing reaches 100 processors, 100 new proces-
sors are deployed every 10 seconds. Like the previous
one, this experiment is run for compiled and inter-
preted joins. In addition to the execution time pre-
sented in Figure 12, we get information about resource
consumption shown in Figures 13 (interpreted) and 14
(compiled).
Interpreted joins are of course more expensive than

compiled ones, because of the depth-first search of
the AST. The figures show that the interpreted join
consumes approximately twice as much CPU as the
compiled join. However, the execution on the phone
is very efficient, with a pretty low difference between
the two operators (approximately forty microseconds in
the worst case, where some peaks are a consequence
of the garbage collector). On the Spot, the Thing is
overloaded with 60 interpreted joins and 90 compiled
joins. These results are not a CPU problem, which is
oversized for these types of operations, but a prob-
lem of memory, which is quickly full (especially because
of the AST that requires more space than the hash
tables).
The results obtained are satisfying, but are also dif-

ficult to compare to other DSMSs as, to the best of
our knowledge, other DSMSs for constrained devices
do not manage fully-dynamic tasks. The pipelined inner
join is an expensive operation that consumes CPU and
memory continuously, far more than other operations
like counting or filtering that are computed in con-
stant time and space. Relatively to the scenarios pre-
sented in [2], the Dioptase ability to run around sixty
complex interpreted operations (respectively ninety com-
piled ones) in parallel on a single resource-constrained
Thing is perfectly compatible with the needs of the
IoT/WoT.
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6 Conclusion
The IoT and related WoT are expected to become signifi-
cant enablers of pervasive computing given the interaction
with the physical world that they promote. However,
numerous obstacles must be overcome by judiciously
combining the knowledge acquired from the various
visions involved rather than trying to reinvent the wheel.
In this paper, we presented Dioptase, a middleware that

aims at simplifying building complex mashups based on
the multiple data sources of the WoT. Dioptase makes
it possible to integrate Things, even averagely powerful
ones, with the Web and enables them to produce, pro-
cess and store data streams dynamically. Each Thing, and
by extension the entire network, is then seen as a con-
sistent entity, dedicated to the (complex) processing of
sensed data, and able to dynamically run tasks written
in a DSL called DiSPL. This language aims to be simple,
but flexible enough to describe such advanced operations
and, for interoperability concerns, we plan to write con-
verters from state-of-the-art stream processing languages
like SPL [54] or C-SPARQL [60]. We demonstrated that
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the Dioptase middleware can avoid the systematic use of
centralized or partially centralized infrastructures, which
are commonly used in WSAN-based DSMSs. In addition,
we have shown that Dioptase is efficient enough to be
deployed on average Things w.r.t. the IoT/WoT needs and
use cases, and enables these Things to be integrated in the
Web despite the additional complexity of data streaming
communication.
Dioptase remains a work in progress. Our work can be

first improved in a technical way, especially by enhanc-
ing the efficiency of the interpreter or integrating other
continuous operators. However, we are more interested
in dealing with many other IoT/WoT research problems.
First, making each Thing an entity of generic processing
is a first step toward simplifying the deployment and the
distribution of applications within theWoT networks. The
next step is to study how to manage security in this con-
text of dynamic deployment, to avoid making the WoT
a wide area of chaos. Access control, encryption, iden-
tification/authentication and trust management are the
security aspects that must be studied in the future, reusing
the existing state of the art technologies for security and
privacy [1,2]. The problems of integrating the semantic
Web and enabling Things to collaborate and use pub-
lic and shared knowledge (ontologies, knowledge base)
are still active areas of research, as well as adaptation to
unknown cases (overloaded network, breakdowns, tran-
sient errors, etc.). We plan, for example, to enable Things
to automatically delegate, adapt and split their own tasks
according to their environment, their load, their available
resources and their capabilities. Finally, small Things must
not be ignored in the IoT, of which they are a signifi-
cant part. Since a lot of Things are mobile, average and
smart Things can act opportunistically as gateways and
proxies for very resource-limited Things (e.g., RFID chips
or small embedded sensors). By presenting small Things
as resources of average and smart Things, we want to
enable developers to transparently query resource-limited
Things in a similar way they query smart Things. In addi-
tion, we are working on a prototype of Dioptase for the
Contiki [61] operating system, in order to integrate more
devices to our research.

Endnotes
aIn web development, a mashup is an application that

composes data and services from many sources, using
open programming interfaces. Some examples can be
seen on http://www.programmableweb.com/mashups
(last access: 10-14-2014).

bWe are finalizing the prototype for release. The
current version is made available to reviewers at http://
www.rocq.inria.fr/arles/index.php/component/content/
article/248 (last access: 10-14-2014). The source code is
password-protected: dioptase_inria_rev.

Appendix
A Example of streams (access request and streaming) over
HTTP, using the HTTP streaming technique

GET /streams?id=light-

stream&mode=stream HTTP/1.1\r\n

...\r\n\r\n

HTTP/1.1 200 OK\r\n

Transfer-Encoding: chunked\r\n

Content-Type: application/x-www-form-

urlencoded\r\n

...\r\n\r\n

17\r\n

t=566175600&light=226.3\r\n

18\r\n

t=566177500&light=201.08\r\n

...

This is a network dump of the HTTP request (lines 1-2)
sent to a producer by a consumer to acquire a stream
called “light-stream”, and the resulting HTTP response
(lines 3-11) where the stream items are written as they are
produced.
Specifically, the request contains a parameter mode=

stream, indicating that the consumer wants to receive
the stream items using the HTTP streaming technique.
Accordingly, the HTTP response is then configured to
use chunks (line 4) and the streams items are written as
chunks in the response while they are produced: lines 7-8
and 9-10 are two stream items (t is the timestamp and
light is the attribute name), written as HTTP chunks. The
HTTP response is not closed by the server until the stream
reaches its end.

B Example of streams (access request and streaming) over
HTTP, using the Web hooks technique

GET /streams?id=light-

stream&mode=hook&hook=hook1 HTTP/1.1\r\n

...\r\n\r\n

HTTP/1.1 200 OK\r\n

...

GET /hooks/hook-name?

t=566175600&light=226.3 HTTP/1.1\r\n

...\r\n\r\n

HTTP/1.1 200 OK\r\n

...

GET /hooks/hook-name?

t=566177500&light=201.08 HTTP/1.1\r\n

...\r\n\r\n

HTTP/1.1 200 OK\r\n

...

http://www.programmableweb.com/mashups
http://www.rocq.inria.fr/arles/index.php/component/content/article/248
http://www.rocq.inria.fr/arles/index.php/component/content/article/248
http://www.rocq.inria.fr/arles/index.php/component/content/article/248
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This is a network dump of the HTTP request (lines 1-2)
sent to a producer by a consumer to acquire a stream
called “light-stream”, and the resulting HTTP response
(lines 3-4). While the stream items are produced, they
are pushed by the producer to the consumer as HTTP
request-response (lines 6-8 and 11-13).
Specifically, the first request contains a parameter

mode=hook, indicating that the consumer wants a stream
using the Web hooks technique. This request indicates
to the producer that the Web hook to use for sending
back the stream items is called “hook1”. Then, for each
stream item produced into the stream, the producer sends
an HTTP request to the consumer, using the hook name
(/hooks/hook1 is the callback URI of the consumer): lines
6-8 and 11-13 are two stream items, encoded in the URI
query string (t is the timestamp and light is the attribute
name).

C Example of deployment of an interpreted processor
through HTTP services.

POST /processors/new HTTP/1.1\r\n

Content-Type: multipart/form-data;

boundary=fyrdm2\r\n

...\r\n\r\n

--fyrdm2\r\n

Content-Disposition: form-data;

name="id"\r\n\r\n

processor-name\r\n

--fyrdm2\r\n

Content-Disposition: form-data;

name="code"\r\n\r\n

<some DiSPL code>\r\n

--fyrdm2\r\n

Content-Disposition: form-data;

name="inputs"\r\n\r\n

dioptase://localhost/aLocalStream\r\n

dioptase://173.194.34.24:9000/

anotherStream\r\n

--fyrdm2--\r\n\r\n

HTTP/1.1 200 OK\r\n

...

This is a network dump of the HTTP request
(lines 1-20) sent to a Dioptase instance by a developer to
deploy an interpreted processor called “processor-name”
with a given piece of DiSPL code that consumes two
streams, and the resulting HTTP response (lines 22-23).

Specifically, the parameters are encoded in the
multipart/form-data MIME format (line 2), which is
the common format for high-length parameters [62]. The
processor name is defined at lines 5-8, the DiSPL code at
lines 9-13 and the URIs of the input streams that must
be consumed by the processor are defined at lines 14-18.
Given these URIs, the operation will specifically consume
a local stream, produced by an operation already deployed
on the Thing, and a remote stream currently produced by
another Thing (173.194.34.24).

D Bloom Filter implementation using DiSPL

init:
(define bitsetSize 32)
(define bitset
(bitword bitsetSize false))
(define nbBuckets 8)
(define nbItems 0)

work:
; first, update the Bloom filter
; with the next pending item
(define item

(getNextItem "itemStream"))
(if (notnull item)
((define hash (murmur3 128 2 item))
(for 0 to nbBuckets
((define index (%

(abs (+
(get hash 0)
(* i (get hash 1))))

bitsetSize))
(set bitset index true))

)
(increment nbItems 1)

; write the probability of false
; positive into the corresponding
; output
(define p (pow
(- 1 (exp (*

(- nbBuckets)
(/ nbItems bitsetSize))))
nbBuckets))

(write "probaStream"
(item (now) "proba" p)))

)

; second, perform the presence test
; if a new item has to be checked
(define request
(getNextItem "requestStream"))
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(if (notnull request)
((define hash

(murmur3 128 2 request))
(define present true)
(for 0 to nbBuckets

((define index (%
(abs (+

(get hash 0)
(* i (get hash 1))))

bitsetSize))
(if (not (get bitset index))

((set present false)
(break))

))
)
(if present

(write request)
))

)

Competing interests
VI is member of the JISA editorial board. In addition, we may have conflicts of
interests with the following members of the board: Gordon Blair, Fabio Kon,
Serge Fdida, Gang Huang, Michel Hurfin, Wouter Joosen, Tiziana T
Margaria-Steffen.

Authors’ contributions
In the context of his PhD, BB conducted the research, developed the
prototype and performed the experiments. VI provided a continuous scientific
feedback, was involved in the revision process and participated in the design
of the experiments. Both authors read and approved the final manuscript.

Acknowledgements
VI and BB are employed by Inria, the french national institute for research in
computer science.

Received: 3 June 2014 Accepted: 17 October 2014

References
1. Gubbi J, Buyya R, Marusic S, Palaniswami M (2013) Internet of things (IoT):

A vision, architectural elements, and future directions. Future Generation
Comput Syst 29(7):1645–1660

2. Atzori L, Iera A, Morabito G (2010) The internet of things: a survey.
Comput Netw 54(15)

3. Teixeira T, Hachem S, Issarny V, Georgantas N (2011) Service oriented
middleware for the Internet of Things: A perspective. In: Proc. of the 4th
European conference on Towards a service-based internet, ServiceWave
‘11. Springer, Berlin

4. Mottola L, Picco GP (2011) Programming wireless sensor networks:
Fundamental concepts and state of the art. ACM Comput Surv
43(3):19:1–19:51

5. Garofalakis M, Gehrke J, Rastogi R (2007) Data stream management:
processing high-speed data streams (data-centric systems and
applications). Springer, New York

6. da Silva Neves PAC, Rodrigues JJPC (2010) Internet protocol over wireless
sensor networks, from myth to reality. J Commun 5(3):189–196

7. Golab L, Özsu MT (2010) Data stream management. Synthesis Lectures on
Data Management, vol. 2. Morgan & Claypool, San Rafael

8. Dezfuli MG, Haghjoo MS (2012) Probabilistic querying over uncertain data
streams. Int J Uncertainty Fuzziness Knowledge-Based Syst 20(05)

9. Dezfuli M, Haghjoo M (2012) Xtream: a system for continuous querying
over uncertain data streams. In: Scalable Uncertainty Management.
Springer, Berlin

10. Guinard D, Trifa V (2009) Towards the web of things: web mashups for
embedded devices. In: Proc. of the 18th International World Wide Web
Conferences, WWW ‘09. ACM, New York

11. Trifa V, Guinard D, Davidovski V, Kamilaris A, Delchev I (2010) Web
messaging for open and scalable distributed sensing applications. In: Proc.
of the 10th international conference on Web engineering. Springer, Berlin

12. Crossbow Imote2.Builder. http://www.xbow.jp/Imote2.Builder_kit.pdf.
Accessed 14 Oct 2014

13. Sun SPOT World – Program The World! http://www.sunspotworld.com.
Accessed 14 Oct 2014

14. Business Adapts to a New Style of Computer. http://www.
technologyreview.com/news/527356/business-adapts-to-a-new-style-
of-computer. Accessed 14 Oct 2014

15. Ishaq I, Carels D, Teklemariam GK, Hoebeke J, Abeele FVd, Poorter ED,
Moerman I, Demeester P (2013) IETF standardization in the field of the
internet of things (IoT): a survey. J Sensor Actuator Netw 2(2)

16. Hui JW, Culler D (2004) The dynamic behavior of a data dissemination
protocol for network programming at scale. In: Proc. of the 2nd
International Conference on Embedded Networked Sensor Systems,
SenSys ‘04. ACM, New York

17. Leontiadis I, Efstratiou C, Mascolo C, Crowcroft J (2012) SenShare:
Transforming sensor networks into multi-application sensing
infrastructures. In: Wireless Sensor Networks. Springer, Berlin

18. Corredor Pérez I, Bernardos Barbolla AM (2014) Exploring major
architectural aspects of the web of things. In: Mukhopadhyay SC (ed)
Internet of Things. Springer, Berlin

19. Carroll A, Heiser G (2010) An analysis of power consumption in a
smartphone. In: USENIX annual technical conference, USENIX ‘10. USENIX
Association, Berkeley

20. Rao B, Saluia P, Sharma N, Mittal A, Sharma S (2012) Cloud computing for
Internet of Things amp; sensing based applications. In: Proc. of the 6th
International Conference on Sensing Technology, ICST ‘12. IEEE, New York

21. Mohapatra S, Majhi B, Patnaik S (2014) Sensor cloud: the scalable
architecture for future generation computing. Springer, India

22. Xu N, Rangwala S, Chintalapudi KK, Ganesan D, Broad A, Govindan R,
Estrin D (2004) A wireless sensor network for structural monitoring. In:
Proc. of the 2nd International Conference on Embedded Networked
Sensor Systems, SenSys ‘04. ACM, New York

23. Kovatsch M, Lanter M, Duquennoy S (2012) Actinium: a RESTful runtime
container for scriptable internet of things applications. In: Proc. of the
3rd International Conference on the Internet of Things, IOT ‘12. IEEE,
New York

24. Pérez JL, Villalba A, Carrera D, Larizgoitia I, Trifa V (2014) The COMPOSE API
for the internet of things. In: Proc. of the Companion Publication of the
23rd International Conference on World Wide Web Companion, WWW
Companion ‘14. ACM, New York

25. Demirbas M, Yilmaz Y, Bulut M (2013) Eywa: Crowdsourced and
cloudsourced omniscience. In: Proc. of the 11th International Conference
on Pervasive Computing and Communications Workshops, PerCom ‘13.
IEEE, New York

26. Kovatsch M, Mayer S, Ostermaier B (2012) Moving application logic from
the firmware to the cloud: towards the thin server architecture for the
internet of things. In: Proc. of the 6th International Conference on
Innovative Mobile and Internet Services in Ubiquitous Computing, IMIS
‘12. IEEE, Washington

27. Hadim S, Mohamed N (2006) Middleware: middleware challenges and
approaches for wireless sensor networks. Distributed Syst Online 7(3)

28. Madden SR, Franklin MJ, Hellerstein JM, Hong W (2005) TinyDB: an
acquisitional query processing system for sensor networks. ACM Trans
Database Syst 30:122–173

29. Yao Y, Gehrke J (2002) The cougar approach to in-network query
processing in sensor networks. ACM SIGMOD Record 31(3):
9–18

30. Amato G, Chessa S, Vairo C (2010) MaD-WiSe: a distributed stream
management system for wireless sensor networks. Software: Pract Exp
40(5):431–451

31. Abadi DJ, Ahmad Y, Balazinska M, Cetintemel U, Cherniack M, Hwang JH,
Lindner W, Maskey AS, Rasin A, Ryvkina E, Tatbul N, Xing Y, Zdonik S
(2005) The design of the Borealis stream processing engine. In: Proc. of
the Conference on Innovative Data Systems Research, CIDR ‘05.
pp 277–289

http://www.xbow.jp/Imote2.Builder_kit.pdf
http://www.sunspotworld.com
http://www.technologyreview.com/news/527356/business-adapts-to-a-new-style-of-computer
http://www.technologyreview.com/news/527356/business-adapts-to-a-new-style-of-computer
http://www.technologyreview.com/news/527356/business-adapts-to-a-new-style-of-computer


Billet and Issarny Journal of Internet Services and Applications 2014, 5:13 Page 19 of 19
http://www.jisajournal.com/content/5/1/13

32. Arasu A, Babcock B, Babu S, Cieslewicz J, Datar M, Ito K, Motwani R,
Srivastava U, Widom J (2004) STREAM: The Stanford data stream
management system. Tech. rep., Stanford InfoLab, Stanford

33. Amato G, Chessa S, Gennaro C, Vairo C (2014) Querying moving events in
wireless sensor networks. Pervasive and Mobile Computing (in press)

34. Le-Phuoc D, Xavier Parreira J, Hauswirth M (2012) Linked stream data
processing. In: Reasoning Web. Semantic Technologies for Advanced
Query Answering. Springer, Berlin

35. Newton R, Morrisett G, Welsh M (2007) The regiment macroprogramming
system. In: Proc. of the 6th international conference on Information
processing in sensor networks. IPSN ‘07. ACM, New York

36. Whitehouse K, Zhao F, Liu J (2006) Semantic streams: a framework for
composable semantic interpretation of sensor data. In: Proc. of the 3rd
European conference on Wireless Sensor Networks. Springer, Berlin

37. Szczodrak M, Gnawali O, Carloni L (2013) Dynamic reconfiguration of
wireless sensor networks to support heterogeneous applications. In: Proc.
of the 9th International Conference on Distributed Computing in Sensor
Systems, DCOSS ‘13. IEEE, Washington

38. Dickerson R, Lu J, Lu J, Whitehouse K (2008) Stream feeds: an
abstraction for the world wide sensor web. In: The Internet of Things.
Springer, Berlin

39. Grosky W, Kansal A, Nath S, Liu J, Zhao F (2007) SenseWeb: An
infrastructure for shared sensing. IEEE Multimedia 14(4):8–13

40. Le-Phuoc D, Nguyen-Mau HQ, Parreira JX, Hauswirth M (2012) A
middleware framework for scalable management of linked streams. Web
Semantics: Sci Serv Agents World Wide Web 16:42–51

41. Ostermaier B, Schlup F, Römer K (2010) WebPlug: A framework for the
web of things. In: Proc. of the 8th International Conference on Pervasive
Computing and Communications Workshops, PERCOM ‘10. IEEE,
New York

42. Lam G, Rossiter D (2012) A web service framework supporting multimedia
streaming. IEEE Trans Serv Comput PrePrints 99:400–413

43. Hachem S, Pathak A, Issarny V (2013) Probabilistic registration for
large-scale mobile participatory sensing. In: Proc. of the 13th International
Conference on Pervasive Computing and Communications, PERCOM ‘13.
IEEE, New York

44. Sahu PK, Chattopadhyay S (2013) A survey on application mapping
strategies for Network-on-Chip design. J Syst Arch 59:60–76

45. Billet B, Issarny V (2014) From task graphs to concrete actions: a new task
mapping algorithm for the future internet of things. In: Proc. of the the
11th IEEE International Conference on Mobile Ad hoc and Sensor
Systems, MASS ‘14. IEEE, New York

46. Golab L, Özsu MT (2003) Issues in data stream management. ACM
SIGMOD Record 32(2):5–14

47. Hachem S, Teixeira T, Issarny V (2011) Ontologies for the internet of
things. In: Proc. of the 8th Middleware Doctoral Symposium, Middleware
‘11. ACM, New York

48. Loreto S, Saint-Andre P, Salsano S, Wilkins G (2011) RFC 6202 - Known
issues and best practices for the use of long polling and streaming in
bidirectional. http://tools.ietf.org/html/rfc6202. Accessed 06 Jun 2014

49. Fette I, Melnikov A (2011) RFC 6455 - The websocket protocol. http://
tools.ietf.org/html/rfc6455. Accessed 06 Jun 2014

50. Law YN, Wang H, Zaniolo C (2004) Query languages and data models for
database sequences and data streams. In: Proc. of the 13th international
conference on Very Large Data Bases, VLDB ‘04. VLDB Endow, USA

51. Raza U, Camerra A, Murphy A, Palpanas T, Picco G (2012) What does
model-driven data acquisition really achieve in wireless sensor networks?
In: Proc. of the International Conference on Pervasive Computing and
Communications, PerCom ‘12. IEEE, New York

52. Duquennoy S, Grimaud G, Vandewalle JJ (2009) The web of things:
interconnecting devices with high usability and performance. In: Proc. of
the International Conference on Embedded Software and Systems, ICESS
‘09. IEEE, New York

53. Mitzel D (2000) RFC 3002: Overview of 2000 IAB wireless internetworking
workshop. http://tools.ietf.org/html/rfc3002. Accessed 06 Jun 2014

54. (2012) IBM streams processing language specification. http://pic.dhe.ibm.
com/infocenter/streams/v2r0/topic/com.ibm.swg.im.infosphere.streams.
product.doc/doc/IBMInfoSphereStreams-SPLLanguageSpecification.pdf .
Accessed 06 Jun 2014

55. Sperber M, Dybvig RK, Flatt M, Van Straaten A, Findler R, Matthews J (2009)
Revised report on the algorithmic language scheme. J Funct Program:19

56. Kirsch A, Mitzenmacher M (2008) Less hashing, same performance:
building a better bloom filter. Random Struct Algorithms 33(2):187–218

57. Maye O, Maaser M (2013) Comparing java virtual machines for sensor
nodes. In: Grid and Pervasive Computing. Springer, Berlin

58. SmartPark – Parking Made Easy. http://smartpark.epfl.ch. Accessed 14 Oct
2014

59. Wilschut A, Apers PMG (1990) Pipelining in query execution. In: Proc. of
the International Conference on Databases, Parallel Architectures and
Their Applications, PARBASE ‘90. IEEE, New York

60. Barbieri DF, Braga D, Ceri S, Valle ED, Grossniklaus M (2010) C-SPARQL: A
continous query language for RDF data streams. Int J Semantic Comput:4

61. Contiki: The Open Source OS for the Internet of Things. http://www.
contiki-os.org. Accessed 14 Oct 2014

62. Masinter L (1998) RFC 2388: Returning Values from Forms:
multipart/form-data. http://tools.ietf.org/html/rfc2388. Accessed 06 Jun
2014

doi:10.1186/s13174-014-0013-1
Cite this article as: Billet and Issarny: Dioptase: a distributed data
streaming middleware for the future web of things. Journal of Internet
Services and Applications 2014 5:13.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

http://tools.ietf.org/html/rfc6202
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc3002
http://pic.dhe.ibm.com/infocenter/streams/v2r0/topic/com.ibm.swg.im.infosphere.streams.product.doc/doc/IBMInfoSphereStreams-SPLLanguageSpecification.pdf
http://pic.dhe.ibm.com/infocenter/streams/v2r0/topic/com.ibm.swg.im.infosphere.streams.product.doc/doc/IBMInfoSphereStreams-SPLLanguageSpecification.pdf
http://pic.dhe.ibm.com/infocenter/streams/v2r0/topic/com.ibm.swg.im.infosphere.streams.product.doc/doc/IBMInfoSphereStreams-SPLLanguageSpecification.pdf
http://smartpark.epfl.ch
http://www.contiki-os.org
http://www.contiki-os.org
http://tools.ietf.org/html/rfc2388

	Abstract
	Keywords

	1 Introduction
	2 Background
	2.1 Intermediaries in WSANs
	2.2 DSMSs for WSANs

	3 The dioptase application model for the WoT
	3.1 Dioptase component model
	3.2 Data stream
	3.3 Stream processing

	4 Dioptase architecture and design
	4.1 Middleware services
	4.2 Dioptase stream processing language (DiSPL)

	5 Experimental results
	5.1 Stream serving experiment
	5.2 Stream processing experiment

	6 Conclusion
	Endnotes
	Appendix
	A  Example of streams (access request and streaming) over HTTP, using the HTTP streaming technique
	B  Example of streams (access request and streaming) over HTTP, using the Web hooks technique
	C  Example of deployment of an interpreted processor through HTTP services.
	D  Bloom Filter implementation using DiSPL

	Competing interests
	Authors' contributions
	Acknowledgements
	References

