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Abstract

The majority of fatal car crashes are caused by reckless driving. With the sophistication of vehicle instrumentation, reckless
maneuvers, such as abrupt turns, acceleration, and deceleration, can now be accurately detected by analyzing data related
to the driver-vehicle interactions. Such analysis usually requires very specific in-vehicle hardware and infrastructure sensors
(eg. loop detectors and radars), which can be costly. Hence, in this paper, we investigated if off-the-shelf smartphones can
be used to online detect and classify the driver's behavior in near real-time. To do so, we first modeled and performed an
intrinsic evaluation to assess the performance of three outlier detection algorithms formulated as a data stream processing
network which receives as input and processes data streams of smartphone and vehicle sensors. Next, we implemented a
novel scoring mechanism based on online outlier detection to quantitatively evaluate drivers’ maneuvers as either cautious
or reckless. Thus, we adapted a data mining mechanism which takes into account a sensor's data rates and power to
determine driver behavior in the scoring process. Finally, as the intrinsic evaluation does not necessarily reveal how well an

processing time on average.

algorithm will perform in a real-world scenario, we evaluated the algorithm that achieved the best result in a real-world
case study to assess drivers’ driving behavior. Our results indicate that the algorithm performs quickly and accurately; the
algorithm classifies driver behavior with 95.45% accuracy. Moreover, such results are obtained within 100 milliseconds of

Keywords: Online driving behavior detection, Online outlier detection, In-Vehicle sensing, Smartphone

1 Introduction

Driving is an everyday task that has become a necessity
for modern society, primarily in large cities. According to
Owsley [1], in some cases driving is associated with quality
of life. However, reckless driving has caused a growing
number of traffic accidents. Reckless driving is defined as
driving behavior defined by Tasca [2] as behavior that “de-
liberately increases the risk of collision and is motivated
by impatience, annoyance, hostility or an attempt to save
time.” According to a global safety report traffic by the
World Health Organization [3], 1.24 million people die
each year in traffic deaths and an estimated 20-50 million
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are involved in non-fatal accidents. In addition, it is esti-
mated that $518 billion dollars is spent on the conse-
quences of accidents [4]. However, studies indicate that
drivers tend to be relatively safer when monitored or when
feedback on their maneuvers is provided [5, 6].
Nevertheless, current intelligent transportation sys-
tems (ITS) continue to rely on an infrastructure com-
posed of static sensors and cameras installed on roads,
making it difficult to collect, aggregate, and analyze data,
especially in real-time [7-9]. Moreover, due to the high
cost of installation and maintenance, ITS are often re-
stricted to particular roads or neighborhoods [9-11]. By
contrast, the Internet of Things (IoT) aims to pervasively
connect billions [12] of things or smart objects such as
vehicles, sensors, actuators, and smartphones. The IoT
poses a more complicated challenge in multi-stream en-
vironments where multiple data streams compete for
available memory and processing resources, especially in
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resource-constrained systems such as sensors and mo-
bile devices [13]. For this reason, several IoT solution-
s—including tools for safe driving analysis—have been
designed and developed to perform data processing in a
cloud environment, due to a cloud’s virtually unlimited
capabilities and resources in terms of storage and pro-
cessing power. For instance, Quintero, Lopez, and
Cuervo [14] proposed an approach to classify driving be-
havior by collecting data onboard the vehicle and for-
warding them for processing in the cloud. Leng and
Zhao [15] and He, Yan and Xu [16] proposed a cloud
computing middleware for the so-called Internet of Vehi-
cles. However, due to the large volume of data generated
by some mobile smart device (i.e., sensors in vehicles), it
has become impractical and costly to transmit all data to
a cloud [17]. Among the many challenges of the IoT,
such as heterogeneity and interoperability, the authors
of [18] also highlighted the following: (i) middleware for
communication with the cloud [19]; (ii) technologies
supporting dynamic configuration [20]; and (iii) robust,
real-time mechanisms for data filtering and data mining
to cope with the large amount of raw data provided by
smart devices and reduce the amount of data transmit-
ted to the cloud.

Therefore, mining and processing mobile data streams
are a key technique for real-time data analysis [21]. In
this scenario, a mobile device is used to receive and
analyze a vehicle’s sensor’s data stream such as speed
and rotation readings rather than sending these data
streams for analysis in the cloud. Furthermore, with this
approach, the mobile device can also use its own sen-
sor’s data streams—accelerometer and gyroscope read-
ings—to enrich the vehicle’s data stream and analyze
driver behavior. We argue that analysis of driving behav-
ior using the received data streams can be mapped to
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the outlier detection problem which refers to the prob-
lem of finding data patterns that do not conform to (or
deviate sufficiently from) expected behaviors [22, 23],
e.g., sudden lane changes and hard breaks. Although
outlier detection has been widely studied, little research
has been done on detecting outliers in dynamic data
streams on mobile platforms. Given that dynamic means
a non-stationary context, the pattern discovery algorithm
must adapt to the available data streams. For instance,
approaches for modeling and recognizing driving behav-
ior assume a fixed set of data extracted from onboard
vehicle sensors. However, in a real-world scenario, mod-
eled sensors may not be available in a specific type/make
of vehicle. For instance, most automobile manufacturers
have introduced, in addition to the original, standard on-
board diagnostics (OBD-II) [24], another set of sensor
data such as steering wheel angle, breaks, airbag triggers,
[24, 25] and stability control. Thus, the format of ve-
hicular sensor reading and the available data depends on
either the manufacturer or the vehicle [26]. The outlier
detection algorithm must precisely perform within the
limited computational resources of mobile smart de-
vices, in contrast to the virtually unlimited cloud envir-
onment. Moreover, the outlier detection algorithm must
operate online, continually processing data items as they
are delivered in the input buffer. In contrast, offline al-
gorithms require the complete and finite set of input
data for processing. Offline algorithms usually buffer all
the input data as a batch before processing them. Conse-
quently, in offline algorithms the detection of a pattern
is delayed until the buffer is filled [27].

With the goal of enabling online detection of reckless
driving behavior, this paper investigates online outlier
detection algorithms for dynamic data streams on mo-
bile devices with limited computational resources. It is
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important to highlight that these algorithms need to
adapt to the available vehicle’s sensors or mobile device’s
sensors. Our study adapts and compares three classical
offline outlier detection algorithms to perform online
data stream processing using the Complex Event Pro-
cessing (CEP) [28, 29] paradigm. Thus, we propose and
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evaluate a lightweight approach for detecting outliers
through CEP in dynamic data streams generated from
mobile devices’ sensors and the vehicle’s onboard sen-
sors. Such an approach should (i) perform online data
stream mining to identify outliers while respecting the
intrinsic computational and storage limitations of mobile
devices, and (ii) be able to adapt to the available input
data (i.e., sensors) streams. Specifically, the main contri-
butions of this research include a mechanism to perform
online outlier detection over multiple data streams in a
resource-constrained device, and a prototype application
that implements these requirements to classify driving
behavior. A case study was carried out in a real-world
scenario in Brazil with the aim of validating the proto-
type. The results indicate a fast (i.e. ~100 milliseconds of
processing time) and accurate (i.e., 95.45% accurate)
performance.

1.1 Problem statement

Outlier detection refers to finding patterns in data that
do not conform to expected behavior [23]. An outlier
commonly contains useful information about abnormal
characteristics of the system or entity [30]. Outlier de-
tection is a multidisciplinary field of study that investi-
gates how to extract patterns from large datasets
covering a broad spectrum of techniques, such as statis-
tical inference, machine learning, and data mining [23,
31, 32]. Moreover, it has been extensively applied in a
variety of applications, for instance, detection of finan-
cial fraud, network intrusion, failures in critical systems,
sensor faults in sensor networks, speech recognition,
and traffic monitoring [23, 32].

Despite extensive research on outlier detection, most
existing methods require the entire dataset (or at least a
large portion of it) to detect outliers [23, 33], and are de-
signed to perform offline analysis [22] for a large volume
of data. These algorithms have no or only restricted
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support for real-time data analysis requirements - such
as meeting timing constraints - and have difficulty
adapting to continuous non-stationary data [34]. Online
data analytics is particularly significant for applications
that need real-time analysis of continuous data streams.
This analysis needs to be performed in a manner enab-
ling it to run with partial data and with the limited com-
putational resources of mobile devices. It is challenging
to adapt existing outlier detection solutions to mobile
data streams since they were designed and developed for
cloud environments with abundant available resources,
in which they normally compute with the complete data
input [35]. Furthermore, such solutions are treated as a
“black boxes” [34], wherein changes can scarcely be
made to internal algorithms. The data mining commu-
nity has conducted studies addressing outlier detection
in data streams; however, these proposals mainly solve
difficulties that are not the focus of the current paper,
such as clustering [36, 37], mining frequent patterns [38,
39], data analysis [40, 41], and query processing [42] in
the cloud environment. The aim of this paper is to in-
vestigate online outlier detection over multiple and dy-
namic data streams. Moreover, the outlier detection is
performed in a smart object with limited processing and
storage capabilities (unlike cloud environments) within a
mobile scenario in which there is no guarantee that all
data will always be available. Based on a systematic re-
view of approaches conducted in this paper, we claim
that, to the best of our knowledge, the literature offers
no solutions to this problem.

A data stream is a continuous and online sequence of
unbounded items for which it is not possible to control
the order of the produced and processed data [43]. One

characteristic of the data stream is its dynamic nature
[44], meaning the properties of data instances may
evolve or change over time. Additionally, context
changes in a mobile scenario. For instance, it may mod-
ify the available data stream’s inputs, and therefore, it is
necessary for an algorithm to adapt to the stream’s evo-
lution [45]. Recently, online outlier detection within data
streams has attracted attention in many constrained
emerging applications, such as mobile crowd sensing,
mobile activity recognition, ITS, and mobile healthcare
[21]. In these applications, multiple and continuous
streams are generated by mobile sensors and these
streams need to be analyzed in real time. Based on this
scenario, it can be seen that the adaptation of strategies
for classical outlier detection algorithms to operate with
mobile data streams, thus enabling their operation on
mobile devices to be efficient, is a challenging research
task [21, 35, 46]. This is because (i) outlier detection for
data streams is restricted to the partial set of events
within a time window; (ii) random access on the set is
not possible; (iii) the algorithm must adapt to hardware
resources and available sensor data; and (iv) patterns
must be discovered within a single pass over the data
stream. Moreover, Chandola, Banerjee and Kumar [23]
highlight additional factors that make the outlier detec-
tion problem more difficult in such a situation:

o Defining a region encompassing all possible normal
driving behavior is difficult. Furthermore, the
threshold between normal and abnormal driving
behavior is not often precise. Thus, an outlier
observation lying close to the boundary may be
normal or abnormal.
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Fig. 5 Online Z-score event processing network (EPN)




Vasconcelos et al. Journal of Internet Services and Applications (2017) 8:13

Page 5 of 30

INSERT INTO Z_SCORE_EVENT

w N =

4. GROUP BY dimension

SELECT (rawValue - avg(rawValue))/stddev(rawValue) AS z_score
FROM Evidence.win:time(windowLength sec)

Fig. 6 Z-score computation expressed in event processing language (EPL)

e The lack of availability of datasets for training and
validation is often a major problem. The exact
notion of an outlier differs depending on the
application domain. An outlier detection
formulation is generated by both the nature of data
and the availability of labeled data.

1.2 Motivating scenario

Intelligent transportation systems have received increas-
ing attention from academia, industry, and governments,
and have been considered the next technological change
in individuals’ daily lives [47]. Automobile manufac-
turers, in an attempt to overcome the aforementioned
ITS limitations, have developed products that help
drivers, called Advanced Driver Assistance Systems
(ADAS). These systems [48, 49] obtain vehicle data from
sensors or embedded devices (e.g., cameras and stability
control sensors) for the prevention and detection of col-
lisions (e.g., crash sensors can activate airbags), assisted
driving, and the generation of offline driving reports.
The advantages of ADAS include the rare occurrence of
false positives [50] when accessing sensors and devices
that are embedded in the vehicle. However, the key im-
pediment of ADAS lies in the fact that they are typically
available only in new and high-standard vehicles that
have prohibitive prices for most drivers [50—52], even in
developed countries. Furthermore, the installation of
ADAS in older car models is either impossible or inor-
dinately expensive. Finally, when ADAS become obso-
lete, upgrading or changing to a newer, more efficient
system is a difficult task [50], and exorbitant for most
drivers.

By contrast, studies have proposed the use of smart-
phones to understand and evaluate a driver’s behavior
[5, 26, 49, 53-57]. The choice of using a smartphone is
made due to its affordability and wide adoption, suffi-
cient storage capacity and processing power, as well as
its equipment with a variety of sensors. Moreover, a
smartphone can act as a processing hub that receives
and analyzes data from different vehicle sensors. For in-
stance, with Bluetooth, a smartphone is able to connect
and receive data from multiple in-vehicle sensors using
the OBD-II standard, simultaneously receiving and pro-
cessing speed and accelerometer data streams. Further-
more, in-vehicle sensors’ data streams can be combined
with smartphone-embedded sensors (such as direction
and location) to further enrich the analysis. Finally,
smartphones allow for the development of ubiquitous
and loosely connected systems that provide rich data for
the analysis of driving behavior.

Currently, approaches that evaluate driving behavior in
general use models and techniques (e.g., Neural Net-
works, Fuzzy Theory, and Hidden Markov models) with
good accuracy [58]. However, they were not designed for
data stream processing [40], and according to Lin et al.
and Wang, Xi, and Chen [58, 59], have low processing
performances, require a long training phase, artificial as-
sumptions, or prior knowledge to formulate rules. More-
over, since these approaches are statics (i.e., non-
adaptable), they have difficulty quickly and accurately
recognizing parameters [58], for instance, neural net-
works have subjective methods for adjusting the top-
ology (number of layers and neurons) and require a
fixed number of input parameters. A final drawback,
highlighted by Wang [59], is that these approaches are
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Fig. 7 Online box plot event processing network (EPN)
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INSERT INTO BOX_PLOT_Q2_EVENT
SELECT median(rawValue) AS g2,

rawValue AS rawValue
FROM Evidence.win:time(windowLength sec)
GROUP BY dimension

i b W N

Fig. 8 Q2 calculation

“black boxes” with little ability to identify causal rela-
tionships making it impossible to understand physical
behaviors. However, driving conditions (which are influ-
enced by the state of the driver, traffic, and weather con-
ditions) are dynamic and as such, all information that a
technique or algorithm needs as an input will not always
be available onboard. Thus, we believe that an assess-
ment of a driver’s driving behavior would benefit from
an online outlier detection approach in dynamic mobile
data streams.

1.3 Assumptions
This paper considers the following assumptions.

e Most data instances in data stream are normal. Only a
small portion of the data consists of outliers [60, 61].

e Outliers are statistically different from normal data
[2, 62].

e DBattery power consumption is not a critical
requirement because in a vehicle a smartphone can
be charged easily when necessary.

However, it is important to note that the first two as-
sumptions complement themselves. Considering only
the first assumption, some outliers may have behaviors
similar to normal data. The second assumption, how-
ever, states that outliers are a set of data with behaviors
that differ from normal data.

The remainder of the paper is organized as follows.
Section 2 presents an overview of the key concepts and
system modeling used throughout this work. Section 3
details the proposed approach to online outlier detection
for mobile, dynamic data stream. Section 4 highlights
definitions and planning of the case study. Section 5
summarizes the main results of the assessment con-
ducted to evaluate the proposal. Section 6 discusses
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related work. Finally, Section 7 reviews and discusses the
central ideas presented in this paper and proposes paths
for future work on the subject.

2 Fundamentals
This section presents the main concepts of complex
event processing, as well as outlier detection algorithms.

2.1 Complex event processing

Complex event processing (CEP) is a set of tech-
niques and tools that provides an in-memory process-
ing model for an asynchronous data stream in real
time (i.e., minimum delay) for online detection of sit-
uations of interest [28]. Complex event processing of-
fers [28]: (i) situation awareness through the use of
continuous queries that correlate data from different
sensors data streams; (ii) context awareness by subdiv-
iding data streams into different views, such as tem-
poral windows or key partitions; and (iii) flexibility,
since it can specify events at any time, that is, the
specification of events can be dynamically changed
while a system is running (i.e., on-the-fly).

The CEP central concept is a declarative event pro-
cessing language (EPL) to express event processing rules
(continuous queries and patterns). These rules are based
on the event-condition-action triad, and use operators
(e.g., logic, counting, temporal, causal, and spatial) on in-
put events, searching for correlations, exceptional condi-
tions, and the occurrence of patterns. The central task
of CEP is to provide mechanisms for event pattern
matching, ie., from hundreds or even thousands of
events, to identify significant patterns in the application
domain [63]. Event processing and pattern detection are
made by so-called event processing agents (EPAs) that
process an event’s stream. Essentially, an EPA filter sepa-
rates, aggregates, transforms, and synthesizes new com-
plex events from simple events. A reckless maneuver
(e.g., rapidly turning at a high speed) is an example of a
complex event, in so far as it is based on the compos-
ition of primitive events, such as acceleration, speed, and
wheel direction. To perform the detection of such com-
plex events, it is necessary to collect and analyze the
data stream generated by various primitive sensors, look-
ing for patterns and correlations. To detect the pattern
of a maneuver, it is necessary to use an important

-

INSERT INTO BOX_PLOT_Q1_Q3_EVENT
SELECT rawValue, g2,
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(SELECT median(rawValue) FROM BOX_PLOT_Q2_EVENT WHERE rawValue < q2) AS qil,
(SELECT median(rawValue) FROM BOX_PLOT_Q2_EVENT WHERE rawValue > g2) AS g3
FROM BOX_PLOT_Q2_EVENT.win:time(windowLength sec)
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INSERT INTO BOX_PLOT_EVENT

6. GROUP BY dimension

Fig. 10 5-summary box plot data

1
2. SELECT rawValue, ql, g2, g3, (g3 - ql) AS IQR,

3. fmin(rawValue, non_outlier_expression) AS min_non_outlier,
4 fmax(rawValue, non_outlier_expression) AS max_non_outlier
5. FROM BOX_PLOT_Q1_Q3_EVENT.win:time(windowLength sec)

J

concept of CEP called the time window (or just window).
A window is a temporal context that defines which
portions of the input data stream are considered dur-
ing the execution of an EPL rule [64], i.e., events in
the last 30 s, or a snapshot of such recent events
[63]. The most common time window models are the
batch and sliding window [64]. The former have a
fixed lower bound while the upper bound advances
every time a new information item enters the system,
that is, the CEP engine buffers and processes all
events in a time interval. The latter has a fixed size,
however, both lower and upper bounds advance when
new items enter the system. In others words, it is a
moving batch window. An event processing network
(EPN) is a network of interconnected EPAs that im-
plement the global processing logic for pattern detec-
tion through event processing [29]. In an EPN, EPAs
are conceptually connected to each other—output
events from one EPA are forwarded and further proc-
essed by other EPAs—without regard to the particular
kind of underlying communication mechanism for
event dissemination.

2.2 Outlier detection

Outlier detection techniques typically assume that out-
liers in data are rare compared to normal instances. A
variety of outlier detection techniques have been devel-
oped in several research communities. Many of these
techniques have been specifically developed for specific

application domains, while others are more generic. The
techniques explained in this paper are used widely in
several research areas for identifying outliers in data.
The earliest algorithms used for outlier detection were
statistical approaches which assume that normal in-
stances occur in high probability regions, while anomal-
ies occur in low probability regions. The standard score
(more commonly referred to as the Z-score) is a simple
statistical technique that enables one-pass computation
over a data stream to identify outliers, making different
kinds of data comparable and easier to interpret [65].
The Z-score describes a raw score’s location in terms of
how far above or below the mean it is when measured in
standard deviations [65]. A z-score of 0 means that the
raw data instance is equal to the mean. The Z-score is
calculated as shown in eq. (1), where Z is the Z-score of
a data instance, X stands for the sample value, p stands
for the mean of the sampling, and ox stands for the
standard deviation of the mean. This computation cre-
ates a unitless score that is no longer relates to the ori-
ginal units (e.g, km/h and m/s®) as it measures the
number of standard deviation units and therefore can
more readily be used for comparisons [66].

_Xou
oox

Z (1)

According to Heiman [65], a Z-score basically has two
components: (1) a sign, positive or negative, indicating
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Fig. 11 Online K-means event processing network (EPN)
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1. INSERT INTO MIN_DISTANCE_MATRIX
2. SELECT SQRT(SUM(POW(e.rawValue - c.centroid),2)) AS distance,
3; e.cluster_id AS current_cluster_id,
4. c.id AS nearest_cluster_id
5. FROM EvidenceStreamEvent.win:time_batch(timeWindowLength sec) AS e,
6. ClusterStreamEvent.win:time_batch(timeWindowLength sec) AS c
7. HAVING MIN(SQRT(SUM(POW(e.rawValue - c.centroid),2)))) =
8. SQRT(SUM(POW(e.rawValue - c.centroid),2)))
Fig. 12 Computing distance to nearest cluster

whether the raw score is above or below the mean; and
(2) the absolute Z-score value, indicating the score’s dis-
tance from the mean when measured in standard devia-
tions. According to Chandola, Banerjee and Kumar [23],
all data instances whose Z-score module is greater than
3 are declared an outlier. After computing the Z-score
for each data instance, the algorithm calculates the Z-
distribution (i.e., the relative frequency of the raw Z-
scores of a population or sample). Figure 1 shows a per-
fect normal Z-distribution (a.k.a, a standard normal
curve). It should be noted that 50% of the scores fall
below the mean, 50% fall above the mean, approximately
68% of the distribution is between +1 ox from the mean,
and Z-scores higher than +3 and lower than -3 occur
less than 1% of the time. If these Z-scores were obtained
from driving data, this would imply, for instance, that
most of the time a driver maintained a driving behavior
without abrupt changes in speed or direction. In cases
where outliers are detected, the driver may have con-
ducted evasive maneuvers to avoid accidents or indeed
behaved recklessly, but the number of outliers would
still be insufficient to consider the driver reckless. The

strength of the Z-score arises from the fact that this
technique does not require user parameters and outliers
are discovered with a single pass over the data stream.
However, it is susceptible to the number of data in-
stances in the dataset and has a unidimensional nature
[32].

The box plot is likely the simplest statistical technique
to detect outliers in both univariate and multivariate
data sets that makes no assumptions about the data dis-
tribution model [23, 32]. The box plot has become a
standard technique for presenting a simple display of a
5-number summary, which consists of the smallest non-
anomaly observation (min), lower quartile (Q), median
(Q2), upper quartile (Q3), largest non-anomaly observa-
tion (max), and interquartile range (IQR)—the difference
between Q3 and QI. This means that 25% of observa-
tions are smaller than the first quartile, 50% are smaller
than the second quartile, and 75% are smaller than the
third quartile. Outliers are points beyond the upper and
lower values of the box plot [32]. Laurikkala, Juhola and
Kentala [67] suggest a heuristic of (1.5 x IQR) beyond
the higher and lower values for outliers; however,

INSERT INTO LoopEvent
SELECT TRUE AS loop

HAVING COUNT(*) > @
LIMIT 1

INSERT INTO ClusterStreamEvent
SELECT mdm.cluster_id AS id,
avg( mdm.rawvalue) AS centroid

W 0 NV R WN R

BoR R R
w N RO

. GROUP BY mdm.cluster_id
. HAVING COUNT(*) > @

PR e
o v A

. INSERT INTO EvidenceStreamEvent
. SELECT *

PR
[N

19. LoopEvent (1loop=TRUE)) ]

Fig. 13 K-means loop statements

FROM MIN_DISTANCE_MATRIX.win:time_batch(timeWindowLength sec) d
WHERE d.AnyOf( i=> i.current_associate_cluster_id != i.cluster_id)

. FROM pattern[every mdm=MIN_DISTANCE_MATRIX -> (timer:interval(timeWindowLength sec) AND
LoopEvent (loop=TRUE))].win:time_batch(timeWindowLength sec)

. FROM pattern[every mdm=MIN_DISTANCE_MATRIX -> (timer:interval(timeWindowLength sec) AND
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according to [32], such a heuristic would need to vary
across different datasets. A typical box plot can be seen
in Fig. 2. Different from the Z-score, box plots make no
assumptions about the data distribution model, however,
for multivariate datasets, it is possible to perform a pair-
wise distance measure. This technique can have quad-
ratic complexity (i.e., in the worst case) since it is
founded on the calculation of distances between all data
instances [32].

The clustering [68] approach is an exploratory data
analysis technique in which a set of input objects,

normally multidimensional, are classified into groups
(i.e., clusters) of similar objects. Furthermore, it is essen-
tially an unsupervised technique which is preceded by a
short and semi-supervised testing and training phase

Table 1 Confusion matrix

Actual class Predicted class

Positive Negative
Positive True Positive (TP) False Negative (FN)
Negative False Positive (FP) True Negative (TN)
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Table 2 Performance metrics [83]
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Metric Equation
. ’ : - TPTN
Accuracy is the percentage of instances (evidence) correctly classified. TPITNIFPTAN

Recall is the percentage of instances that were correctly classified as positive.
Precision is the percentage of instances classified as positive (evidence) that are actually positive.

F Measure is the harmonic mean of precision and recall, meaning it combines the precision and recall.

Error Rate is the proportion of instances that are incorrectly classified.

_IP_

TP+FN

_IP_

TP+FP

2 x precision x_recall

precision-+recall
FP+FN

TPLANEFPHIN

[30, 69] used to identify outliers. Distance-based cluster-
ing approaches use a particular clustering measure, such
as Euclidian distance. As in the box plot technique,
distance-based clustering can have quadratic complexity.
Such an approach is based on the following hypothesis
according to Chandola, Banerjee and Kumar [23]: nor-
mal data instances lie close to their closest cluster cen-
troid, while outliers are far away from their closest
cluster centroid.

Following the aforementioned hypothesis considering
two clusters, as shown in Fig. 3, points PI and P2 are
considered outliers since they are far away from the
clusters’ centroids. However, as outliers form clusters by
themselves, this technique is not able to detect such out-
liers because data instances that lie close to a cluster
centroid are considered normal data. To overcome this
limitation, a second category of clustering relies on the
following hypothesis [23]: normal data instances lie close
to their closest cluster centroid, while outliers are far
away from their closest cluster centroid. Based on this
hypothesis, as P1 is closer to the cautious cluster cen-
troid, it is considered normal data, while P2 is closer to
the reckless cluster centroid and thus considered an out-
lier. However, it can be extremely costly to collect and
label abnormal data [32]. For instance, collecting data
that represents reckless driving behavior can even be
dangerous, as it may cause traffic accidents. Thus, a
clustering algorithm should be capable of identifying
outliers with a few data instances that represent reckless
driving behavior. For more details regarding outlier de-
tection, we encourage readers to refer to [23, 31, 32].

The K-means algorithm is likely the most popular and
the widely used unsupervised clustering algorithm [68]

Table 3 Confusion Matrix by Algorithm and Driver (TP and TN)
forh=100and A =10

which can classify multidimensional data into different
groups on the basis of certain dissimilarity measures.
The classical K-means algorithm initially chooses ran-
dom cluster prototypes according to a user-defined se-
lection process. Next, the input data is applied iteratively
and the algorithm identifies the best matching cluster,
updating the cluster centroid to reflect the new exem-
plar and minimize the sum-of-squares clustering func-
tion given by eq. (2), where p is the mean of the points
(x") in cluster S;. However, other distance measurements
can be used, such as Euclidean distance [23].

>3 |

J=1 pes

. 2
x —ﬂjH (2)

Through the combination of EPL rules, it is possible
to write algorithms to classify drivers’ driving behaviors.
Thus, we adapted three outlier detection algorithms to
EPL rules to perform online processing of a data stream
generated by sensors onboard a vehicle. Sections 3.1, 3.2,
and 3.3 explains the algorithms.

3 Related work

Kontaki et al. [70] propose four distance-based algo-
rithms for continuous outlier monitoring in data
streams. The primary concerns are improving efficiency
and reducing memory consumption. To do this, the al-
gorithms use the concept of outliers and inliers. A data
instance x is considered an outlier if there are less than
k data instances at a distance, at most D, from x, exclud-
ing x itself. On the other hand, if the number of data in-
stances in the D-neighborhood of x is enough (i.e., more
than k), then x is characterized as an inlier. To improve

Table 4 Confusion matrix by algorithm and driver (FP and FN)
forh=100and A =10

Confusion Matrix

Confusion Matrix

Driver  Cautious (True Positive - TP) Reckless (True Negative — TN) Driver  Cautious (False Positive - FP) Reckless (False Negative — FN)
Cluster  Box Plot ~ Z-score  Cluster ~ Box Plot  Z-score Cluster  Box Plot ~ Z-score  Cluster ~ Box Plot  Z-score

D1 5990 5004 5143 17 49 40 D1 3 19 28 110 175 36

D2 5642 5439 5593 4 52 28 D2 0 34 58 83 201 47

D3 5876 5667 5817 26 75 39 D3 14 40 76 61 191 41

D4 13465 5618 5716 123 191 45 D4 12 14 160 288 131 33

D5 6114 5024 5201 5 58 41 D5 10 27 44 70 206 29
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Table 5 Algorithm accuracy comparison
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Table 7 Algorithm recall comparison

Driver h=100and A =10 h=50and A =20 h=100and A =10 h=50and A =20

K-means Box Plot Z-score K-means Box Plot Z-score Driver K-means Box Plot Z-score K-means Box Plot Z-score
D1 98.15%  9630%  9878% 9805%  93.71%  98.58% D1 9820%  9662%  9930% 98.10%  9635%  9891%
D2 98.55% 9590%  98.17%  98.16% 96.30%  98.80% D2 98.55% 96.44%  99.17%  98.52% 96.30%  98.80%
D3 98.75%  96.13%  98.04% 9840%  96.61%  98.59% D3 9897%  9674%  9930% 98.77%  9886% = 9860%
D4 97.84% 97.59%  96.76%  96.12% 97.80%  98.94% D4 97.91% 97.72%  9943%  96.19% 97.80%  98.94%
D5 98.71% 95.62%  9863% 97.86% 9740%  9857% D5 98.87% 96.06%  9945%  98.12% 9740%  98.63%
Average 9840%  9630%  9807% 97.72%  9636%  98.70%  Average 9850% = 96.72%  99.33% 9794%  9734%  98.78%

efficiency, the concept of micro-clusters is used to re-
duce the number of distance computations. The window
size determines the memory size and the number of data
instances considered in the time window approach, that
is, all data instances in a time window are stored in the
main memory and processed by an algorithm. However,
the authors control the arrivals and departures of in-
stances in the time window. In these events, if the num-
ber of neighbors of a given data instance of x is greater
than k then x will never be an outlier and is called a safe
inlier. Thus, safe inliers are not stored for further pro-
cessing and consequently reduce computation and mem-
ory use. Each algorithm has a few variations of this
process, however, none have been designed to run on
devices with memory and processing constraints.

An online outlier exploration platform, or in short,
ONION [71], is proposed for modeling and exploring
outliers in large datasets based on a distance-based
approach. An ONION employs an offline preprocess-
ing phase followed by an online exploration phase,
enabling users to establish connections among out-
liers. As it is difficult to set appropriate D and k
values [70, 71], the offline phase is a preprocessing
three-dimensional phase that computes all possible
combinations of D, k, and entire dataset instances. In
fact, k can take in the universe of natural numbers
and the user must specify lower and upper bounds
for k. This phase outputs all outlier candidates. Then,
the online phase, with some rules, determines which
candidates are actually outliers.

Table 6 Algorithm precision comparison

Zhao et al. [55] propose a driver behavior evaluation
scoring mechanism named Join Driving (based on the
ISO 2631 standard [72]). This mechanism analyzes pas-
sengers’ comfort level based on their exposure to vibra-
tions to classify drivers as cautious or reckless. As
human’s feelings in response to vibration depend on the
level, frequency, and duration of acceleration, the mech-
anism analyzes three-axis accelerometer data. However,
because a smartphone is likely in an arbitrary position
inside a vehicle, the authors also have developed a novel
algorithm for reorientation using GPS and orientation
sensor data. The evaluation shows that the mechanism
can accurately score driving behaviors in high and mid-
value smartphones. The main difference between this
approach and those of the current paper is that in Zhao
et al. [55] the analysis of the data is offline—performed
when a driver reports their arrival arrived at a destina-
tion—while our approach is based on online processing,
able to help a driver while driving.

To understand and model reckless driving behavior,
Hong, Margines and Dey [56] implemented a low-cost,
in-vehicle sensing platform. Unlike Zhao et al. [55],
which only uses a smartphone’s sensors, this platform
added an OBD-II diagnostic device to collect data from
the vehicle, such as speed, rpm, speed, and throttle pos-
ition. Furthermore, to detect steering wheel movement,
a device called an inertial measurement unit (IMU) was
added. Both devices communicated via Bluetooth with a
smartphone. To characterize driving behavior, a machine
learning-based model analyzed data from acceleration

Table 8 Algorithm F measure comparison

Driver h=100and A =10 h=50and A =20 Driver h=100and A =10 h=50and A =20

K-means Box Plot Z-score K-means Box Plot Z-score K-means Box Plot Z-score K-means Box Plot Z-score
D1 99.95% 96.22%  9946% 99.93% 100.00%  99.52% D1 99.07% 98.10%  9938%  99.00% 98.17%  99.45%
D2 10000% 99.38%  9897% 99.60%  10000% 100.00% D2 9927%  97.89%  99.07% 99.06%  9806%  99.30%
D3 99.76% 99.30%  9871% 99.61% 100.00%  100.00% D3 99.37% 98.00%  99.00%  99.19% 98.06%  99.20%
D4 99.76% 99.75%  97.28%  99.89% 100.00%  100.00% D4 98.90% 9873%  9834%  98.00% 99.19%  99.42%
D5 99.84%  9947%  99.16% 99.71%  100.00% 100.00% D5 9935%  9773%  9930% 9891%  9868%  99.30%
Average 99.89% 9882%  98.72%  99.75% 100.00%  99.90% Average  99.19% 98.09%  99.02% 98.83% 9843%  99.33%
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Table 9 Algorithm execution time comparison
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h=100and A =10

h=50and A =20

Driver K-means Box Plot Z-score K-means Box Plot Z-score
D1 769.6 ms 1320 ms 100.2 ms 7120 ms 129.8 ms 98.3 ms
D2 700.0 ms 187.0 ms 103.1 ms 7094 ms 1864 ms 99.0 ms
D3 7064 ms 189.9 ms 1009 ms 705.5 ms 190.2 ms 99.7 ms
D4 705.3 ms 186.0 ms 101.5 ms 702.3 ms 186.8 ms 1006 ms
D5 787.0 ms 188.0 ms 102.7 ms 7804 ms 190.1 ms 100.3 ms
Average 7336 ms 1764 ms 101.6 ms 7219 ms 176.6 ms 99.5 ms

(smartphone sensor), OBD-II, and the IMU. To deter-
mine driving behavior, a trip profile is constructed by
summarizing trip-profiles obtained from the last three
weeks, called driver’s profiles. Finally, the driver’s driving
behavior is determined from the driver profile and ma-
chine learning. As in the work proposed by Zhao et al.
[55], analysis of driver behavior is off-line. However,
Hong, Margines and Dey [56], templates must be stored,
such as acceleration, deceleration, and curves, which are
used for comparison with the driver’s maneuvers and a
subsequent classification as cautious or reckless. Accord-
ing to Banovic et al. [73], this is a weakness because ma-
chine learning algorithms classify and predict only the
most frequent behaviors. In this respect, infrequent vari-
ations in drivers’ behaviors are difficult to detect.

Vehicle data stream mining (VEDAS) [74] aims to iden-
tify outliers using a device with low computational
power—low processing and storage capacity—and was de-
signed to mine a vehicle’s data stream. Data are collected
through an OBD-II device and stored in a data stream
management system (DSMS) that provides mechanisms
to control and access the data through queries. The DSMS
provides operators with the ability to compute statistical
aggregation such as mean, variance, and covariance. After
pre-processing aggregate data, VEDAS constructs a repre-
sentation of low dimensional data through three tech-
niques: Incremental principal component analysis (PCA),
Fourier transformations, or linear online segmentation.
Although it is possible to dynamically choose which of the
techniques will be used, the authors emphasize that PCA
does not work well for online monitoring with limited
computational resources. According to the authors,
VEDAS implements a collection of techniques and algo-
rithms, including proprietary ones, to perform data stream
analysis. The authors discuss techniques based on cluster-
ing and statistical tests. First, OBD-II data is grouped by

Table 10 Smartphone resource consumption

Situation RAM(MB) CPU (%)
Standby 453 MB 141%
Collecting 5.18 MB 3.60%

K-means to detect abnormal vehicle health monitoring
patterns. The goal of clustering is to identify representa-
tions in space that correspond to safe vehicle operation.
The detection of unusual driving patterns is performed
through acceleration analysis with a linear approximation
algorithm, the piecewise linear approximation [75]. In
addition, a statistical test is performed on the smoothed
data with the algorithm assuming a Gaussian distribution
to identify unusual patterns. The data used for validation
of the proposal were extracted from Live For Speed, a driv-
ing simulator. However, no driver behavior classification is
performed.

The study of Aljaafreh, Alshabatat, and Najim [76]
proposes the use of inference by fuzzy logic for online
identification of abnormal driving data and driver behav-
ior classification based on acceleration and speed. Lat-
eral and longitudinal acceleration are categorized in
three intervals: low, medium, and high. Speed is catego-
rized into five ranges, from very low to very high. The
values of these outputs are used to classify drivers’ be-
havior. The proposal of Quintero, Lopez, and Cuervo
[14] also uses fuzzy logic; however, the output variables
are inserted in a neural network properly trained to clas-
sify driver behavior. However, the neural network is on a
remote server, so all fuzzy system outputs must be sent
to this server which performs offline analysis and driver
behavior classification. The authors used a backpropaga-
tion algorithm, and the best performing architecture was
a two-layer neural network, with nine neurons in the
intermediate layer and 31 inputs.

4 Online CEP-based outlier detection algorithms
This section presents the aforementioned outlier detec-

tion algorithms expressed as a set of CEP rules for

Table 11 Algorithm resource consumption

Algorithm h=100and A =10 h=50and A =20
RAM(MB) CPU (%) RAM(MB) CPU (%)
K-means 6.75 MB 20.20% 7.83 MB 23.35%
Box Plot 630 MB 11.40% 730 MB 11.45%
Z-score 6.15 MB 6.61% 6.40 MB 7.46%
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Table 12 Algorithm error rate

Driver h=100and A =10 h=50and A =20
K-means Box Plot Z-score K-means Box Plot Z-score

D1 1.85% 3.70% 1.22%  135% 3.20% 1.00%
D2 1.45% 4.10% 1.83% 1.50% 3.40% 0.93%
D3 1.25% 3.87% 196%  1.17% 2.80% 1.80%
D4 2.16% 2.44% 3.24% 1.50% 2.00% 1.20%
D5 1.29% 4.38% 1.37% 1.45% 3.80% 1.10%
Average  1.60% 3.70% 193%  139% 3.04% 1.21%

online outlier detection to operate over a multiple mo-
bile data stream, enabling their efficient operation on
mobile devices. The algorithms are generic, however, as
highlighted by Chandola, Banerjee, and Kumar [23], the
exact notion of “outlierness” differs according to the ap-
plication domain. Therefore, in our case study, we aim
to classify driver behavior based on outlier detection.
Our driving behavior characterization algorithms are
based on a pattern-recognition approach. Although the
modeling relies on an idea proposed by Zhang [77], the
difference between the proposals is the fact that Zhang’s
work aims to identify the driver’s skill level (e.g., expert
or novice) through receiving driver behavior measure-
ments as input. Our research aims to identify driver be-
havior based on online outlier detection through
measurements of the signals from different sensors em-
bedded onboard the vehicle, as well as sensors of the
mobile device onboard the vehicle.

The processing workflow begins with the interaction
between the driver and the vehicle. Each driver exhibits
behaviors that can be divided into two types, namely
short-term and long-term driving behaviors. The former
concerns drivers’ instantaneous behavior that should be
taken into account separately, such as pressing the accel-
erator or the brake. The latter represents larger driving
maneuvers, such as making a turn. In this case, it is ne-
cessary to consider several issues, namely how the driver
accelerates or brakes, the steering wheel angle, and the

Table 13 Performance metrics comparison
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driver’s speed [78]. From these behavior types, it is pos-
sible to detect a unique driving pattern for each driver,
enabling the formulation of a profile representing the
driver’s behavior [78].

To sense data from the driving behavior, the stream
module is responsible for discovering, connecting, and
reading both onboard vehicle and built-in mobile device
sensors. This module is able to communicate with on-
board sensors via short-range wireless communication
technologies, such as Bluetooth and Bluetooth Low En-
ergy. More details are available in our previous work
[79]. This module acts as a hub and forwards the data
stream to the CEP engine for preprocessing. This raw
data preprocessing consists in producing higher-level
data (referred in this paper as evidence) that best repre-
sent the driver behavior. This process is known as fea-
ture extraction. A feature is a measurable property that
best represent a phenomenon and feature extraction is
the processes of deriving the values of such features
[80]. As discussed, to measure long-term driver’s behav-
ior, some available features need to be analyzed and cor-
related over a time period. These features include speed
(S = [s1, S3 ..., s,]T) and acceleration (A = [ay, a9, ...,
a,]%). The parameter #n denotes the number of instant-
aneous sampled values and T denotes a specific time
period. Additional features, such as mean speed exclud-
ing stops, mean acceleration, mean deceleration, both
acceleration/deceleration changes, yaw, and a combin-
ation of other physical measurements may be used to
measure a driver’s behavior, as discussed in [80].

The online outlier detection module is responsible for
finding patterns in the available evidence that deviate
sufficiently from expected behavior. The online outlier
detection algorithm adapted for CEP rules runs in this
module. An important feature of any outlier detection
algorithm is the manner in which outliers are reported
[23]. On one hand, scoring algorithms, such as Z-scores,
assign a score to each evidence estimating the “outlier-
ness”. On the other hand, label algorithms, such as box
plots, assign a label (normal or outlier) to each evidence.

Algorithm Performance Metrics
Accuracy Recall Precision F Measure Error Rate

K-means 98.06% 98.22% 99.82% 99.01% 1.50%
Box Plot 96.33% 97.03% 99.41% 98.26% 3.37%
Z-score 98.39% 99.06% 99.31% 99.18% 1.57%
VEDAS [74] 97.61% 98.55% 99.02% 98.77% 238%
Fuzzy [76] 98.22% 99.84% 98.36% 99.10% 1.78%
Backpropagation [14] 99.34% 100.00% 99.43% 99.72% 0.57%
Join Driving [55] 95.45% 100.00% 92.31% 96.00% 4.55%
Naive Bayes classifier [56] 81.82% 90.91% 76.92% 83.33% 18.18%
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Table 14 Quality metrics comparison

Algorithm Quality Metrics

RAM(MB) CPU (%) Time (ms)
K-means 7.29 MB 21.78% 72775 ms
Box Plot 6.80 MB 11.43% 176.50 ms
Z-score 6.27 MB 7.04% 100.60 ms
VEDAS [74] 6.34 MB 26.39% 501.00 ms
Fuzzy [76] 6.99 MB 26.67% 10.11 ms
Backpropagation [14] 13.72 MB 27.22% 1121 ms
Join Driving [55] 6.32 MB 8.27% 10.64 ms
Naive Bayes classifier [56] 12.57 MB 17.38% 15.12 ms

Finally, these scores or labels are analyzed by the ana-
lysis module to classify the driver behavior (i.e., cautious
or reckless) and update the driver profile. In practice,
the mobile modules act as an EPN, that is, there is a set
of interconnected EPAs in each of them with their re-
spective set of EPL rules. The prototype application
architecture is shown in Fig. 4.

To compare different analysis approaches, the three
outlier detection algorithms shown in Section 2.2 were
adapted for continuous outlier monitoring over data
stream, discussed in Sections 3.1, 3.2 and 3.3.

4.1 Online CEP-based Z-score algorithm

Because the online Z-score algorithm receives a stream
of data instances and cannot wait until all evidences
have been received, it needs to divide the stream into a
sequence of windows, each of which contains a set of
evidence. Therefore, the online Z-score, shown in Fig. 5,
is calculated according to eq. (3). Unlike the classical Z-
score algorithm, the online Z-score sample mean values
and standard deviation of the mean are computed over
evidences in a specific sliding window T. So, temporal
context rules determine which data instances are admit-
ted into which window. Then, the algorithm calculates
the Z-score of the available evidence in each window. Fi-
nally, the Z-distribution is analyzed to classify the driver
behavior.

e ' 3)

ox

The EPL statement that implements the Z-score algo-
rithm is illustrated in Fig. 6. The time clause in line 3 is
a temporal operator that segments the evidence data
stream instances into a sliding window of windowLength,
a time period argument. The statement output is
inserted in the stream of Z-score events for further pro-
cessing, denoted here by z_score_event. Then, another
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EPL statement computes the Z-distribution from the
z_score_event data stream according to Fig. 1.

4.2 Online CEP-based box plot algorithm

The design of the algorithm for driving behavior detection
with a box plot technique is shown in Fig. 7. First, as with
the Z-score, a temporal context needs to be performed.
Additionally, to avoid computation of pairwise distances
for all evidence that can have quadratic complexity [23],
we chose to perform the computations for each dimension
individually. For the last step, the analyzes EPA just need
correlate the outliers. The EPL statement that implements
these two steps is illustrated in Fig. 8. As an output, this
statement inserts the computed median into a stream of
box_plot_q2_event. This computation is shown in Fig. 8.
Second, Q1 and Q3 are computed. To do so, we designed
an EPL that subscribes to box_plot_q2 event and uses
them as threshold to compute Q1 and Q3. The result is
inserted into the box_plot_ql_g3_event stream, as shown
in Fig. 9.

Third, three computations are performed simultan-
eously: (i) min, max, and IQR are computed as shown in
Fig. 10. The non_outlier_expression filters all data in-
stances in the stream that are not outliers and outlier -
expression filters all instances of outlier in the data flow.

Fig. 15 Smartphone in mounted position
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These two expressions use the heuristic proposed by Laur-
ikkala, Juhola and Kentala [67], as explained in Section
2.2, and are expressed respectively by egs. (4) and (5). The
fmin and fimax functions return both the lowest and high-
est values, respectively, which are not considered outliers
in the box_plot_ql_q3_event data stream, respecting the
restrictions imposed by non_outlier_expression. As an out-
put, this statement inserts the computed 5-number sum-
mary into a stream of box_plot_event streams. (ii) An EPL
rule filters all data instances in the flow that are not out-
liers using the non_outlier_expression. (iii) The other EPL
rule filters all outliers’ instances using the outlier_expres-
sion in data flow. These outputted data are forwarded to
an EPA responsible for the analysis. Finally, similar to Z-
score analysis, if most of the time the evidence is close to
the median, then the driver is classified as cautious. Other-
wise, if most of the time the median is close to Q1 or Q3,
or IQR is high, the driver is classified as reckless.

rawValue>(q1-(1.5"IQR))rawValue<(q3 + (1.5 IQR))
(4)

Reckless Maneuvers Speed -
Distribution
80
60
©
2 40
[ =
3
5 20
Q.
0
-3 -2 -1 0 1 2 3
-20
Z-Score
= \aneuver 1 Maneuver 2 Maneuver 3 Nomal
Fig. 17 Speed maneuvers’ Z-distribution comparison

rawValue < (q1-(1.5"IQR)) | | rawValue
> (g3 + (1.5"IQR)) (5)

4.3 Online CEP-based K-means algorithm

An overview of the K-means algorithm work flow for on-
line driving behavior detection is shown in Fig. 11. Unlike
the previous modeling approaches, this is an iterative algo-
rithm. Therefore, it is necessary to use a batch window to
make iterating possible until the algorithm converges.
Thus, the incoming evidence data stream is first separated
in different temporal contexts (batch windows). Second,
cluster centroids are chosen. The traditional implementa-
tion of the K-means algorithm chooses K random in-
stances and defines them as clusters’ centroids. The main
disadvantage of this method lies in its sensitivity to initial
values of the cluster centroids. Our developing tests
displayed a poor performance with the traditional random
choice of initial centroid’s values of the clusters. To over-
come this problem, the algorithm starts with previously
acquired knowledge in the training phase. More details
are given in Section 3.5.

Third, the distances between evidence and clusters
centroids are calculated and evidence are assigned to the
nearest cluster, as shown in Fig. 12. While some evi-
dence changes from one cluster to another (Fig. 13 from
line 1 to 6), the algorithm performs two parallel process-
ing only if there is a min_distance_matrix event followed
by loopEvent equal to true in a specific time window: (i)
new cluster centroids are calculated (Fig. 13, line 8-14)
and (ii) the evidence is put back into the flow for an-
other calculation of the distances to the cluster centroids
(Fig. 13, line 16-19). Otherwise, the clusters are for-
warded for driver behavior analysis. At the end of each
batch window, if for most of the time the evidence be-
longs to the cautious cluster, then the driver is classified
as cautious. In any other way, the driver is classified as
reckless. Thus, if a driver maintains a driving behavior
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without abrupt changes of speed or direction, for in-
stance, the percentage of evidences that belong to the
cautious cluster is higher than to reckless cluster and
the driver is classified as cautious.

4.4 Limitations

While CEP provides several benefits for data stream
processing, such as continuous query, pattern detec-
tion, and temporal windows, it is difficult to express
iterative controls, e.g., while and for repetition struc-
tures, using its primitives. Typically, CEP-based appli-
cations follow a pipeline stage topology, with data
flow in a given direction from one stage to one or
more stages, but without returning to previous stages.
This can be troublesome when describing iterative al-
gorithms, such as K-means, which require iterations
to converge. To overcome this problem, we simulated
the loop check by using two EPL rules. If the loop
check is false, i.e., if evidence has not change its cen-
troid, we push the event to the next processing
stages. However, if the loop check is true, ie., evi-
dence has changed its centroid, we reinsert these
events into the initial loop stage, which recomputes

the centroid distance. We do so by translating the
events to EvidenceStreamEvents, the event type that
the initial loop phase (distance computation) expects.

Although useful, the independency of each CEP
processing stage can difficult to coordinate between
them. For instance, the proposed K-means algorithm
buffers the received evidence in batches of A time
period which are sent to the next processing stage, as
shown in Fig. 12. This is required so that during in-
teractions, the algorithm analyzes the same set of evi-
dences to partition them into clusters. Thus, even
though the events are buffered, the batch events are
analyzed one by one by default in the sequential pro-
cessing stages. To do so, the stages buffer the incom-
ing events in a minimum window so they can be
output as a batch. This minimum time window is
associated with the mobile device memory and pro-
cessing power and is usually less than a second. This
limitation is shown in the EPL rule at the top of
Fig. 13. The timeWindowLength parameter is the
minimum time for to buffer all outputted streams in
the min_disntance_matrix event and check if evidence
has changed its centroid.
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5 Defining and planning the case study
In this section, the case study is presented with a focus
on the definition and planning of the objective.

5.1 Objectives and contributions

The aim of this case study is to evaluate the designed
and implemented algorithms, as shown in Section 4, to
identify drivers’ driving behavior based on outlier detec-
tion. More specifically, the objectives are as follows.

- Evaluate the effectiveness of online outlier detection
algorithms. That is, evaluate the performance analysis
of the pattern recognition algorithms for online outlier
detection in the context of limited computational
resources (i.e., with a smartphone).

- Perform a case study to assess a driver’s driving
behavior on driveway sections, such as roundabout,
turns, tangent sections, semaphores, intersections (all-
way stop), and crosswalks based on online outlier
detection.

- Provide an open dataset of driver behavior with a rich
set of sensed data, such as speed, rpm, throttle position,
accelerometer, and gyroscope.
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5.2 Research questions
The research questions that need to be answered
through the case study are:

Which is the best algorithm in terms of accuracy?
Which is the best algorithm in terms of precision?
Which is the best algorithm in terms of recall?
Which is the best algorithm in terms of F-measure?
Which is the best algorithm in terms of average
execution time?

e Which is the best algorithm in terms of resource
consumption (memory and CPU)?

5.3 Drivers and route selection

Due to the difficulty of recruiting drivers and the costs
associated with assessing driving behavior, the process of
driver selection was a matter of convenience and sam-
pling was completed by quota. However, we attempted
to establish a sample that represented a broad swath of
drivers, preserving the same behavioral characteristics.
Thus, 25 drivers were chosen for the study. Sixteen were
male and nine female, their ages ranged from 20 to
60 years. Another important factor is driver experience.
In our sample, driver experience ranged from 2 to
42 years. Finally, all drivers were familiar with local traf-
fic condition and regulations. This is important so that
during the assessment their behaviors reflect the daily
driving habits.

Regarding route selection, several potential test loca-
tions were evaluated. We chose a paved route comprised
of streets and avenues ranging from one to three lanes
covering approximately 19.4 km in Aracaju-SE Brazil. In
addition, the route, shown in Fig. 14, contains traffic
lights, pedestrian crossings, and turns (including 45° and
90° turns). The speed limit on the route was 60 km/h. A
pilot study was conducted with all the 25 drivers on the
chosen route and this pilot study provided insight into
drivers’ behaviors.
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5.4 Instrumentation

The instrumentation process began with the implementa-
tion of the algorithms through CEP rules as described in
Section 4. The algorithms were implemented in EPL, an
structured query like language (SQL-like) where streams
replace tables as the source of data with events replacing
rows as the basic unit of data for running in ASPER, a
CEP processing engine based on ESPER (an open source
CEP engine [81]) and adapted for Android.

A Brazilian version of the Citren C3 manual trans-
mission was equipped with a Samsung Galaxy SIII
1.4 GHz Quad Core with 1GB of RAM and a Bluetooth
OBD-II device. Our prototype was installed in the
smartphone running the online Z-score algorithm. Fur-
ther details regarding the choice of algorithm are given
in Section 6.4. The data collected by the prototype and
processed by the Z-score were stored in SQLite [82], an
embedded and free SQL database engine.

5.5 Measurement metrics

A confusion matrix is a suitable technique to evaluate
the predictive ability of an algorithm to classify data in-
stances, [83]. For u classes, the confusion matrix is table
of n x n. The actual class column corresponds to the
correct classifications and the predicted class represents
the algorithms’ classifications. When there are only two
classes, one is considered positive (in our case, cautious
driving) and the other is considered negative (reckless
driving) [83], as shown in Table 1.

Thus, TP means that an instance of positive class is
correctly classified as positive (cautious driving evi-
dence), FN means that a positive class instance is mis-
classified as negative (reckless driving evidence), TN
means that a negative class instance is classified cor-
rectly as negative, and FP means that a negative class in-
stance is misclassified as positive. Based on a confusion
matrix, we can calculate five performance metrics,
shown in Table 2, which can be used to evaluate the al-
gorithms. In addition, as a quality metric, we used the

average execution time, that is, the arithmetic mean of
execution times for a given algorithm and the algo-
rithms’ average resources consumption.

6 Operation of the case study
This section describes the preparation and execution of
the real world case study.

6.1 Preparation

To train the algorithms, we used the open dataset pro-
vided by Bergasa et al. [57]. The dataset provides three
axis accelerometer data labeled as cautious and reckless
based on thresholds given by Paefgen et al. [54] for ac-
celeration, braking, and turning. This dataset contains
driving data for six different drivers and vehicles, D1
through D6, for two different routes, one is 25 km in a
road with 3 lanes in each direction and a speed limit of
120 km/h, the other is ~16 km on a secondary road with
one lane on each direction and a 90 km/h speed limit.
Each driver drove the same route three times. For each
driver’s data, a 3-fold cross-validation was performed,
where each driver’s data are randomly divided into two
pieces, one piece of 35% for training, and one piece of
30% for testing, and subset of data that generated the
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best results for each algorithm checked. The training
and testing hardware was the smartphone discussed in
Section 5.4.

Regarding the K-means performance problem highlighted
in Section 3.3, we randomly chose a driver and extracted
driving data from cautious and reckless behavior from the
training dataset and computed the clusters’ centroids. Thus,
the algorithm begins with previously acquired knowledge
instead of choosing random values for the clusters’ cen-
troids. With this strategy, the K-means algorithm signifi-
cantly improved results, as is seen in Section 6.1.1.

To be operational on a mobile device, the applications
need to vary the data rate based on the available compu-
tation resources. So, the algorithms need to adapt their
behavior to perform outlier detection with good accur-
acy. Based on this scenario, we defined two setups.
Firstly, we set the sensor data sample rate to be
h = 100 Hz and a time window of A = 10 s (setup 1).
Second, we set the sensor data sample rate to be
h =50 Hz and a time window A = 20 s (setup 2).

6.1.1 Intrinsic evaluation of the knowledge model
In this subsection, we present the results of the training
using the open dataset cited in Section 6.1. We repeated

each evaluation 5 times and the confidence level for all
results is 95%. As shown in Table 3 and 4, the dataset
contains more positive instances than negative instances.
This data corroborates our first assumption, highlighted
in Section 1.3. From the confusion matrix, we calculated
the performance metrics defined in Table 2 for the two
defined setups. The three algorithms had excellent per-
formance, as the worst result classified 93.71% of evi-
dences correctly and there is no significant (greater than
1%) difference between the average results, as shown in
Table 5. Despite the good overall performance, the Z-
score and K-means algorithms stood out with the high-
est average accuracies.

In the first setup, the box plot and Z-score had prac-
tically the same precision and K-means had an impres-
sive result with an average precision of 99.89%. This
means that K-means correctly classifies 99.89% of cau-
tious evidences. On the other hand, in the second setup,
the box plot correctly classified all cautious evidences.
Only K-means had worse precision, as shown in Table 6.
According Table 7, the Z-score achieved a better recall
performance in both setups. This means that, on aver-
age, the Z-score reached better true positive rates. The
K-means algorithm also achieved excellent results.
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Regarding F measure, K-means and Z-score once more
obtained similar overall performances and the box plot
obtained a slightly lower performance in the first setup.
However, in the second setup, the Z-score stood out
with the highest average F measure, as shown in Table 8.

Table 9 shows the execution time in milliseconds for
each algorithm. It is possible to note that the Z-score re-
quires considerably less processing time than the other
algorithms and because the K-means requires computa-
tion of pairwise distances for all evidences against cluster
centroids, it has quadratic complexity, in contrast to the
linear complexity of the box plot and Z-score. This ex-
plains the large execution time. Furthermore, while the
box plot and Z-score execute a single pass over the en-
tire data stream, K-means requires, on average, three it-
erations for each time window. The results confirm our
intuition. For the chosen setups, there are no significant
(greater than 1%) differences in each algorithm’s execu-
tion time.

To check the algorithms’ resources consumption in
both setups, we first verified the smartphone’s memory
and CPU usage in two situations: standby and collecting
data from the smartphone’s own sensors and OBD-II de-
vice without processing them. It is possible to note in
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Table 10 that merely collecting data increases memory
consumption by 12.54% and CPU usage by 60.83%. By
analyzing data from Table 11, it becomes clear that the
Z-score outperforms the K-means and box plot algo-
rithms in both setups, and K-means stands out nega-
tively in terms of CPU usage. Moreover, a larger time
window results in higher memory consumption and
processing.

After reviewing these results and calculating the aver-
age error rate of the algorithms, K-means and Z-score
stand out with the lowest average error rates. Both had
similar average rates, while the K-means achieved a bet-
ter performance in setup 1 and the Z-score achieved a
better performance in setup 2. Thus, regarding perform-
ance metrics, K-means and Z-score obtained similar re-
sults (difference between 0.1 and 1.1%). However, K-
means obtained better results in setup 1 and Z-score in
setup 2. The only exception was in the recall metric that
the Z-score obtains the best result in both setups. Re-
garding the quality metrics, the Z-score average execu-
tion time was roughly seven times smaller than the K-
means and two times smaller than the box plot. In
addition, the Z-score required an average of 14% less
memory consumption than the K-means and 8% less
than the box plot. Finally, the Z-score required, on aver-
age, a CPU usage of 68% less than K-means and 38.5%
less than the box plot (Table 12).

6.2 Comparison with the state of the art

To compare the approach used in this paper to classify
driving behavior and therefore show its benefits, three
related work were implemented. A simplified version of
VEDAS [74] was developed, however, the piecewise lin-
ear approximation algorithm was implemented based on
the information provided by Keogh et al. [75] through
CEP rules using sliding windows. The work of Aljaafreh,
Alshabatat, and Najim [76] that uses fuzzy logic infer-
ence for online identification of abnormal driving data
was implemented using Fuzzylite [84], a free and open
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source fuzzy logic control engine for multiple platforms,
including Android. The Quintero, Lopez, and Cuervo
[14] proposal was implemented. However, unlike the ini-
tial proposal whose processing of fuzzy system variables
is done offline by a neural network on a remote server,
all processing was done on the smartphone using Neu-
roph [85]. Nevertheless, we used the same configuration
proposed by Quintero, Lopez, and Cuervo [14] — a two-
layer neural network, with nine neurons in the inter-
mediate layer, 31 inputs, and trained with a backpropa-
gation algorithm. The Join Driving scoring mechanism
was implemented according to Zhao et al. [55]. Finally, a
machine learning model (naive Bayes classifier) [56]
using data from smartphone and OBD-II device was im-
plemented. The performance evaluation process of each
approach followed the steps described in section 6.1.
Table 13 shows the algorithms’ performance metrics.
For the K-means, box plot, Z-score and piecewise linear
approximation (VEDAS) implemented by CEP rules,
Table 13 shows the average obtained in configurations 1
and 2. Through comparison of the results, it can be seen
that the approach using neural networks resulted in a

superior performance in all the evaluated metrics except
precision. In addition, the neural network obtained an
extremely low error rate. However, the Z-score per-
formed close to the neural network since, in percentage
terms, for each metric the difference was always less
than or equal to 1%. Join Driving [55] had a good per-
formance, however, it scored below the previous ap-
proaches. The Naive Bayes classifier approach as
presented by Hong, Margines, and Dey [56], clearly
underperformed compared to the other approaches. It is
worth mentioning that this result is compatible with the
work of [86—88] in which a Naive Bayes classifier did
not obtain good results.

Comparing the quality metrics shown in Table 14, it is
notable that the Z-score memory consumption was
1.10%, 10.30%, 54.30%, 0.79%, and 50.11% more efficient
than the VEDAS, fuzzy logic, back-propagation, Join
Driving and Naive Bayes classifier, respectively. Among
the approaches that analyze a set of instances belonging
to a time window to determine which are outliers, the
Z-score undoubtedly obtained the best result. The fuzzy
logic, neural network with backpropagation algorithm,
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Table 15 Online Z-score performance

Metric Value
Accuracy 95.45%
Recall 92.86%
Precision 100.00%
F-Measure 96.30%
Error Rate 4.55%
RAM(MB) 6.35 MB
CPU (%) 7.24%

Join Driving and Naive Bayes classifier approaches clas-
sified an instance as an outlier or normal, respectively,
in ~10, ~11, ~10.6 and ~15 milliseconds. However, con-
sidering a sensor update rate of 100 Hz and a time win-
dow of 20 s, there are 2000 instances to be analyzed.
The Z-score takes ~100 milliseconds to analyze all these
data and classify each instance as normal or an outlier.
This is an average of 0.05 milliseconds per instance ana-
lyzed. Through this reasoning, the Z-score takes less
time to process an instance. Regarding CPU usage, the
box plot and Z-score achieved the best performances.
However, the Z-score consumed 73.32%, 73.60%, and
74.13% less CPU than VEDAS, fuzzy logic, and backpro-
pagation, respectively.

6.3 Execution

The smartphone was installed in the center of the ve-
hicle windshield, as shown in Fig. 15. The OBD-II reader
device was connected to the OBD-II port of the vehicle
and read a variety of data from the vehicle bus. The
OBD-II device sent the data streams via Bluetooth to the
smartphone. Execution of the case study consisted of
performing the process of outlier detection on driving
data streams for each volunteer driver.
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6.3.1 Data collection

Driver behavior data were collected over seven sunny
days and the volunteers drove between 9 AM and 8 PM.
Each driver made one trip on the chosen route. Thus, a
total of 485 km was covered, comprising 20 h of driving.
In addition, before the execution of the case study, the
purpose of the study and the absolute confidentiality of
personal information was explained to each volunteer.

Then, the chosen route was explained in detail and
drivers were asked to drive as they usually would. The vol-
unteer driver was also informed that a driving expert with
15 years’ experience would follow him or her during the
case study—similar to an expert-based test administered
in initial tests to judge driver performance—but we em-
phasized that our goal was to analyze and classify the
driver’s behavior as cautious or reckless, and not to ap-
prove or disapprove of the actions. This classification
served as a ground truth.

The prototype collected data from smartphone sen-
sors (i.e., accelerometer, gyroscope, magnetic compass,
and GPS) and vehicle sensors (i.e., speed, RPM, and
throttle position percentage) through the OBD-II de-
vice. These sensors’ data streams were sent to the
smartphone via the Bluetooth connection. The con-
nection between the smartphone and OBD-II device
was facilitated using generic mobile middleware [79]
for short-range communication.

6.4 Extrinsic evaluation of the knowledge model

According to Bramer [83], there is no infallible way of
finding the best classifier for a given application. None-
theless, regarding the quality metrics of CEP-based on-
line outlier detection algorithms, the Z-score obtained
an undoubtedly better performance; regarding perform-
ance metrics, the Z-score and K-means achieved similar
performances, as shown in Section 6.1.1. Thus, for this
reason, the online Z-score algorithm was used to analyze
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drivers’ behavior in the real-world study case. Based on
online outlier detection, this section shows and com-
pares the drivers’ driving profiles.

Unlike the results obtained by Hong, Margines and
Dey [56], both cautious and reckless drivers had sub-
stantial differences regarding speed. However, when we
analyzed drivers’ average Z-distribution, it was not pos-
sible to see significant differences, as shown in Fig. 16.
This is compatible with results achieved by Hong, Mar-
gines and Dey [56]. Nevertheless, through an online ana-
lysis, it is possible to identify aggressive maneuvers that
result in significant changes in Z-distribution, as shown
in Fig. 17. In our case study, by performing offline ana-
lysis, as shown in Fig. 18 (left), it is possible to note that
more than 75% of speed samples from cautious drivers
were lower than 60 km/h (the speed limit) and 50% were
lower than 47 km/h. This means that drivers classified
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as cautious remained below the speed limit most of the
time. Excessive speed is a serious violation; however, the
driving expert did not realize or did not consider this be-
havior to be recklessness for some drivers. In contrast,
reckless drivers remained above the speed limit most of
the time, i.e.,, only 25% of speed evidence was below
60 km/h. An interesting point lies in the fact that the
IQR from cautious drivers was larger than reckless
drivers. This means that cautious drivers had a wider
variability of speed, and reckless drivers, while remaining
above the speed limit in 75% of the evidence collected,
maintained little variability in their speed.

Further, as shown in Fig. 18, it is notable that both
cautious and reckless drivers produced outliers. On one
hand, through an off-line analysis, it is possible to notice
an opposing behavior in relation to speed. Cautious
drivers remained below the speed limit in 75% of the
speed samples while the reckless drivers remained within
the speed limit only in 25% of the samples, as shown in
Fig. 18 (left). On the other hand, by performing an on-
line speed analysis, in particular, the online Z-score algo-
rithm analysis, we noted that sudden changes identified
by outliers in cautious drivers’ speed occurred at low
speeds, as shown in Fig. 18 (right). Half of the sudden
changes occurred in a range between 8 and 43 km/h and
25% of sudden changes occurred in a range between 43
and 54 km/h. It would be valuable to carry out a study
to identify the motivation for this behavior. Moreover,
reckless drivers exhibited no sudden changes in speeds
lower than 40 km/h, as shown in Fig. 18 (right). How-
ever, 50% of outliers related to speed occurred above
60 km/h. Another point of note is that even considering
driving at extremely high speeds (120 km/h), outliers oc-
curred only up until 75 km/h. These data show that
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speed is appropriate for classifying driver behavior and
the online outlier detection approach is a good alterna-
tive for classifying drivers as cautious or reckless.

Figure 19 shows the average rpm Z-distribution for
four cautious (left) and reckless (right) drivers. This
common behavior is repeated for both classes of drivers.
Moreover, there are no significant differences between
cautious and reckless drivers. However, there is a notable
Z-distribution difference in reckless maneuvers, seen
while performing the online analysis, as shown in Fig. 20.
In maneuvers 1 and 2, the totals of outlier evidence are
17% and 23.5%, respectively. Furthermore, in an offline
analysis, as shown in Fig. 21 (left), the rpm from
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Table 16 Z-score Online performance with good asphalt

Metric Value
Accuracy 84.00%
Recall 76.47%
Precision 100.00%
F-Measure 86.67%
Error Rate 16.00%
RAM(MB) 6.35 MB
CPU (%) 7.24%

cautious drivers ranged from 1.539-2.086 rpm occurring
50% of the time, while 75% of the time, rpm did not ex-
ceed 2.086. It should be noted that reckless drivers had
small rpm variation and the reckless Q1 value is 12.16%
higher than the cautious Q3 value. Probably in attempts
to save time, reckless drivers incurred higher rpms to
reach faster speeds as soon as possible, and in doing so,
exceeded the speed limit, as shown in Fig. 18. However,
Fig. 21 (right) shows that reckless drivers have a broader
distribution of outliers, identified by the online Z-score
algorithm. Twenty-five percent of reckless drivers’ sud-
den changes in rpm occurred between 3.210-4.779 rpm,
and 50% ranged from 1.971-3.210 rpm. These are high
values according to the manufacturer’s documentation
and demonstrate that reckless drivers have an inconsist-
ent driving style.

Figure 22 shows that cautious and reckless drivers’
average throttle position Z-distribution is close to the
normal distribution. Thus, it is not possible to identify
differences between cautious and reckless drivers with
an aggregated view of the evidence. However, the online
Z-score algorithm identified a different distribution for
reckless maneuvers, as shown in Fig. 23. For instance,
the maneuvers 1 and 2 had, respectively, 32.67% and
31.14% of evidence classified as outliers. Corroborating
with these data, Fig. 24 (left) shows an offline throttle
analysis. A consistent throttle usage (percentage usage)
is observed, especially for reckless drivers since the IQR
value is extremely small. However, regarding identifying
throttle position outliers through the online Z-score al-
gorithm, it is noted in Fig. 24 (right) that even smooth
throttle changes by cautious drivers have been identified
as outliers. However, it is important to highlight that
only approximately 0.2% of throttle position samples
were higher than 60% of throttle usage. Furthermore,
reckless drivers approach the throttle more aggressively.
This behavior likely affects fuel consumption and gas
emissions.

Analyzing acceleration considering the 3-axis acceler-
ometer, it should be noted that cautious and reckless Z-
distribution is practically equal to the normal curve, as
shown in Fig. 25. Unlike other studies, such as Hong,
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Margines and Dey [56], that consider only lateral and
longitudinal acceleration, we decided to consider 3-axis
acceleration because in Brazil many roads are of poor
quality. Thus, we believe that an analysis considering 3-
axis acceleration more faithfully depicts the circum-
stances in Brazil. However, to our surprise, and contrary
to the results of several studies evaluating driver behav-
ior, such as Hong, Margines and Dey [56], considerable
changes in acceleration Z-distribution went unnoticed,
even in reckless maneuvers, as shown in Fig. 26. For in-
stance, unlike the aforementioned data, maneuvers 1
and 2 had, respectively, only 9.37% and 7.86% of samples
classified as outliers. However, Zhao et al. [55] measured
the level of passenger comfort/discomfort based on the
effects of human exposure to acceleration according to
the threshold defined by International Organization for
Standardization [72]. Based on these parameters, and
considering that in our case study a stopped vehicle had
acceleration equal to 9.8 m/s’, we assumed that passen-
gers felt comfortable while acceleration was within a range
of 8.9-11.2 m/s®. Figure 26 shows a comparison between
offline analysis (left) and online outlier detection (right).

In an offline analysis, is possible to see that the drivers
were within the comfortable acceleration range in more
than 50% of the samples when both IQRs were within a
comfortable range for the passengers.

Nevertheless, through the online analysis, shown in
Fig. 27, it is possible to note that reckless drivers’
events—such as sudden lane changes, abrupt accelera-
tions/decelerations, and jerks—generated more uncom-
fortable feelings for passengers once more than 75% of
the outliers were out of the comfort range. On the other
hand, for cautious drivers, approximately 50% of outliers
were in the comfortable range. Further, reckless drivers’
outliers were, on average, 41.6% higher than cautious
drivers’ outliers. Figure 28 shows 20 s of acceleration
data. It is possible to see nine outlier points (i.e., Z-
scores greater than 3 or less than -3). However, only
two points were in the aforementioned comfortable
range. This demonstrates one of the advantages of our
approach: the algorithm analyzes the entire context and
not just the individual values. In these two points, vari-
ation in the acceleration even within the range consid-
ered comfortable was reported as uncomfortable by the
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expert driver. This behavior was repeated in other
samples.

6.4.1 Scoring driving behaviors

To score the drivers’ behaviors, it is necessary to con-
sider that (i) sensors have different acquisition rates. For
instance, in this case study, the OBD-II device and
smartphone’s accelerometer average acquisition rate was
8 Hz and 140 Hz, respectively. Thus, during the data
stream processing, we had 17.5 times more evidence of
acceleration than speed. And, (ii) certain evidences may
have little authority in discriminating driver behavior.
To this end, we adapted a statistical mechanism used in
document mining to evaluate how important a word is
to a document in a collection, called inverse document
frequency [89], to identify the importance of an outlier
in a data stream.

We defined outlier frequency (of;) as the number of
outliers that occurs in a dimension d. Furthermore, we
defined the inverse outlier frequency (iof;) of a data in-
stance in dimension d as shown in eq. (6).

of s = tog ) ©)

Thus, the iof; of a rare outlier evidence is high,
whereas the iof; of a frequent outlier evidence is likely
to be low. To weight each outlier evidence in a time
window, we combined the definition of outlier frequency
and inverse outlier frequency (ofiof) as given by eq. (7),
where e is the outlier evidence value and d is the dimen-
sion. Therefore, a driver’s trip score is given through the
weighted average of sum of all ofiof, as shown in eq. (8),
where ¢ is the number of time windows during the trip.
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Oﬁofe,d = Ofe,d * iofd (7)
Score = average (i (oﬁof ed) ) (8)

i=1

Figure 29 shows the drivers’ score. For this case study,
drivers with scores greater than 50 were classified as
reckless. This threshold was chosen by analyzing data
from six other drivers. These drivers drove on the same
route, but three were asked to drive cautiously and the
others asked to drive recklessly. The maximum score for
cautious drivers was 35 and the minimum score for
reckless drivers was 65. Therefore, we consider the
threshold of 50 as the upper bound in the classification
of cautious drivers and the lower bound in the classifica-
tion of reckless drivers. Comparing the algorithm classi-
fication with the ground truth, an excellent performance
can be noted, as shown in Fig. 29. This performance is
confirmed in Table 15 and is quite similar to the results
showed in Section 6.1.1 in which we used the open data-
set provided by Bergasa et al. [57].

In addition to the aforementioned metrics for per-
formance evaluation of the algorithm, we used the
Kolmogorov-Smirnov test (KS test) [90]. The KS test is a
nonparametric test used to measure the separability of
two data distributions from their cumulative distribution
functions (CDF). In binary decision systems based on
scalar threshold systems, this metric, shown in Fig. 30, is
used to measure dissimilarity between distributions [91].
It was accepted that the data are normal with a p-value
of 0.27 above the level of significance. A variation of the
KS test is used for measuring the classifier discriminat-
ing ability, called the KS2 test [91]. The KS2 test evalu-
ates how well a model can distinguish negative (evidence
of reckless driving) from positive predictions (evidence
of cautious driving) [90]. Thus, the higher the value of
the KS2 was, the better the model performed. Based on
the threshold and the algorithm score, we calculated the
probability of the driver being cautious or reckless.
Figure 31 shows the KS2 test plot in which the max-
imum KS value was 100%.

Finally, although the algorithms presented excellent re-
sults, they were not able to identify some reckless behav-
iors highlighted by Tasca [2], such as tailgating, preventing
a vehicle from passing, flashing headlights, horn-honking,
improper passing (e.g., cutting too close in front of a ve-
hicle being overtaken), unwillingness to extend cooper-
ation to motorists, unable to merge, changing lanes due to
traffic conditions, and running red lights. Furthermore, we
observed two additional behaviors: driving with only one
hand on the wheel, and/or driving with a hand on the
gear. These behaviors are shown in Fig. 15. These behav-
iors deliberately increase the risk of collision and are thus
considered reckless behaviors.
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6.4.2 Brazilian road conditions

The chosen route in the aforementioned case study has
good quality asphalt. However, as shown in Fig. 32, sev-
eral Brazilian roads have sections with poor quality as-
phalt. At these sections, the drivers had to perform both
sudden braking and lane changes. Thus, these repeated
maneuvers may have occasioned a bias in the analysis of
the drivers’ driving patterns. For this reason, we per-
formed an additional assessment to verify that even in
conditions of poor quality asphalt our approach could
accurately classify the drivers. This new route, shown in
Fig. 33, is a paved course comprised of streets and ave-
nues ranging from one to three lanes covering approxi-
mately 14.5 km in Aracaju-SE Brazil. Thus, a total of
362.5 km was covered, comprising 12.5 h of driving. In
addition, the route contains roundabouts, traffic lights,
pedestrian crossings, and turns (including 45° and 90°
turns). The speed limit on the route was 60 km/h. Fur-
thermore, the drivers described in Section 5.3 and the
driver expert were re-invited for this new assessment.

Table 16 shows the Z-score online performance in this
new assessment. Compared with results achieved in
Table 15 it should be noted that the error rate increased
from 4.55% to 16% and all other metrics showed poorer
results, excepting RAM and CPU, which remained
stable. Although it is still a good result, poor asphalt
quality generated noise in the data in such a way that
the online Z-score classified it as an outlier. In addition
to the error rate that increased 76.56%, the accuracy (i.e.,
the percentage of correctly classified instances) and re-
call (i.e., the percentage of instances correctly classified
as cautious) stand out for decreasing by 12% and 17.65%
respectively.

Analyzing the drivers’ scores in Figs. 29 and 34, it can
be noted that with good asphalt quality, drivers 12, 14,
and 15 were classified as reckless, an increase of 12%.
Finally, Fig. 35 and Fig. 36 show the KS and KS2 tests
respectively. In the former, as well as in Fig. 30, it was
accepted that the data are normal with a p-value of
0.27 above the level of significance; the latter shows the
KS2 test plot where the maximum KS value is 48%.

6.4.3 Threat to validity
In this section, we highlight the biases that threaten the
validity of the case study. The first possible bias is that
drivers did not drive their own cars. This may have led
drivers not to drive as they usually would. Additionally,
one specific vehicle model was used and the smartphone
location inside the vehicle was the same. Other types of
vehicle and other smartphone locations may generate
different results.

Other conceivable biasing factors are the traffic, which
is specific to Aracaju—SE, unique characteristics of the
chosen test route, and meteorological conditions.
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However, we believe that the results of our case study
would not change substantially in a setting where these
factors were altered. Moreover, a situation highlighted
by Paefgen et al. [54] and not considered by us was
smartphone use during the case study. For instance,
handling a smartphone during a call or the execution of
other applications would likely have introduced add-
itional noise. The time that drivers drove may have led
to a bias in the behavioral analysis. Other studies should
be conducted to assess how the peak time influences
drivers’ behavior.

We understand that adapting three offline algorithms to
perform online processing naturally has a bias. However,
the tests show that the algorithms have good efficiency
and effectiveness when compared to traditional algo-
rithms. In addition, although there are efficient pattern de-
tection algorithms in the literature such as [70, 74, 92]
that were designed to perform continuous data process-
ing, they use spatial data structures, such as R-Trees, S-
Trees and Quad-Trees, which provide efficient indexes
and query functions for spatial data. Nevertheless, for
continuous-mode pattern detection in data streams, these
data structures can become troublesome due to their diffi-
culty in accessing and modifying the spatial tree in parallel
[93-95]. Further, due to frequent spatial tree modifica-
tions, there is an additional cost of frequently balancing
the tree in order to reduce its height. For instance, to
avoid inconsistencies in the spatial tree index, these algo-
rithms process the data stream sequentially, which can
lead to scalability issues when considering a data stream
with thousands of data items per second. Other algo-
rithms for online outlier detection in data streams either
were not designed for Kontaki et al. [70] or did not have
good results [74] in devices with memory and processing
constraints.

7 Conclusion and future

In this paper, we introduced an online outlier detec-
tion for approaches to driver behavior detection. Un-
like many studies that aim to provide faster outlier
detection, optimize memory consumption, facilitate
parameter settings, or adapt algorithms to perform a
distributed processing, our proposal concerned per-
forming an online outlier detection on mobile devices,
such as a smartphone with limited computational re-
sources, and did not assume a fixed set of input data.
Hence, the main contributions of this paper are as
follows. (i) Three classical offline outlier detection al-
gorithms adapted to perform online outlier detection.
In addition, these algorithms are operational on mo-
bile devices and able to adapt their behavior based on
available computational resources, that is, change sen-
sors’ refresh rates and time windows without varying
the algorithm accuracy. (ii) A prototype to identify
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driver behavior based on online outlier detection. (iii)
A dataset, available at http://www.inf.puc-rio.br/~rvascon-
celos/DataSet, from real-life drivers that can be used in
other experiments. (iv) Experiments that validate and
demonstrate the performance of our proposal.

The research on online outlier detection over multiple
data streams certainly needs more investigation, but we
believe that the findings presented in this paper are an
interesting step forward towards reaching online outlier
pattern detection in data streams. Our approach deliv-
ered an excellent performance, since it can classify the
drivers’ behavior with an accuracy of 95.45% and 84.00%
on good and poor quality roads, respectively. However,
considering the encouraging performance evaluation, we
are confident that our approach can be used in several
other IoT scenarios. The aforementioned results indicate
that the Z-score is most appropriate for devices with re-
source constraints, followed by the box plot algorithm.
Although the K-means presents good results, the pro-
cessing time and CPU usage compromise its use in sce-
narios with more sensors. For the future, we expect to
advance our work along the following lines: (i) adapt the
algorithms to scenarios where energy consumption is
critical; (ii) perform a distributed online spatial outlier
detection; (iii) perform semantic outlier detection over
data streams considering data such as weather and traf-
fic conditions; (iv) include historical data in the analysis
for identification of emergency situations; (v) combine
machine learning and CEP, applying machine learning to
the static driving dataset to determine CEP rules; and
(vi) regarding driver behavior, identify behavior that pre-
cedes accidents and identify the relationship between
driving behavior, fuel consumption, and air pollution.
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