
RESEARCH Open Access

Core-periphery communication and the
success of free/libre open source software
projects
Kevin Crowston* and Ivan Shamshurin

Abstract

We examine the relationship between communications by core and peripheral members and Free/Libre Open
Source Software project success. The study uses data from 74 projects in the Apache Software Foundation
Incubator. We conceptualize project success in terms of success building a community, as assessed by graduation
from the Incubator. We compare successful and unsuccessful projects on volume of communication and on use of
inclusive pronouns as an indication of efforts to create intimacy among team members. An innovation of the paper
is that use of inclusive pronouns is measured using natural language processing techniques. We also compare the
volume and content of communication produced by core (committer) and peripheral members and by those
peripheral members who are later elected to be core members. We find that volume of communication is related
to project success but use of inclusive pronouns does not distinguish successful projects. Core members exhibit
more contribution and use of inclusive pronouns than peripheral members.

Keywords: Free/libre open source software (FLOSS), Core and periphery, Communication, Project success, Apache
software foundation, Natural language processing, Inclusive pronouns

1 Introduction
Community-based Free/Libre Open Source Software
(FLOSS) projects are developed and maintained by
teams of individuals collaborating in globally-distributed
environments [1]. The health of the developer commu-
nity is critical for the performance of projects [2], but it
is challenging to sustain a project with voluntary mem-
bers over the long term [3, 4]. Social-relational issues
have been seen as a key component of achieving project
effectiveness [5] and enhancing online group involve-
ment and collaboration [6]. In this paper, we explore
how community interactions are related to community
health and so project success.
Specifically, we examine contributions made by mem-

bers in different roles. Members have different levels of
participation in FLOSS development and so take on dif-
ferent project roles [7]. A widely-accepted model of roles
in community-based FLOSS teams is the core-periphery
structure [5, 8, 9]. For example, Crowston and Howison

[2] see community-based FLOSS teams as having an
onion-like core-periphery structure, in which the core
category includes core developers and the periphery in-
cludes co-developers and active users. Rullani and
Haefliger [10] described periphery as a “cloud” of mem-
bers that orbits around the core members of open
source software development teams.
Generally speaking, access to core roles is based on

technical skills demonstrated through the development
tasks that the developer performs [11]. Core developers
usually contribute most of the code and oversee the de-
sign and evolution of the project, which requires a high
level of technical skills [2]. Peripheral members contrib-
ute at a lower level. Some submit patches such as bug
fixes (i.e., co-developers), which provides an opportunity
to demonstrate skills and interest. Others provide use
cases and bug reports or test new releases but without
contributing code directly (i.e., active users), which re-
quires less technical skill [2].
Despite the difference in contributions, both core and

peripheral members are important to the success of the
project. It is evident that, by making direct contributions

* Correspondence: crowston@syr.edu
Syracuse University , School of Information Studies, 348 Hinds Hall, Syracuse,
NY 13244–4100, USA

Journal of Internet Services
and Applications

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made.

Crowston and Shamshurin Journal of Internet Services
and Applications (2017) 8:10
DOI 10.1186/s13174-017-0061-4

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0061-4&domain=pdf
http://orcid.org/0000-0003-1996-3600
mailto:crowston@syr.edu
http://creativecommons.org/licenses/by/4.0/

to the software developed, core members are vital to
project development. On the other hand, even though
they contribute only sporadically, peripheral members
provide bug reports, suggestions and critical expertise that
are fundamental for innovation [10]. In addition, the per-
iphery is the source of new core members [12, 13], so
maintaining a strong periphery is important to the long-
term success of a project. Amrit and van Hillegersberg [8]
examined core-periphery movement in open source pro-
jects and concluded that a steady movement toward the
core is beneficial to a project, while a shift away from the
core is not. But how communication among core and per-
iphery predicts project success has yet to be investigated
systematically, a gap that this paper addresses.

2 Theory and hypotheses
To develop hypotheses for our study, we discuss in turn
the dependent and independent variables in our study.
The outcome of interest for our study is project success.
Project success for FLOSS projects can be measured in
many different ways, ranging from code quality to mem-
ber satisfaction to market share [14]. For the
community-based FLOSS projects we examine, success
in building a developer community is a critical issue, so
we chose building a developer community as our meas-
ure of success.
To identify the constructs that predict success, we ex-

amined communication among community members. A
starting hypothesis is that more communication is pre-
dictive of project success:
H1: Successful projects will have a higher volume of

communication than unsuccessful projects.
More specifically, we are interested in how members

in different roles contribute to projects. As noted above,
projects rely on contributions from both core and per-
ipheral members. We can therefore extend H1 to con-
sider roles. Specifically, we hypothesize that:
H1a: Successful projects will have a higher volume of

communication by core members than unsuccessful
projects.
H1b: Successful projects will have a higher volume of

communication by peripheral members than unsuccess-
ful projects.
Prior research on the core-periphery structure in

FLOSS development has found inequality in participa-
tion between core and peripheral members. For example,
Luthiger Stoll [15] found that core members make
greater time commitment than peripheral members:
core participants spend an average of 12 h per week,
with project leaders averaging 14 h, and bug-fixers and
otherwise active users, around 5 h per week. Similarly,
using social network analysis, Toral et al. [16] found that
a few core members post the majority of messages and

act as middlemen or brokers among other peripheral
members. We therefore hypothesize that:
H2: Core members will contribute more communica-

tion than will peripheral members.
Prior research on the distinction between core-

periphery has mostly focused on coding-related behav-
iour, as project roles are defined by the coding activities
performed [5]. However, developers do more than just
coding [5]. Both core and peripheral members need to
engage in social-relational behaviour in addition to task-
oriented behaviour such as coding. Consideration of
these non-task activities is important because effective
interpersonal communication plays a vital role in the de-
velopment of online social interaction [17].
Scialdone et al. [18] and Wei et al. [19] analyzed group

maintenance behaviours used by members to build and
maintain reciprocal trust and cooperation in their every-
day interaction messages, e.g., through emotional ex-
pressions and politeness strategies. Specifically,
Scialdone et al. [18] found that core members of two
teams used more politeness strategies than did periph-
eral members. They noted in particular that “peripheral
members in general do not feel as comfortable express-
ing a sense of belonging within their groups”. We there-
fore hypothesize that:
H3: Core members will use more expressions of be-

longing to the team in their communication than will
peripheral members.
Scialdone et al. [18] further noted that one team they

studied that had ceased production had exhibited a
greater gap between core and periphery in usage of ex-
pressions of belonging to the team. Such a situation
could indicate that the peripheral members of the group
did not feel ownership of the project, with negative im-
plications for their future as potential core members.
We therefore hypothesize that:
H3a: Successful projects will have a higher level of ex-

pressions of belonging to the team by core members
than unsuccessful projects.
H3b: Successful projects will have a higher level of ex-

pressions of belonging to the team by peripheral mem-
bers than unsuccessful projects.
Finally, as noted above, the periphery is the source of

new core members. Active peripheral members may be
invited to become project committers, thus joining the
core. We therefore expect that peripheral members who
become core members will be as active as core members
in communicating even before being officially elected as
core members (that is, that they are elected based on
their activity, rather than their activity being driven by
their committer status). We therefore hypothesize that:
H4: Peripheral members who later become core mem-

bers will resemble core members in their communica-
tion behaviours.

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 2 of 11

3 Methods
3.1 Setting
Scialdone et al. [18] and Wei et al. [19] studied only a
few projects and noted problems making comparisons
across projects that can be quite diverse. To address this
concern, in this paper we studied a larger number of
projects (74 in total) that all operated within a common
framework at a similar stage of development. Specific-
ally, we studied projects in the Apache Software Founda-
tion (ASF) Incubator. The ASF is an umbrella
organization including more than 60 free/libre open
source software (FLOSS) development projects. The
ASF’s apparent success in managing FLOSS projects has
made it a frequently mentioned model for these efforts,
though often without a deep understanding of the fac-
tors behind that success.
The ASF Incubator’s purpose is to mentor new pro-

jects to the point where they can successfully join the
ASF. Projects are invited to join the Incubator based on
an application and support from a sponsor (a member of
the ASF). Accepted projects (known as Podlings) receive
support from one or more mentors, who help guide the
Podlings through the steps necessary to become a full-
fledged ASF project. It should be noted that projects
may already be well established when they apply to join
the Apache Foundation.
The incubation process has several goals, including

fulfillment of legal and infrastructural requirements and
development of relationships with other ASF projects,
but the main goal is to develop effective software devel-
opment communities, which Podlings must demonstrate
to graduate from the Incubator. The Apache Incubator
specifically promotes diverse participation in develop-
ment projects to improve the long-term viability of the
project community and ensure requisite diversity of in-
tellectual resources. The time projects spend in incuba-
tion varies widely, from as little as two months to nearly
five years, indicating significant diversity in the efforts
required for Podlings to become viable projects. The pri-
mary reason that projects are retired from the Incubator
(rather than graduated) is a lack of community develop-
ment that stalls progress. Volume of communication is
not a graduation criterion because according to Apache
website, “the incubation period normally serves to esti-
mate whether or not: the project is able to increase
the diversity of its committer base and to play with
the meritocratic rules of the foundation” [http://
www.apache.org/foundation/how-it-works.html].

3.2 Data collection and processing
In FLOSS settings, collaborative work primarily takes
place by means of asynchronous computer-mediated
communication such as email lists and discussion fora
[7]. This practice is common for Apache projects

because asynchronous communication is a general re-
quirement for groups that are so geographically distrib-
uted as to cover all time zones (normally the case for
Apache communities) [see http://www.apache.org/foun-
dation/how-it-works.html]. Also, asynchronous communi-
cation allows archives to be created and is more tolerant
of the volunteer nature of the various communities [see
http://www.apache.org/foundation/how-it-works.html].
ASF community norms strongly support transparency and
broad participation, which is accomplished via electronic
communications, such that even collocated participants
are expected to document conversations in the online rec-
ord, i.e., the email discussion lists. We therefore drew our
data from messages on the developers’ mailing list for
each project.
A Perl script was used to collect messages in html for-

mat from the email archive website markmail.org. We
discarded any messages sent after the Podling either
graduated or retired from the ASF Incubator, as many of
the projects apparently used the same email list even
after graduation. We are analyzing emails for one list per
project, so we did not face the issue of cross-posted
messages appearing multiple times in the corpus for a
project. We did not otherwise check for duplicate mes-
sages. After the dataset was collected, relevant data
(sender and message contents) were extracted from the
html files representing each message thread and other
sources. We manually reviewed the sender addresses to
identify non-human message senders (e.g., messages
from bug reporting or continuous integration systems).
Messages from these senders were removed from the
analysis.

3.2.1 Dependent variable: Success
As noted above, the dependent variable for H1 and H3,
project success in building a community, was deter-
mined by whether the project had graduated (success) or
been retired (not success) from the incubator. Gradu-
ation was determined based on the list of projects main-
tained by the Apache Incubator and available on the
Apache website. The dataset includes email messages for
24 retired and 50 graduated Podlings. The data set also
included messages for some projects still in incubation
and some with unknown status; these were not used in
the analysis.
As a check on the validity of graduation from the In-

cubator as a measure of success in building a commu-
nity, we compared the number of active developers in
graduated and retired projects (active developers were
those who had participated on the mailing list). The re-
sults are shown in Table 1 and Fig. 1. Figure 1 is a violin
plot. A violin plot is like a box plot, but includes a kernel
density plot for the data, thus showing the distribution
in more detail. As the Table shows, the median

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 3 of 11

http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://www.apache.org/foundation/how-it-works.html
http://markmail.org

graduated project had more than twice as many devel-
opers active on the mailing list as did retired projects.
To check the significance of this difference we applied a
Wilcoxon rank-sum test (also known as Mann-Whitney
U), chosen because the data are not normally distrib-
uted. (A Wilcoxon test is used for all tests of significance
reported in this paper.) The test shows that the differ-
ence in the number of developers between graduated
and retired projects is statistically significant, p = 0.000.
The effect size of this difference, r, was 0.33, between
small and medium. Furthermore, only graduated pro-
jects had future core members who posted on the mail-
ing list during incubation. (By future core members, we
mean committers who were not in the list of committers
at the start of the data collection but were elected later
as documented in an announcement to the mailing list.)
These results provide evidence for the validity of our
choice of graduation as a measure of success in building
a project community.

3.2.2 Core vs. periphery
For all hypotheses, we distinguish between core and per-
ipheral members. Crowston et al. [20] suggested three
methods to identify core and peripheral members in
FLOSS teams: relying on project-reported formal roles,
analysis of distribution of contributions based on

Bradford’s Law of Scatter and core-and-periphery ana-
lysis of the network formed by developer communica-
tions. Their analysis showed that all three measures were
highly correlated, but that relying on project-reported
roles was the most accurate. [21] suggested identifying
core developers by examining contributions to core mod-
ules, but this approach requires analysis of the code base.
Therefore, in this study, we identified a message sender as
a core member if the sender’s name was on the list of pro-
ject committers on the project website. If we did not find
a match in the list of committers, then the sender was la-
beled as a peripheral member.
The list of committers we used included names but

not email addresses. Therefore, we developed a matching
algorithm to take account of the different ways that
names appear in email messages. Specifically, we
checked for matches with different capitalization, with
and without a middle name and with the first and family
names reversed. We attributed to the developer all mes-
sages that matched the name, regardless of the specific
email address used. All messages were attributed to ei-
ther a known developer from the website, or to a non-
core developer; no messages were discarded. There are
only a few hundred developers, with distinctive names,
so we did not need to apply advanced name disambigu-
ation heuristics that have been created to handle thou-
sands of identical names (e.g., on publication author
lists). We simply needed to pick up variations in names
created by the email software (e.g., order of names, in-
clusion of middle initial).
We also looked for evidence of new committers join-

ing a project during incubation. Projects that join the
Apache Incubator start with an initial set of committers.

Table 1 Median number of developers by project status and
developer role

Project status Core Future core Peripheral

Graduated 26 (18.2) 1(4.7) 44 (102.1)

Retired 12.5 (9.0) 0 23 (17.9)

N = 74 projects. Standard deviations in parentheses

Fig. 1 Violin plot of number of developers by project status and developer role

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 4 of 11

New committers are elected by the current committers.
When a new committer is elected, an announcement is
made to the mailing list. We therefore wrote a program
to search the email message archive for these announce-
ment messages. Announcement messages are those that
have “[ANNOUNCE] OR [ANN] + committer” in their
subject. Matching was done as follows: first name + fam-
ily name, first name + middle name + family name. We
found 19 projects in which new committers had been
elected, for a total of 83 new committers. Only one
name from our list of developers was among the names
from the announcements. Interestingly, these elections
all happened after the projects had graduated or retired
from incubation. Some, but not all of the new commit-
ters participated in the mailing lists before the projects
left the incubator. We labelled messages from these
members as from “future core”.

3.2.3 Expressions of belonging to the team
In this paper, we examine one factor identified by Scial-
done et al. [18] in their investigation of how core and
peripheral members use language to create “intimacy
among team members” thus “building solidarity in
teams”. Specifically, for H3 and H4, we examined the
use of inclusive pronouns as one way that team mem-
bers build a sense of belong to the group. Scialdone et
al. [18] noted that such use of inclusive pronouns is
“consistent with Bagozzi and Dholakia [22]’s argument
about the importance of we-intention in Linux user
groups, i.e., when individuals think themselves as ‘us’ or
‘we’ and so attempt to act in a joint way”.
Inclusive pronouns were defined as:

reference to the team using an inclusive pronoun. If we
see “we” or “us” or “our”, and it refers to the group,
then it is Inclusive Reference. Not if “we” or “us” or
“our” refer to another group that the speaker is a
member of.

That is, the sentences were judged on two criteria: 1)
whether there are language cues for inclusive reference
(a pronoun), as specified in the definition above and 2) if
these cues refer to the current group rather than to an-
other group. To judge the second criteria may require
reviewing the sentence in the context of the whole con-
versation. This usage is only one of the many indicators
of group maintenance studied by Scialdone et al. [18]
and Wei et al. [19], but it is interesting and tractable for
analysis.
To handle the large volume of messages drawn from

many projects, we applied NLP techniques as suggested
(but not implemented) by previous research. Specifically,
we used a machine-learning (ML) approach, where an
algorithm learns to classify sentences from a corpus of

human-analyzed data. Sentences were chosen as the unit
for the NLP analysis instead of the thematic units more
typically used in human analysis, because sentences can
be more easily identified for machine learning. We ex-
pected that the NLP would have no problem handling
the first part of the definition, but that the second
(whether the pronoun refers to the project or some
other group) would pose challenges.
Training data were obtained from the SOCQA (Socio-

computational Qualitative Analysis) project at the
Syracuse University (http://socqa.org/) [23, 24]. The
training data consists of 10,841 sentences drawn from
two Apache projects, SpamAssassin and Avalon. Trained
annotators manually annotated each sentence as to
whether it included an inclusive pronoun (per the above
definition) or not and cross-checked their results to en-
sure reliability. The distribution of the classes in the
training data is shown in Table 2. Note that the sample
is unbalanced (there are many fewer sentences with in-
clusive pronouns than without).
A standard vector space model was used to transform

text into vectors. In particular, term-frequency inverse-
document frequency (TF-IDF) with frequency and pres-
ence (binary) term-document matrices were used. As
features for the ML, we used bag of words, experiment-
ing with unigrams, bigrams and trigrams. We used the
default stop word list from the Python nltk package. No
stemming was performed because stemming would not
change the pronouns themselves. As well, the predictive
value of our models was already very good, so we did
not expect stemming to improve it significantly. Naïve
Bayes (MNB), k Nearest Neighbors (KNN) and Support
Vector Machines (SVM) algorithms (Python LibSVM
implementation) were trained and applied to predict the
class of the sentences, i.e., whether a sentence has inclu-
sive pronoun or not.
Ten-fold cross-validation was used to evaluate the

classifier’s performance on the training data. Results are
shown in Table 3. The results (accuracy, the proportion
of correctly classified instances) show that SVM outper-
formed other methods. The Linear SVM model was
therefore selected for further use. The trained SVM
model significantly outperformed a majority vote rule
baseline (classify all examples as the majority class),
which provides an accuracy of 0.87. We experimented
with tuning SVM parameters such as minimal term

Table 2 Distribution of classes in the training data

%

Sentences with inclusive pronouns 1395 12.9

Sentences without inclusive pronouns 9446 87.1

Total 10,841

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 5 of 11

http://socqa.org/

frequency, etc. but did not find settings that affected the
accuracy, so we used the default settings.
To further evaluate model performance, the model

was applied to new data and the results checked by a
trained annotator (one of the annotators of the train-
ing data set). Specifically, we used the model to code
200 sentences (10 sentences randomly selected from 5
projects each in the “graduated”, “in incubator”, “re-
tired” and “unknown” classes of projects). The human
annotator annotated the same sentences and we com-
pared the results. The Cohen kappa (agreement cor-
rected for chance agreement) for the human vs.
machine annotation was 88.6%, which is higher than
the frequently-applied threshold for human analysis of
80% agreement. In other words, the ML model per-
formed at least as well as a second human analyst
would be expected to do.
Surprisingly, when we examined the results, we found

no cases where a predicted inclusive reference refers to
another group, suggesting that the ML had managed to
learn the second criterion. Two sentences that the model
misclassified are illustrative of limitations of the
approach:

It looks like it requires work with “our @patterns” in
lib/path.pmI looked at the path.pm for
www.apache.org and it is a clue.

The actual class is “no” but the classifier marked it as
“yes” because the inclusive pronoun “our” was included
in the sentence, though in quotation marks as part of a
code snippet. The human coder knew to ignore this sec-
tion, but there were no features to enable the ML to
learn to do so.

Could also clarify download URLs for third-party de-
pendencies wecan’t ship.

In this sentence, the actual class is “yes” but the model
marked the sentence as “no” due to the error in spelling
(no space after “we”). The human annotator ignored the
error, but there were not enough examples of such er-
rors for the ML to learn to do so.
Despite such limitations, the benefit of being able to

handle large volumes of email more than makes up for
the possible slight loss in reliability of coding, especially

considering that human coders are also not perfectly
reliable.

4 Findings
In this section, we discuss in turn the findings from our
study, examining support for each hypothesis, deferring
discussion of the results to the following section. Hy-
pothesis 1 was that successful projects would have more
communication. Table 4 shows the median of the total
messages, by project status and developer role of the
sender. Note that because the distribution of the count
of messages sent is skewed, we report medians and sig-
nificance tests are done with a non-parametric test that
does not make distributional assumptions. Figure 2 pro-
vides a violin plot of this data. As shown in Table 4 and
Fig. 2, Hypothesis 1 is strongly supported, as graduated
projects have many times more messages sent during
the incubation process than retired projects (p = 0.000,
r = 0.34). (r is the effect size of the difference.)
Hypotheses 1a and 1b were that core and peripheral

members respectively would communicate more in suc-
cessful projects than in unsuccessful projects. Table 4
shows the median of the total number of messages sent
in a project, by project status and developer role. The
differences in Tables 4 and 5 show that these hypotheses
are supported (p = 0.000, r = 0.34 for core and
p = 0.001, r = 0.26 for peripheral members for total mes-
sage count in graduated vs. retired projects). The tests
exclude future core members.
However, as we noted above, graduated projects have

more developers and so would be expected to have more
communication for that reason. To control for the num-
ber of developers, Table 5 shows the median of the me-
dian number of messages per developer by project status
and developer role. There was not a significant differ-
ence in the median number of messages sent between
graduated and retired projects for either core or periph-
eral developers (p = 0.62 and p = 0.44 respectively).
Hypothesis 2 was that core members would communi-

cate more than peripheral members. From Table 4, we
can see that in total core members do send more mes-
sages than peripheral members in graduated projects,
though the total is about the same in retired projects.
However, there are fewer core members, so the median
core developer in a project sends many more messages
than the median peripheral developer, as shown in Table
5 and Fig. 3 (p = 0.000, r = 0.49).

Table 3 Accuracy of 10-fold Cross-Validation on the Training
Data

Unigram Bigram Trigram

Naïve Bayes (MNB) 0.86 0.81 0.75

k Nearest Neighbors (KNN) 0.89 0.89 0.88

Support Vector Machines (SVM) (LinearSVC) 0.97 0.97 0.97

Table 4 Median of total project messages by project status and
developer role

Core Future core Peripheral

Graduated 5481.5 (8259) 67(2137) 2203 (7007)

Retired 917 (1811) 814 (2023)

N = 74 projects. Standard deviations in parentheses

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 6 of 11

http://www.apache.org

We now turn from the volume of messages to con-
sider the content of the messages. Hypothesis 3 was that
core members would use more inclusive pronouns than
peripheral members. Table 6 and Fig. 4 shows the me-
dian number of messages sent by developers that in-
cluded an inclusive pronoun. The table shows that core
developers do send more messages with inclusive pro-
nouns in both graduated and retired projects (p = 0.000,
r = 0.64).
To control for the fact that core developers send more

messages in general, we computed the percentage of
messages that include an inclusive pronoun, as shown in
Table 7 and Fig. 5. From this table, we can see that the
median percentage of messages sent by core developers
that include an inclusive pronoun is higher than for per-
ipheral members (p = 0.000, r = 0.60).
Hypotheses 3a & b were that there would be more use

of inclusive pronouns by core and peripheral members
respectively in successful projects compared to unsuc-
cessful projects. However, from Table 6, we can see that
usage is nearly the same, so this hypothesis is not sup-
ported (p = 0.94 for core members; p = 0.19 for non-
core members). When considered as a percentage of
messages, again we find no significant difference be-
tween graduated and retired project (p = 0.45 for core

developers; p = 0.10 for peripheral developers). Accord-
ingly, neither hypothesis is supported.
Finally, hypothesis 4 was that future core developers

would behave the same as core developers. Surprisingly,
the analyses above suggest that the median future core
developer actually sends more messages (Table 5) but
appear like core developers in use of inclusive pronouns
(Table 6). Overall, Hypothesis 4 is supported.

5 Discussion
In general, our data suggest that successful projects (i.e.,
those that successfully graduated from incubation) have
more members and a correspondingly larger volume of
communication, suggesting an active community. Given
that community development is one of the goals of the
Apache incubation process, this outcome should be ex-
pected. Also as expected, core members contribute more
than non-core developers. Nevertheless, there is a high
volume of messages for both core and peripheral mem-
bers, suggesting that both roles play a part in projects.
As expected, core members do display greater expres-

sions of belonging to the team as expressed in the use of
inclusive pronouns. This finding supports Scialdone et
al.’s [18] hypothesis that “peripheral members in general
do not feel as comfortable expressing a sense of belong-
ing within their groups”, which is consistent with the no-
tion of peripheral members as being less connected to
projects. However, counter to our expectations, the use
of inclusive pronouns did not distinguish successful and
unsuccessful projects. This finding suggests that while it
is true that the unsuccessful projects failed in growing
their membership, there is no evidence that this failure
was due to peripheral members of the group feeling less

Fig. 2 Violin plot of total number of messages sent by project status and developer role

Table 5 Median of median number of messages sent per
developer by project status and developer role

Core Future core Peripheral

Graduated 27.25 (29.0) 64.5(65.8) 11 (3.6)

Retired 20.25 (44.4) 13 (18.6)

N = 74 projects. Standard deviations in parentheses

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 7 of 11

ownership of the project (or at least, not expressing
ownership in their language) and so not moving in to
the core.
It may be that median is not the important measure:

perhaps projects need only a few committed peripheral
members, not a high average level of commitment. It is
noteworthy that only the graduated projects had periph-
eral members who moved into the core. In conclusion,
while growing the community in general and the core in
particular seems to be important, other explanations
need to be sought for differences in success in attracting
new core members.

5.1 Threats to validity
As with any study, there are possible threats to the validity
of our conclusions. We cover in turn threats to construct
validity, to internal validity and to external validity.

5.1.1 Construct validity
Construct validity concerns the ability of the measured
data to represent the construct of interest. In the theory
development section, we argued why the data we chose
represent the concepts of interest. Specifically, we ar-
gued above that graduation from the incubator is a good
measure of project success, that project committer

status is a good measure of core or peripheral status and
that email use is a good measure of project communica-
tion. We further argued that use of inclusive pronouns
reflects commitment of members to the project.
However, the data we used in this paper are all based

on a single measure for each construct. While we do not
believe that the measures are biased, it might increase
construct validity if they were based on multiple sources
of data. A further issue is that the current measures of
two of the constructs are binary. It might provide more
insight if we could develop a more nuanced measure of
success to replace the graduated vs. retired measure we
used or of developer status to replace core vs. periphery.
Finally, it could be that some non-core developers have
names identical to core developers and their messages
are being included with the core developers. However,
core and peripheral members behave quite differently in
our analysis, so such possible misidentifications, if any,
do not seem to have impacted our findings.

5.1.2 Threats to internal validity
Threats to internal validity are those that affect the con-
clusions drawn from the study by offering explanations for
the outcome beside the independent variables. Many well-
known threats to internal validity do not apply to a non-
experimental study, e.g., history, maturation, instrumenta-
tion change or interaction of treatment and construct.
The data for our study came from non-reactive observa-
tion, which rules out threats to internal validity that arise
from the study itself influencing the behaviours of the par-
ticipants, e.g., testing, experimenter demand, hypothesis
guessing or resentful demoralization. In our study, we in-
cluded the whole population of Apache Incubator

Fig. 3 Violin plot of median number of messages sent per developer by project status and developer role

Table 6 Median number of messages including an inclusive
pronoun sent per developer by project status and developer
role

Core Future core Periphery

Graduated 2 (1.9) 2(4.81) 0 (0.3)

Retired 1.25 (3.7) 0 (2.6)

N = 74 projects. Standard deviations in parentheses

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 8 of 11

projects, eliminating threats to internal validity that arise
from selection bias or regression to the mean.
However, there is a possible threat to statistical con-

clusion validity. A major finding of the study was that
the use of inclusive pronouns did not seem to explain
the difference between successful and unsuccessful pro-
jects. However, while the p values for peripheral mem-
bers are not significant, they are low, so it could be that
this negative finding is due to an under-powered statis-
tical test, specifically, the non-parametric test used due
to concerns about the skewed distribution of the data.

5.1.3 Threats to external validity
Finally, threats to external validity concern the possibil-
ity to generalize from the study findings to other set-
tings. The study included only projects in the Apache
Incubator. The external validity of the findings could be
assessed by analyzing projects other than Apache Incu-
bator Podlings. For example, our focus on email is ap-
propriate for Apache projects, but other projects with
different policies may also use IRC, issue tracker or
newer mechanisms (e.g., Slack, HipChat, Mattermost) as
a communication channel, so those communications
would need to be included. Furthermore, it could be that

the periphery expressing ownership of the project is im-
portant later in the lifecycle of project, not in the earlier
period captured during many incubation projects. Future
studies could address projects at later stages.

6 Conclusions
The work presented here can be extended in many
ways in future work. First, the ML NLP might be im-
proved with a richer feature set, though as noted, the
performance was already as good as would be ex-
pected from an additional human coder. Second, we
can consider the effects of additional group mainten-
ance behaviours suggested by Wei et al. [19]. The
Syracuse SOCQA project has had some success apply-
ing ML NLP techniques to these codes, suggesting
that this analysis is feasible. Similarly, in this paper
we have considered only communication behaviours.
A more complete model of project success would
take into account measure of development activities
such as code commits or project topic, data for which
are available online. Finally, research might consider
the temporal aspects of the incubation process, e.g.,
entropy/mean of time response between the messages,
to see how developer engagement evolves over time
(e.g, [25]).
The research might also be extended by developing

practical uses of the analyses. First, it would be interesting
to examine the first few months of a project for early signs
that are predictive of its eventual outcome. Project leaders
might be able to use such diagnostics to identify problems
while there is still time to act. It might similarly be pos-
sible to predict which peripheral members will become
core members from their individual actions. However, it is

Fig. 4 Violin plot of median number of messages sent that include an inclusive pronoun by project status and developer role

Table 7 Median percentage of messages that include an
inclusive pronoun per developer by project status and
developer role

Core Future core Periphery

Graduated 4 (4.0) 2.25(7.0) 0 (0.8)

Retired 4 (5.3) 0 (3.3)

N = 74 projects. Standard deviations in parentheses

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 9 of 11

necessary to consider limits to the hypothesized impacts
before using them to provide advice to nascent communi-
ties. For example, we hypothesized that more communica-
tion reflects a more developed community, but it could be
that too much communication creates information over-
load and so has a negative impact. Focusing attention on
particular peripheral members identified as potential fu-
ture core members could create a self-fulfilling prophecy
or discourage other peripheral members.
Despite its limitations, our research offers several

advances over prior work. First, it examines a much
large sample of projects than prior work examining
core-peripheral communications and group mainten-
ance behaviours. Second, it uses a more objective
measure of project success, namely graduation from
the ASF Incubator, as a measure of community devel-
opment. Finally, it shows the viability of the applica-
tion of NLP and ML techniques to processing large
volumes of email messages, incorporating analysis of
the content of messages, not just counts or network
structure.

Abbreviations
ASF: Apache Software Foundation; FLOSS: Free/Libre Open Source Software;
KNN: k Nearest Neighbors; MNB: Naïve Bayes; SOCQA: Socio-computational
Qualitative Analysis; SVM: Support Vector Machines

Acknowledgements
A prior version of this paper was presented at the IFIP Working Group 2.13
OSS2016 Conference [26]. The current version includes additional data
analysis done to identify peripheral members who became committers and
their contributions, and additional changes to the methods, findings and
discussion sections.
We thank the SOCQA Project (Nancy McCracken PI) for access to the coded
sentences for training and Feifei Zhang for checking the coding results.

Funding
This research drew on data from the Syracuse University SOCQA project,
which was partially supported by a grant from the US National Science
Foundation Socio-computational Systems (SOCS) program, award 11–11107.

Availability of data and materials
Raw project and email data are available from the Apache Software
Foundation and MarkMail as noted in the paper. Training data for inclusive
pronouns were provided by the Syracuse SOCQA project and can be
requested from that project. Processed email and contributor data are
available from the authors on request.

Authors’ contributions
The first author developed the hypotheses and study design, carried out the
statistical analyses and wrote most the paper. The second author collected
and processed the email data and developed the natural language
processing used to classify the sentences. Both authors read and approved
the final manuscript.

Ethics approval and consent to participate
The research uses pre-existing public data sources and so did not require
ethics approval under United State human-subjects research regulations.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 2 September 2016 Accepted: 11 July 2017

References
1. Crowston K, Li Q, Wei K, Eseryel UY, Howison J. Self-organization of teams

for free/libre open source software development. Inf Softw Technol. 2007;
49(6):564–75. doi:10.1016/j.infsof.2007.02.004.

2. Crowston K, Howison J. Assessing the health of open source communities.
IEEE Comput. 2006;39(5):89–91. doi:10.1109/MC.2006.152.

3. Bonaccorsi A, Rossi C. Why open source software can succeed. Res Policy.
2003;32(7):1243–58. doi:10.1016/S0048-7333(03)00051-9.

Fig. 5 Violin plot of median percentage of messages sent that include an inclusive pronoun by project status and developer role

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 10 of 11

http://dx.doi.org/10.1016/j.infsof.2007.02.004
http://dx.doi.org/10.1109/MC.2006.152
http://dx.doi.org/10.1016/S0048-7333(03)00051-9

4. Fang Y, Neufeld D. Understanding sustained participation in open source
software projects. J Manag Inf Syst. 2009;25(4):9–50. doi:10.2753/MIS0742-
1222250401.

5. Barcellini F, Détienne F, Burkhardt J-M. A situated approach of roles and
participation in open source software communities. Hum Comput Interact.
2014;29(3):205–55. doi:10.1080/07370024.2013.812409.

6. Park JR. Interpersonal and affective communication in synchronous online
discourse. Libr Q. 2007;77(2):133–55. doi:10.1086/517841.

7. Crowston K, Wei K, Howison J, Wiggins A (2012) Free/libre open source
software development: what we know and what we do not know. ACM
Computing Surveys, 44(2): 7:1–7:35. doi: 10.1145/2089125.2089127.

8. Amrit C, van Hillegersberg J. Exploring the impact of socio-technical core-
periphery structures in open source software development. J Inf Technol.
2010;25(2):216–29. doi:10.1057/jit.2010.7.

9. Jensen C, Scacchi W (2007) Role migration and advancement processes in
OSSD Projects: A comparative case study. In Proceedings of the
International Conference on Software Engineering (ICSE), Minneapolis, MN,
pp. 364–374. doi: 10.1109/ICSE.2007.74.

10. Rullani F, Haefliger S. The periphery on stage: the intra-organizational
dynamics in online communities of creation. Res Policy. 2013;42(4):941–53.
doi:10.1016/j.respol.2012.10.008.

11. Jergensen C, Sarma A, Wagstrom P (2011) The onion patch: migration in
open source ecosystems. In Proceedings of the ACM SIGSOFT symposium
and the European conference on foundations of software engineering, pp.
70–80. ACM. doi: 10.1145/2025113.2025127.

12. Dahlander L, O'Mahony S. Progressing to the center: coordinating project
work. Organ Sci. 2011;22(4):961–79. doi:10.1287/orsc.1100.0571.

13. von Krogh G, Spaeth S, Lakhani KR. Community, joining, and specialization
in open source software innovation: a case study. Res Policy. 2003;32(7):
1217–41. doi:10.1016/S0048-7333(03)00050-7.

14. Crowston K, Howison J, Annabi H. Information systems success in free and
open source software development: theory and measures. Softw
Process—Improv Pract. 2006;11(2):123–48. doi:10.1002/spip.259.

15. Luthiger Stoll B. Fun and software development. Poster presented at the
International Conference on Open Source Systems, Genova, Italy. 2005.
Available from: http://www.aktionhip.ch/texts/BLuthiger_Fun_
SoftwareDevel_OSS2005.pdf.

16. Toral S, Martínez-Torres M, Barrero F. Analysis of virtual communities
supporting OSS projects using social network analysis. Inf Softw Technol.
2010;52(3):296–303. doi:10.1016/j.infsof.2009.10.007.

17. J-r P. Linguistic politeness and face-work in computer mediated
communication, part 2: an application of the theoretical framework. J Am
Soc Inf Sci Technol. 2008;59(14):2199–209. doi:10.1002/asi.20926.

18. Scialdone MJ, Heckman R, Crowston K (2009) Group maintenance
behaviours of core and peripheral members of free/libre open source
software teams. In Proceedings of the conference on open source systems,
Skövde, Sweden. Springer. doi: 10.1007/978-3-642-02032-2_26.

19. Wei K, Crowston K, Li NL, Heckman R. Understanding group
maintenance behavior in free/Libre open-source software projects: the
case of fire and Gaim. Inf Manage. 2014;51(3):297–309. doi:10.1016/j.im.
2014.02.001.

20. Crowston K, Wei K, Li Q, Howison J (2006) Core and periphery in Free/Libre
and Open Source software team communications. In Proceedings of the
Hawai'i International Conference on System System (HICSS-39), Kaua'i,
Hawai'i. doi: 10.1109/HICSS.2006.101.

21. Oliva GA, da Silva JT, Gerosa MA, Santana FWS, Werner CML, de Souza CRB,
de Oliveira KCM. Evolving the system's core: a case study on the
identification and characterization of key developers in Apache Ant.
Computing And Informatics, Slovakia. 2015;34(3). Available from: http://
www.cai.sk/ojs/index.php/cai/article/view/3225.

22. Bagozzi RP, Dholakia UM. Open source software user communities: a study
of participation in Linux user groups. Manag Sci. 2006;52(7):1099–115. doi:
10.1287/mnsc.1060.0545.

23. Yan JLS, McCracken N, Crowston K. Design of an active learning system
with human correction for content analysis. Paper presented at the
Workshop on Interactive Language Learning, Visualization, and Interfaces,
52nd Annual Meeting of the Association for Computational Linguistics,
Baltimore, MD. 2014. Available from http://socqa.org/ACL2014.

24. Yan JLS, McCracken N, Crowston K Semi-automatic content analysis of
qualitative data. In Proceedings of the iConference, Berlin, Germany. 2014.
Available from: http://socqa.org/iConf2014.

25. Zanetti MS, Scholtes I, Tessone CJ, Schweitzer F. The rise and fall of a central
contributor: dynamics of social organization and performance in the
GENTOO community. In: Proceedings of the 2013 6th international
workshop on cooperative and human aspects of software engineering
(CHASE); 2013. p. 49–56. doi:10.1109/CHASE.2013.6614731.

26. Crowston K, Shamshurin I (2016) Core-periphery communication and the
success of free/Libre open source software projects. In Proceedings of the IFIP
international conference on open source systems (OSS2016), Gothenburg,
Sweden, pp. 45–56. Springer. doi: 10.1007/978-3-319-39225-7_4.

Crowston and Shamshurin Journal of Internet Services and Applications (2017) 8:10 Page 11 of 11

http://dx.doi.org/10.2753/MIS0742-1222250401
http://dx.doi.org/10.2753/MIS0742-1222250401
http://dx.doi.org/10.1080/07370024.2013.812409
http://dx.doi.org/10.1086/517841
http://dx.doi.org/10.1145/2089125.2089127
http://dx.doi.org/10.1057/jit.2010.7
http://dx.doi.org/10.1109/ICSE.2007.74
http://dx.doi.org/10.1016/j.respol.2012.10.008
http://dx.doi.org/10.1145/2025113.2025127
http://dx.doi.org/10.1287/orsc.1100.0571
http://dx.doi.org/10.1016/S0048-7333(03)00050-7
http://dx.doi.org/10.1002/spip.259
http://www.aktionhip.ch/texts/BLuthiger_Fun_SoftwareDevel_OSS2005.pdf
http://www.aktionhip.ch/texts/BLuthiger_Fun_SoftwareDevel_OSS2005.pdf
http://dx.doi.org/10.1016/j.infsof.2009.10.007
http://dx.doi.org/10.1002/asi.20926
http://dx.doi.org/10.1007/978-3-642-02032-2_26
http://dx.doi.org/10.1016/j.im.2014.02.001
http://dx.doi.org/10.1016/j.im.2014.02.001
http://dx.doi.org/10.1109/HICSS.2006.101
http://www.cai.sk/ojs/index.php/cai/article/view/3225
http://www.cai.sk/ojs/index.php/cai/article/view/3225
http://dx.doi.org/10.1287/mnsc.1060.0545
http://socqa.org/ACL2014
http://socqa.org/iConf2014
http://dx.doi.org/10.1109/CHASE.2013.6614731
http://dx.doi.org/10.1007/978-3-319-39225-7_4

	Abstract
	Introduction
	Theory and hypotheses
	Methods
	Setting
	Data collection and processing
	Dependent variable: Success
	Core vs. periphery
	Expressions of belonging to the team

	Findings
	Discussion
	Threats to validity
	Construct validity
	Threats to internal validity
	Threats to external validity

	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	References

