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Abstract

As the web expands its overwhelming presence in our daily lives, the pressure to improve the performance of web
servers increases. An essential optimization technique that enables Internet-scale web servers to service clients more
efficiently and with lower resource demands consists in caching requested web objects on intermediate cache
servers. At the core of the cache server operation is the replacement algorithm, which is in charge of selecting,
according to a cache replacement policy, the cached pages that should be removed in order to make space for new
pages. Traditional replacement policies used in practice take advantage of temporal reference locality by removing
the least recently/frequently requested pages from the cache. In this paper we propose a new solution that adds a
spatial dimension to the cache replacement process. Our solution is motivated by the observation that users typically
browse the Web by successively following the links on the web pages they visit. Our system, called SACS, measures
the distance between objects in terms of the number of links necessary to navigate from one object to another. Then,
when replacement takes place, objects that are distant from the most recently accessed pages are candidates for
removal; the closest an object is to a recently accessed page, the less likely it is to be evicted. We have implemented a
cache server using SACS and evaluated our solution against other cache replacement strategies. In this paper we
present the details of the design and implementation of SACS and discuss the evaluation results obtained.
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1 Introduction
Two decades after its inception, theWorldWideWeb con-
tinues to be among the most popular Internet services
[1,2]. Everyday, an extensive number of users from all over
the world accesses the Web to read online newspapers,
get in touch with their friends on Social Networks, share
their ideas on blogs or even play on video game websites.
Information that used to be difficult to obtain is now one
click away from us, on our laptops, tablets or even smart
phones.
While the ubiquity of the Internet is desired by both

users and content providers, the resulting high number
of user requests is a challenge to the performance and
scalability of Web servers and Internet Service Providers
(ISPs) alike [3]. This challenge takes the form of, for exam-
ple, increased computational load and bandwidth require-
ments due to the necessity of processing requests from
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(and delivering responses to) an increasingly larger num-
ber of users. This may, in turn, lead to increased latency,
which results in user perceived delays [4].
In order to continue satisfying users’ demands and, at

the same time, reduce the network and computational
strain imposed on content providers, several optimiza-
tion techniques have been proposed over the years [5].
One of the most successful of such techniques is Web
caching [6]. Web caching consists in storing copies of the
pages requested by users to a web server on intermediary
machines that can service future requests to those pages
on behalf of the actual web server. Web caches optimize
the operation of a web system by 1) reducing the load and
network bandwidth at the originWeb servers by minimiz-
ing the number of accesses to the actual website and 2)
minimizing access latency by placing data closer to the
users [7]. For these reasons, web caches have become an
ubiquitous background presence on the web and can be
found at different layers of the Internet hierarchy [8].
Due to their limited sizes, caches cannot store every web

page/object indefinitely.When the cache becomes full, the
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cache server must choose one or more objects to remove
in order tomake space for new objects. This decision is the
responsibility of the cache replacement algorithm [9], one
of the most critical components of a web cache system.
Among the most well known and highly used replace-

ment algorithms are Least Recently Used (LRU) and Least
Frequently Used (LFU), which remove the least recently
or least frequently used object from the cache, respec-
tively [10]. At the other end of the spectrum, more com-
plex solutions based on machine learning try to predict
which pages are going to be more frequently accessed by
users based on past behavior [11-13]. In between, several
other cache replacement algorithms have been proposed
[14-21].
The most common approaches used in practice base

their object replacement decisions on temporal locality
information. In this paper, we propose adding a spatial
dimension to the cache replacement problem.We propose
a novel cache replacement algorithm, called SACS (from
Semantics Aware Caching System), that takes into account
semantic information about the cached web objects in
order to decide which should be removed from the cache.
More specifically, we propose looking into the struc-
ture of web pages, in particular the links between them,
in order to try to predict which pages will be accessed
in the near future. Our solution is based on the intu-
itive notion that an object that is linked by a recently
accessed page has a higher probability of being accessed
in the near future and, as such, should also be kept in
the cache. Our system materializes this observation by
assigning priorities to cached objects based on their link
navigation information. This assignment is made in such
a way that objects whose distance to recently accessed
pages (measured as the length of the shortest path of
links between them) is high have higher probability of
being removed, while pages closer to recently accessed
pages are kept cached. In addition, pages with the same
distance factor are ordered according to their frequency
information.
The main strength of our cache replacement algorithm

is that it combines recency and frequency information
with object access prediction based on the link relations
between the different web pages/objects. By taking link
information into account, SACS has additional informa-
tion that allows it to reason in a more semantic way
about future requests to the web cache server. This is in
contrast with existing algorithms, which base their deci-
sion on syntactic information. In addition, by combining
recency and frequency, our system is able to obtain the
good results of these solutions in the scenarios in which
they perform well, while, at the same time, being able to
avoid their main shortcomings (e.g., cache pollution in
LFU and eviction of popular pages that have not been
recently requested in LRU).

The rest of this document is structured as follows. In
Section 2 we describe the architecture of SACS and the
design of the algorithm. In Section 3 we provide informa-
tion about the implementation of our system. In Section 4
we present and discuss the results obtained in the evalua-
tion of SACS. In Section 5 we discuss related work. Finally,
in Section 6 we conclude the paper.

2 Architecture
SACS follows the execution loop of traditional cacheman-
agement systems. When the cache receives a request for
an object, it first verifies whether the object is already
cached. If there is a version of the object available in the
cache, that version is sent to the user. Otherwise, it is
necessary to fetch the object from the origin web server
and forward it to the user. In addition, the newly fetched
document is placed in the cache. Doing so might require
removing one or more objects from the cache, in case the
available free space is not sufficient to hold the new object.
The decision of which pages should be removed is made
by the system’s cache replacement algorithm.
In the next sections we present the design of SACS in

detail. We start by introducing the main building blocks of
our system in Section 2.1. Then, we describe SACS’s cache
replacement algorithm in Section 2.2.

2.1 Overview
Our system builds upon three main metrics: distance,
recency and frequency. The recency metric tracks the last
time an object was requested while in cache; it is the same
metric used by the LRU replacement strategy. The fre-
quency metric tracks the number of times an object was
requested while in cache and is themetric used by the LFU
replacement strategy.
The distance metric is a novel element introduced by

our approach. It measures the distance between two
objects in terms of the minimum number of links that
need to be followed in order to navigate from one object
to the other. In other words, given the web objects graph
G = (V ,E), whereV is the set of cached pages and E is the
set of links between them, distance broadly corresponds to
the length of the shortest navigation path between pages
xi and xj. Implicitly, this metric is related with the proba-
bility that a user who requested object xi will visit another
object xj to which there may be a navigation path rooted
in xi.
We denote the distance between two web objects xi and

xj as dxi,xj . Note that despite the notation implying oth-
erwise, dxi,xj refers to the distance of the navigation path
from xj to xi; it means the distance to get to xi from xj. Due
to the nature of the web, the distance function is not sym-
metric, which means that the distance between xi and xj
might not be the same as the distance between xj and xi.
In reality, it is clear that even if a page xi is accessible from
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xj, the reverse might not be true, since there might not be
a navigation path between xj and xi. It should also be clear
that distance applies only when the root of the navigation
path in consideration is an HTML page; the destination,
on the other hand, can be any type of web object.
The distance between two objects depends not only

on the number of links existing in the navigation path
between the pages, but also on the type of HTML con-
structs (i.e., tags) that make up the links. We distinguish
tags that must be explicitly clicked by the user (explicit
links) from tags that refer to objects that are automati-
cally loaded when the requested page is parsed (implicit
links). Regarding explicit links, our system considers only
the a HTML tag. A link in the navigation path referring
to this tag is assigned a distance of 1, since traversing
this link requires the user to follow the link, which is not
guaranteed to happen.
As for implicit links, we consider tags img, link, and

frame. Other tags, such as script, audio, video and simi-
lar ones, may also be considered, depending on the types
of objects that the cache administrators consider to be
cacheable. Implicit links, unlike explicit ones, are assigned
a distance of 0, since they are aggregated with the object
that is at the origin of the link and are meant to be loaded
simultaneously. Figure 1 shows a simple example of a web
site and the corresponding distances between its pages.
In this example, we have dmenu.html,index.html = 1, while
dabout.html,index.html = 2.
Consider the set V of direct links between cached

pages. Further consider function τ that, given two objects,
returns the type (implicit or explicit) of the link between

the two. The following equation formalizes the definition
of link distance:

dxi,xj =
⎧⎨
⎩
0 iff (xi, xj) ∈ V ∧ τ(xi, xj) = implicit
1 iff (xi, xj) ∈ V ∧ τ(xi, xj) = explicit
∞ iff (xi, xj) /∈ V

(1)

The following section explains how our system measures
the distance metric and how it is used, along with the
other metrics, by our cache replacement algorithm.

2.2 Cache replacement
At any moment, SACS keeps track of a set of pages that
have a special interest to our replacement algorithm. We
refer to these special pages as pivots and denote the pivot
list as P. The importance of pivots stems from the fact
that it is with relation to them that the distance assigned
to each cached page is determined. More specifically, the
distance assigned to a page xi corresponds to its distance
to the closest pivot:

dxi = min
(
dxi,p1 , . . . , dxi,pn

)
,∀pi ∈ P (2)

If the object in question is directly linked by a pivot
(i.e., ∃pi ∈ P : (xi, pi) ∈ V ) or if it is not linked by any
other page (i.e., ¬∃xj : (xi, xj) ∈ V ), then its distance is
given by Equation 1. Otherwise, if the object has links to
it, but none is a pivot, its distance is defined recursively as
follows:

dxi,pi = dxi,xj + dxj ,pi ,∀xj ∈ Parents(xi) (3)

Figure 1 Example of a web site with distance assigned based on link information.
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In our system, pivots correspond to the most recently
accessed cached pages; it is this feature that allows us to
prioritize caching the most recently accessed pages, sim-
ilarly to LRU. More specifically, pivots correspond to the
cached objects that have been requested in the last α sec-
onds, where α is a parameter set by cache administrators.
Consider that t is the current time and txi is the times-
tamp of the latest request to object xi. Further consider
that R is the list of past requests submitted to the cache.
The definition of pivot is formalized in the following
formula:

xi ∈ P ⇐⇒ xi ∈ R ∧ t − txi < α (4)

Algorithm 1 Processing received requests
1: function RECEIVEREQUEST(URL, requestCount)
2: if URL ∈ cache then
3: obj ← cache[URL]
4: objtimestamp ← requestCount
5: objcount ← objcount + 1
6: pivots ← pivots ∪ URL
7: response ← msg(objdata)
8: else
9: obj ← GET_DATA_FROM_ORIGIN(URL)

10: if obj is cacheable then
11: if objsize ≤ cachemaxSize − cachesize then
12: cache[URL]← obj
13: else
14: EVICT_AND_REPLACE(obj)
15: end if
16: end if
17: response ← msg(objdata)
18: end if
19: return response
20: end function

Our algorithm comprises two main phases: monitoring
and eviction. In the monitoring phase (see Algorithm 1),
the cache collects information about access to pages and
user requests. The algorithm keeps, for each cached page,
the page’s hit count while cached (frequency) and the
timestamp of the latest access to the page (recency). On
a cache hit, the frequency and recency information of
the requested object is updated and its cached version is
returned to the user. If, on the other hand, the requested
object is not cached, the system gets it from the origin
server before returning it to the requesting user. In addi-
tion, a cache miss triggers the eviction phase of the algo-
rithm if the requested object does not fit in the available
free space.
The eviction phase (Algorithm 2) is triggered when

the free space available in the cache is not sufficient to
accommodate new pages. At that moment, the algorithm

chooses one or more pages to remove until a prede-
fined target cache size threshold is reached. Since there
may be different layers of storage within the server (e.g.,
memory and disk), each area has its own set of thresh-
olds for the maximum and target cache size, so that they
can be customized and controlled independently by the
cache server administrator. The threshold values are spec-
ified in bytes and respect the property TargetCacheSize <

MaxCacheSize.
To choose which page(s) to evict, our algorithm sorts

the candidates for replacement according to our replace-
ment policy. For performance reasons, the candidates for
eviction consist of a randomly selected sample of size β

of the cached objects. β can be freely set by the deploy-
ers of the cache according to their needs. We analyze the
impact of this parameter in the performance of SACS in
Section 4.3.3.
Our eviction algorithm requires obtaining the distance

of each eviction candidate. Because computing this dis-
tance requires executing a search algorithm, it is not
feasible nor scalable to execute this algorithm on the fly
for every candidate object every time eviction is issued.
Instead, our system continuously executes the distance
computation function in the background. As a conse-
quence, every object has its distance refreshed period-
ically. Our distance computation algorithm executes a
Breadth First Search with bounded depth over the page
graph. We bound the maximum depth of the search not
only for performance reasons, but also because after a
certain distance, the probability of a page being visited
by following the links in a path decreases sharply. The
search returns the depth of the first pivot encountered
or maxDepth, if it reaches the maximum depth without
finding a pivot.

Algorithm 2 Eviction phase
1: function EVICTANDREPLACE(obj)
2: if objtype is HTML then
3: CRAWLER.PARSE(objdata)
4: end if
5: sample ← PICK_RANDOM_SAMPLE(β)
6: for c ∈ sample do
7: if c ∈ pivots then
8: cdistance ← 0
9: end if

10: end for
11: i ← 0
12: SORT(sample)
13: while cachesize ≥ cachetargetSize do
14: cache.REMOVE(sample[ i])
15: i ← i + 1
16: end while
17: end function
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With the distance computation running in the back-
ground, during the eviction phase our system simply
retrieves the distance information from the metadata of
each candidate page. We perform one additional step
that verifies, for each candidate, if it hasn’t become a
pivot since its distance was last refreshed by the distance
computation function. After the distance information is
obtained, the eviction candidates are ordered by their dis-
tance, with objects with higher distance being ordered
before objects with lower distance. Then, the ordering
of objects with the same distance depends on the fre-
quency information of the pages, such that objects less
frequently accessed are ordered before pages more fre-
quently accessed. Objects are then removed in order until
the target cache size threshold is reached.
Finally, when the new object is added to the cache,

SACS parses it in the background to extract its link infor-
mation and updates the link information in the page
graph. As for the pages that are evicted, the cache does not
remove their information from the graph immediately, as
it may still be useful to compute another page’s distance.
Instead, this information is garbage collected either when
no other cached page links to the removed page, or when
memory becomes scarce.

3 Implementation
We implemented a prototype of a web cache server that
uses SACS as its cache management system. Our imple-
mentation was written in Java and is built on top of
the Ehcache [22] open-source cache software. Ehcache
is a general-purpose caching library that implements a
generic object cache that can be used to implement dif-
ferent types of caching systems. Ehcache implements both
memory and disk caching, coupled with a simple API
for managing interaction between the different caching
layers. It comes preloaded with three cache replacement
algorithms for the in-memory cache (LRU, LFU and
FIFO), but allows custommade replacement policies to be
plugged into the system. For the disk cache, however, only
the LFU replacement strategy is available.
Ehcache stores cached data as generic Element objects.

An element contains a key, a value and a set of use-
ful metadata, such as the element’s hit count and the
timestamp of its last access. To add our own function-
ality, we created a SACS Element extending the original
Element class with additional metadata required by our
replacement algorithm.
Plugging our cache replacement algorithm into Ehcache

required us to implement a SACS Policy class extending
Ehcache’s Policy interface. The Policy interface exports
only three methods, which are necessary for deciding
which element to evict from the cache. The most relevant
of these is method selectedBasedOnPolicy, which receives
a list of candidate elements from which the element to

remove is selected. However, when called by Ehcache,
this method receives only a small sample of the cached
elements, which limits the control of our system over the
eviction process. As such, in order to grant our replace-
ment algorithm access to the full element list, we had to
make a few modifications to the source code of Ehcache.
Further modifications to the source code of Ehcache had
to be made in order to allow our system to control the
value of the target cache size, which is not exported by
Ehcache’s configuration tools.
Besides Ehcache, our implementation uses two addi-

tional external libraries:Netty, and htmlparser. htmlparser
[23] is a Java based html parsing library we use to parse
HTML pages and extract link information from them.
Netty [24] is a network I/O framework that abstracts dif-
ferent network protocols into a high level API, easing the
effort of implementing network applications.We used it to
handle several lower level aspects of the network commu-
nication part of the system, such as receiving and sending
messages and managing user and server connections. We
also used its HTTP parsing API to extract information
from HTTP messages.
We keep a graph with the link information in store,

indexed by a hash table, for direct access to the nodes
in the graph. The graph is constructed iteratively, as new
pages are added to the cache, and periodically by crawling
the cached contents in the background. Crawling is nec-
essary because parsing a page only obtains the links that
originate in it, not the ones that point to it.
In our current implementation, we set the sample size

to 10%, for performance and scalability reasons. To iden-
tify if an object is a pivot, we apply Equation 4. In other
words, we verify if the timestamp of the last access to the
object is within an interval of α seconds. In our current
implementation, α = 120.

4 Evaluation
We have conducted a series of trace-driven experi-
ments with the goal of analyzing the performance of
SACS regarding a number of metrics and execution sce-
narios. In this section, we provide detailed information
about the evaluation process and the results obtained.

4.1 Dataset
Our evaluation was performed using the access logs of
the FIFA World Cup 1998 web site [25]. The logs con-
tain information about approximately 1.35 billion user
requests made over a period of around 3 months, start-
ing one month before the beginning of the world cup and
finishing a few weeks after the conclusion of this event.
Each log entry contains information about a single user
request, including the identification of the user that made
the request (abstracted as a unique numeric identifier for
privacy reasons), the id of the requested object (also a
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unique identifier), the timestamp of the request, the num-
ber of bytes of the requested object and the HTTP code of
the response sent to the user.
The main reason for choosing the FIFA logs is the fact

that it provides us, directly or indirectly, with all the infor-
mation required to evaluate our algorithm: 1) it directly
provides us with user driven access patterns that repre-
sent the real way users have requested pages from the site;
2) it provides us with sufficient information to obtain the
actual site, through which we can obtain crucial informa-
tion about pages and links; and 3) it is readily available
from the Internet with a manageable size. Other traces
found online or used in literature often omit important
information (such as the requested URLs) by anonymizing
the traces or are no longer available.
Although the dataset does not include an actual copy

of the web site, the logs come with a file that maps the
unique identifiers of the web objects to their respective
URLs. Since our solution requires that we have access to
the link information (which is only available within the
web pages), we used the Internet Archive [26] to down-
load the web site. However, the Internet Archive does not
possess a full copy of the web site. As a result, we were
only able to obtain approximately 70% of the html pages
of the website. Instead of discarding the remaining pages
from the experiments, we created stub replacements for
them containing no links to other pages. This allowed us
to simulate a more realistic scenario, since in a real world
setting, not every page in the cache will have links to other
cached pages.
For most of the evaluation scenarios, we focused on an

eleven day period from June 24 (day 60) to July 4 (day 70).
This period contains the busiest days in the logs, with an
average of 40 million requests per day, with the highest
daily request count peaking at 80million on July 1 (day 67).
In total, this interval includes close to 450 million request,
one third of the total number of requests in the logs.

4.2 Simulation environment
The main performance metrics considered in this evalua-
tion were hit rate and byte hit rate. Hit rate measures the
percentage of requests that are serviced from the cache
(i.e., requests for pages that are cached). Byte hit rate mea-
sures the amount of data (in bytes) served from the cache
as a percentage of the total amount of bytes requested.
These metrics are among the most commonly used to
evaluate caching systems [9,11-13,27], and allow us to ana-
lyze the ability of our caching system in caching the pages
that are most likely to be requested in the near future.
We compared the results obtained by our solution with

LRU and LFU. Our implementation of LRU evicts from
the cache the pages with the oldest request number, while
LFU evicts the ones with the lowest hit count. LRU is a
good overall algorithm that is commonly used in practice

(for example, in Squid [28]). LFU is also a popular replace-
ment algorithm that works well when the set of the most
popular pages is mostly stable or changes slowly. However,
it is subject to cache pollution when popularity changes
more dynamically, as it tends to maintain in the cache
objects that have been popular, but no longer are. Since
the traces used in our experiments do not display this
pattern of changes in popularity (object popularity in the
logs is mostly stable), it does not allow us to clearly ana-
lyze how SACS compares with LFU. For this reason, we
designed a synthetic scenario in which before running the
simulation, we populate a percentage of the cache with
pages that are not frequently requested in the logs. In
addition, we set the initial hit count of those pages to a
higher value than they would naturally have. In the evalua-
tion, for each algorithm considered, we present the results
obtained with this biased scenario against the regular
scenario that starts with a clean cache.
In our simulation, uncacheable and invalid requests,

which would have resulted in cache misses, are discarded
and are not accounted for in the statistics. As a con-
sequence, the values for both hit rate and byte hit rate
obtained and presented here are higher than they would
be in reality and can, thus, be regarded as an upper bound
of the real values. However, since these requests would
have been discarded by all algorithms, they only have a
numeric impact on the results; they have no effect on the
relative results of the algorithms evaluated and, as such,
do not affect the reliability of the results obtained.
To analyze the performance of the system under dif-

ferent cache sizes, we executed each simulation with a
cache size of 4MB and repeated it with an 8MB cache size.
Although these values are small in absolute terms, they
correspond, respectively, to 5% and 10% of the total size of
the cacheable contents of the FIFA98 website.
Our experiences consisted in sequentially reading

entries from a set of log files and feeding them directly
to our cache server. As a result of this approach, issues
related to concurrency are not considered, except later
in Section 4.3.4. For each experiment we executed mul-
tiple simulations, logging the values obtained in each
individual simulation and computing the corresponding
averages. The values presented in this section correspond
to the averages obtained. The experiments were exe-
cuted on a single machine equipped with an Intel Core i7
870 2.93GHz CPU (4 cores) and 12GB of RAM running
Ubuntu Linux.

4.3 Results
In this section we present the results obtained during
the evaluation of our system. First, we present the results
of our comparative analysis of SACS against LRU and
LFU regarding hit and byte hit rate. We then compare
the performance of SACS in terms of memory usage and
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a) b)

Figure 2 Hit rate with 5% cache size under different cache pollution scenarios. (a) Regular hit count. (b) Biased hit count.

throughput against the two competing algorithms.We fol-
low this by analyzing the behavior of our system with
different sample sizes. Finally, we evaluate the impact of
network delays and concurrency on SACS.

4.3.1 Hit rate and byte hit rate
The first set of figures presented in this section compares
the results obtained by the three systems under evalua-
tion regarding hit rate. In the results presented in this
section, we configured the sample size of all the algo-
rithms to be the full cache (i.e., sample size = 100%). This
allows us to compare the algorithms without perturba-
tions from the inherent non determinism of the sampling
process.
Figures 2 and 3 show the average hit rates obtained while

executing several simulations with a cache size of 5% and
10%, respectively. Figure 2(a) shows the hit rate values
obtained with a 5% cache size in the regular scenario (i.e.,

the cache starts empty). The results show that SACS is
able to match the performance of LFU, falling just short
of 0.5% of its performance, at most, while outperforming
LRU by over 5%. LRU has a worst performance because
frequently requested objects are not given higher prior-
ity over more recently accessed objects that are requested
infrequently. This way, a popular object that, by chance,
has not been accessed for some time may be removed by
LRU instead of an object that, while recently requested,
ends up being only accessed once. LFU, on the other
hand, avoids this problem by keeping the most frequently
accessed objects in the cache, regardless of the time of
access. In the same way, SACS is also able to tackle this
issue by weighing distance/recency with frequency. In par-
ticular, recently accessed objects that are no longer pivots,
which with LRU would likely be kept, are only kept by
SACS if their distance to a pivot and their frequency so
determines.

a) b)

Figure 3 Hit rate with 10% cache size under different cache pollution scenarios. (a) Regular hit count. (b) Biased hit count.
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Although LFU performs better than LRU in the previ-
ously analyzed data, the reason for its good performance
is due to the characteristics of the data access patterns
of the FIFA98 logs. Specifically, it is due to the fact that
in these logs, the set of the most popular pages is sta-
ble and mostly fixed over time. However, it is well known
that page popularity in the Internet varies dynamically and
unpredictably. Thus, in order to analyze the performance
of the algorithms under a more dynamic setting, we ran
our biased scenario, which pre-populates the cache with a
set of infrequently accessed pages. The results obtained in
this scenario are shown in Figure 2(b).
As expected, the performance of LFU in the biased

scenario is lower than in the regular scenario. This per-
formance decay is due to the presence of objects that
have high hit counts, but that are no longer frequently
accessed. As the figure shows, this performance reduc-
tion is higher at the start of the simulation, which is when
cache pollution is at its highest level. As the simulation
moves forward, LFU’s performance steadily increases.
Once again, this steady improvement is a result of the
characteristics of the FIFA98 logs, which generate a very
low and unnoticeable rate of cache pollution.
SACS and LRU, on the other hand are less, if at all,

affected by the cache pollution scenario, because both
take recency in consideration. For LRU, frequency is com-
pletely ignored, whichmeans that the polluting objects are
readily removed from the cache and have a low impact
on cache performance. And while SACS has frequency in
consideration, even the pages with the highest hit count
can become valid candidates for eviction if they are not
close to a pivot. Hence, distance is able to filter frequently
used pages that are relevant from frequently used pages
that have been relevant, but no longer are.
The results presented thus far are further confirmed

by Figure 3, which refers to the same scenarios analyzed

before, but this time regarding a 10% cache size. As before,
and for the same reasons, LFU and SACS obtain simi-
lar results in the regular scenario, and outperform LRU.
The biased scenario also follows the same pattern, with
SACS and LRU not being affected by the cache pollution,
unlike LFU. The main differences between Figures 2 and
3 are 1) the hit rate values, which are, as expected, higher
with the largest cache, and 2) the magnitude of the perfor-
mance decay of LFU, which in the case of the 10% cache
size falls below the performance of LRU.
Byte hit rates (shown in Figures 4 and 5) follow the same

pattern as the hit rate, both for the different hit count
scenarios and the different cache sizes. However, the exact
values for byte hit rate are about 10% lower than hit
rates. The reason for this discrepancy is that while every
hit/miss has the same weight (1) regarding hit rate, they
have have different weights regarding byte rates, which
depend on the sizes of the objects to which the hit/miss
refers. Because in the FIFA logs some of the least fre-
quently used objects are among the largest ones, byte hit
rate is lower, since these large objects have a higher weight
and often lead to misses.

4.3.2 System performance
We now take a look at the behavior of SACS from
the perspective of system performance, when compared
with LRU and LFU, still considering full cache sampling.
We focused on two main system performance metrics:
memory consumption and throughput (in number of
requests serviced per second). We gathered memory
usage information from within the simulation code by
accessing the \proc virtual filesystem of Linux. Through-
put information was collected by dividing the total num-
ber of requests received at the server by the total execution
time of the simulation (considering the simulation starts
when the first request is received). Note that the values

a) b)

Figure 4 Byte hit rate with 5% cache size under different cache pollution scenarios. (a) Regular hit count. (b) Biased hit count.
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a) b)

Figure 5 Byte hit rate with 10% cache size under different cache pollution scenarios. (a) Regular hit count. (b) Biased hit count.

obtained reflect only the processing time at the cache
server, since no network communication occurs during
the simulation.
Table 1 presents the memory usage results. The val-

ues presented correspond to the maximum amount of
memory used by each strategy, excluding the memory
reserved for the actual cache contents. This means that
these results reflect only the additional data that each
algorithm needs tomaintain. For this same reason, the val-
ues measured were identical for both cache sizes used in
the simulation.
As expected, the results show that our solution uses

more memory than the competing strategies. This extra
memory corresponds to the additional information and
data structures used by SACS (in particular, the link/page
graph) which are absent from LRU and LFU. Despite the
overhead, the actual difference is only of 3MB, with an
average of 700 graph nodes at any one time during the
simulations. For comparison, column SACS Max shows
the maximum possible amount of memory that would
be used by SACS if the page graph contained informa-
tion about every object (cached or not) seen by the cache
server during the simulation.
Figure 6 presents the throughput achieved by the dif-

ferent algorithms with 5% and 10% cache size. Unlike
memory usage, throughput varies with cache size, with
larger caches delivering higher throughput because object

Table 1 Total memory used

Replacement strategy RAM used

LRU 8MB

LFU 8MB

SACS 11MB

SACS Max 20MB

replacement is issued less frequently. Similarly to memory
usage, the figure indicates that SACS has a slight compu-
tational overhead when compared to the two alternatives.
The reduced throughput obtained is a result of the more
complex computations required to select the most appro-
priate object in SACS. The main reason for this overhead
is, as expected, the distance computation function, which
continuously executes in the background.
It should be noted, however, that due to the characteris-

tics of the simulation, the delays associated with respond-
ing back to users and requesting missing pages from the
origin server are not reflected in the results. We argue
that if these delays are taken into account the through-
put of our system would be competitive with that of LRU
and LFU, for the following reasons. First, the overhead due
to the background distance computation process, would
be masked by the network delays of fetching the miss-
ing pages, which are an order of magnitude larger than
computational delays. Second, because our solution is
able to obtain an overall higher hit rate, it would issue
requests for missing pages less often, which would, in
practice, lead to a higher responsiveness of the caching
system. We further analyze this claim later in Section
4.3.4.

4.3.3 Cache sampling
So far, we have analyzed the performance of the systems
under evaluation in a stable, concurrency free environ-
ment that favors hit rates, but exposes computational
overheads more clearly. The overheads identified so far
are, for the most part, due to the fact that the simula-
tions have been conducted using full cache sampling. This
means that every cached object has been considered as a
candidate for eviction, which requires the algorithms to
have to analyze and evaluate every object in the cache
before one or more of them is selected for removal.
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a) b)

Figure 6 Throughput comparison for different cache sizes and cache pollution scenarios. (a) Regular hit count. (b) Biased hit count.

However, while this solution is able to maximize hit rate,
it clearly is not scalable to larger caches in which the num-
ber of objects to analyze would be prohibitively high. The
consequence is the reduction of throughput, which can
lead to higher response times.
A strategy frequently used by commercial web caches

(such as Squid) to circumvent this scalability limitation is
to randomly select a sample of the cached objects as candi-
dates for eviction, instead of the full cache. In this section,
we analyze the impact of sampling in the performance of
SACS. Based on Squid and Ehcache policies, we start by
analyzing the performance of SACS with a sample size of
10% of the total cache size and compare it against LRU
and LFU with the same sample size. After that, we ana-
lyze the performance of SACS alone with different sample
sizes.
Figure 7 shows the results obtained by the three algo-

rithms with a 10% sample size. Figure 7(a) presents the

hit rates obtained with a 5% cache size, while Figure 7(b)
presents throughput results for both 5% and 10% cache
sizes. Both plots show the averages of the results obtained
over a series of simulations of the regular (non biased) sce-
nario. Unlike the previous figures (which showed results
only for the interval between days 60 and 70), the results
presented in Figure 7 are from a series of simulations
spanning the full extent of the logs, starting in day 5 (the
first with access information) until the last day.
The hit rates obtained during the simulations (byte hit

rates, which we omit due to space limitations, follow an
identical pattern, but with lower scores) show that SACS
outperforms both LRU and LFU with a 10% sample. SACS
tops the two competing algorithms in every day of the
simulation with an average of 1.5% over LFU and 1.75%
over LRU (with a maximum daily difference of 3.2% and
3.6%, respectively). Similar results were obtained with a
10% cache size, but with slightly higher overall hit rates

a) b)

Figure 7 Hit rate and throughput with 10% sample size. (a) Hit rate per day. (b) Overall throughput.
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for all the algorithms. The results confirm the ability of
SACS to adapt to different situations and to obtain the
most out of the information available to make replace-
ment decisions. Overall, hit rates are 10% lower than the
ones obtained with a 100% sample size, because sampling
does not allow the algorithms to make a fully informed
decision.
Contrary to hit rates, however, throughput is higher

with smaller sample sizes. SACS, in particular, obtains
a significant boost over the other two algorithms. This
increase in throughput is a direct consequence of the
lower complexity of the eviction algorithm, which now
has to process a much more compact candidate list. As a
consequence of the increased throughput, the cache will
be able to respond more quickly to requests for cached
objects. In contrast, a higher number of requests are not
serviced from the cache, which means that the average
response time may increase.
The results presented so far indicate the complex rela-

tion between hit rate and throughput, in particular regard-
ing their combined effect on response times. On the
one hand, higher hit rates inherently results in higher
throughput, because more objects are serviced from the
cache, bypassing the need to obtain the object from the
origin web server. On the other hand, using larger sam-
ples to obtain higher hit rates results in lower through-
put, due to the additional computational overhead of
the eviction algorithm. To further illustrate this tradeoff
between hit rate and throughput, we executed a series
of simulations with SACS using different sample sizes
and logged the average throughput and hit rates obtained
over the various executions. The results are presented in
Figures 8(a) and 8(b). The plots show the results obtained
by SACS with a 20% and 30% sample size, accompanied,

for comparison, by the results of the full (100%) and 10%
samples already presented before.
The tradeoff between throughput and cache accura-

cy/performance is particularly evident if we compare the
throughput and hit rate obtained by the SACS_100% and
SACS_10% configurations. For these configurations, the
results show, on the one hand, that SACS_100% obtains
the highest hit rate, while SACS_10% obtains the low-
est hit rates, with a difference of approximately 10%
between the two. On the other hand, the throughput of
SACS_100% is the lowest of all configurations, by a clear
margin, with a 26% difference to SACS_10%. Reducing the
sample size from 100% to 30% results in a 6% reduction in
hit rate, but in over 15% increase in throughput; reducing
to 20% (from 100%) results in a 8% loss in hit rate and a
throughput increase of 23%.

4.3.4 Network simulation
We finalize our evaluation by analyzing our previous claim
(last paragraph of Section 4.3.2.) that in a real setting
with concurrent accesses to the cache and network delays,
the overhead caused by SACS’s background tasks would
be less significant. To this end, we modified our simula-
tor so that requests would be issued by multiple threads
rather than sequentially by a single process. Requests from
each individual user, however, are still issued sequentially,
although concurrently with other users.
In addition to issuing requests concurrently, we intro-

duced artificial delays on cache misses to simulate the
process of fetching pages not present in the cache from
their origin web server. The delays were based on offline
measurements we conducted by issuing requests to web
servers placed on different locations. Similarly to the
previously described experiments, we executed several

a) b)

Figure 8 Hit rate and throughput for SACS with different sample sizes. (a) Hit rate per day. (b) Overall throughput.
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simulations and computed the averages of the values
obtained. In particular, we measured the hit rates and
throughput obtained by the different systems over the
interval between days 60 and 70 with a non biased 5%
cache and full cache sampling. The results are shown in
Figure 9.
The figures show that SACS is able to outperform LRU

and LFU regarding both hit rates and throughput. SACS
tops LFU by, on average, 1%, and LRU by over 10%.
Throughput follows a similar pattern, with SACS obtain-
ing a small margin over LFU, and a larger margin over
LRU. Overall, throughput values are over three times
lower than the ones obtained with the sequential simu-
lations, due to the overhead of concurrency control and
network delays. These factors end up diluting the com-
putational tradeoff between throughput and hit rate. In
this case, throughput is proportional to hit rate, because
the higher the hit rate, the more concurrent requests the
cache is able to serve, whereas in the sequential execu-
tion of the simulations, throughput was dependent on the
algorithmic overhead of the replacement strategy.

5 Related work
Due to the importance of the replacement algorithm for
the caching system, a large body of work in the area of
cache replacement can be found in literature. Accord-
ing to a survey by Podlipnig and Böszörmenyi [9], these
algorithms can be grouped into five different categories.
The first category consists of recency based algorithms
[16,17,29], which use the time elapsed since the last
request to a cached page as the main factor in their
replacement decisions. LRU is the most representative
of such algorithms and other algorithms are usually

extensions of standard LRU. For example, LRU-min [16]
tries to minimize the number of removed pages by apply-
ing LRU to a candidate list composed solely of pages
that are larger than the most recently requested page.
The main drawback of these algorithms is, as mentioned
throughout the paper, the fact that they are oblivious to
page popularity.
Frequency based algorithms [14,17] use request fre-

quency as their main criteria. LFU is an example of this
group of algorithms and serves as the model for other
algorithms in the class. Because LFU is prone to cache pol-
lution, several other algorithms employ aging techniques
that aim at minimizing the frequency count of some or all
of the pages, either periodically or at some specific event.
However, it is questionable if aging techniques are bet-
ter than recency based strategies [9]. SACS, on the other
hand, by combining distance with recency and frequency,
is able to handle cache pollution efficiently, without com-
promising the performance of the cache during standard
(non polluted) operation.
Similarly to SACS, recency-frequency based algorithms

[18,30,31] combine recency with frequency (and, possibly,
other factors). SACS sets itself apart from the algorithms
in this group by emphasizing distance over recency or fre-
quency, which allows it to base its predictions of future
accesses not only on past behaviour, but also on semantic
knowledge.
Function based algorithms [15,32,33] use potentially

general utility functions to evaluate the eviction potential
of pages. Several such algorithms exist, with the com-
mon aspect that all use multiple weighted factors to score
a page. Function based algorithms provide an elegant
solution that has the potential to seamlessly adapt to

a) b)

Figure 9 Hit rate and throughput for the network simulation scenario. (a) Hit rates. (b) Throughput.
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different request patterns and workload dynamics. How-
ever, its main shortcoming lies in the difficulty of appro-
priately setting and tuning the parameters and weights of
the utility function.
The final group of the taxonomy of Podlipnig and

Böszörmenyi comprises algorithms which base their deci-
sions on randomized choices [19,34,35], typically com-
bined with other factors. Randomized algorithms were
proposed to reduce the need for the complex data
structures that are required by some of the traditional
replacement algorithms. However, due to their intrinsic
non-determinism, it is difficult to assert if their perfor-
mance is consistent over time and under different request
patterns and workloads.
In addition to the the groups identified by Podlipnig and

Böszörmenyi, other authors have proposed replacement
algorithms that employ machine learning techniques
[11-13]. These algorithms include an offline learning
phase in which the algorithm is trained with informa-
tion from past requests (e.g., logs of a web server/cache).
Then, the knowledge acquired in the learning phase is
applied, at runtime, to choose the candidates for eviction.
Unlike traditional cache replacement, machine learning
algorithms are equipped with the mechanisms to predict
future requests, rather than basing their decision only
on past behaviour. However, their performance is tightly
related with the data used during the training phase,
which is itself solely based on past behaviour. SACS, on
the other hand, looks into more immediate and contextual
information which, as our evaluation results indicate, may
prove useful in identifying future requests.
To the best of our knowledge, ours is the first work

to look into the links inside web pages as a factor for
replacement decisions in the context of web caching.
By doing so, we base our predictions of future requests
not only on past behaviour (by incorporating traditional
techniques such as LRU and LFU), but also on seman-
tic and contextual information. In addition, while in
this paper we combine distance with standard LRU and
LFU, our algorithm can easily be modified to have dis-
tance combined with other factors used in existing algo-
rithms, including complex utility functions or randomized
techniques.
Our solution is also related with the area of interest

awareness in multiplayer games [36,37] and cooperative
work [38,39]. Interest awareness systems manage the con-
sistency of each user’s view of the objects of a distributed
application according to their distance to some special
object(s). In multiplayer games, the consistency of game
objects is stronger closer to each player’s avatar and
becomes weaker as the distance (within the virtual world)
increases. In cooperative work applications, such as coop-
erative text editing and distributed software development,
instead of metric distance, a semantic distance that

measures the strength of the relations between differ-
ent elements of a text document/software project is used.
Similarly, our algorithm also assigns priorities according
to distance, in an inversely proportional manner. How-
ever, in SACS, we do it to evaluate the eviction potential
of web pages, rather than to determine the consistency
requirements of distributed objects.

6 Conclusion
Caching of web pages is an optimization strategy that has
been around since the early days of the web. Web caching
improves server performance and response times by pro-
viding more than one source for each data item and/or
placing contents closer to users. In this context, choos-
ing which pages to keep in the cache and which to evict
has a great impact on the performance of cache servers
and, consequently, on the web as a whole. Traditional
strategies used in practice base their decisions on static
information and are, thus, vulnerable to the dynamism
and unpredictability of user access patterns.
In this paper, we proposed SACS, a novel cache replace-

ment algorithm that decides on which objects to remove
based on the link navigation information of the cached
pages. The design of SACS is inspired by the observa-
tion that the links contained in recently accessed pages
are good indicators of future requests. SACS builds on
this observation by assigning priorities to cached objects
in such a way that objects whose distance to recently
accessed pages (measured as the length of the shortest
path of links between them) is high have higher prob-
ability of being removed, while pages closer to recently
accessed pages are kept cached. Our solution additionally
takes frequency into account, weighing it with distance
when deciding on the eviction priority of each object. The
evaluation results obtained and presented in this paper
show that our solution is able to either match or even
surpass the performance of existing algorithms in the sce-
narios in which they are better, while preventing their
shortcomings in the scenario in which their performance
falls short.
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