
Journal of Internet Services
and Applications

Sylla et al. Journal of Internet Services and Applications (2017) 8:16
DOI 10.1186/s13174-017-0067-y

RESEARCH Open Access

Design framework for reliable and
environment aware management of smart
environment devices
Adja Ndeye Sylla1*, Maxime Louvel1 and Eric Rutten2

Abstract

A smart environment is equipped with numerous devices (i.e., sensors, actuators) that are possibly distributed over
different locations (e.g., rooms of a smart building). These devices are automatically controlled to achieve different
objectives related, for instance, to comfort, security and energy savings. Controlling smart environment devices is not
an easy task. This is due to: the heterogeneity of devices, the inconsistencies that can result from communication
errors or devices failure, and the conflicting decisions including those caused by environment dependencies. This
paper proposes a design framework for the reliable and environment aware management of smart environment
devices. The framework is based on the combination of the rule based middleware LINC and the automata based
language Heptagon/BZR (H/BZR). It consists of: an abstraction layer for the heterogeneity of devices, a transactional
execution mechanism to avoid inconsistencies and a controller that, based on a generic model of the environment,
makes appropriate decisions and avoids conflicts. A case study with concrete devices, in the field of building
automation, is presented to illustrate the framework.

Keywords: Smart environments, Reliability, Transactional middleware, Automata language

1 Introduction
Smart environments are equipped with numerous devices
that are automatically controlled to achieve different
objectives. For instance, a window can be opened to
cool or ventilate a room. Controlling smart environments
devices raises several problems. First, devices are built
by different manufacturers and use heterogeneous com-
munication technologies. Second, a device may become
unreachable due to a hardware failure or a communica-
tion error. In this case, a command sent to this device
is not received and the corresponding action is not per-
formed. Assuming that the action has been performed
leads to a runtime inconsistency (inconsistency in the
rest of the paper). For instance, sending the command
close to a door and assuming that it is closed becomes
an inconsistency if the door remains opened due to a com-
munication error or a failure. Third, the decisions taken to
achieve the objectives may be conflicting or violate other

*Correspondence: AdjaNdeye.Sylla@cea.fr
1Université Grenoble Alpes, CEA, LETI, DACLE, LIALP, F-38000 Grenoble, France
Full list of author information is available at the end of the article

objectives. Conflicts and violations are either explicit or
implicit. Implicit conflicts and violations are due to envi-
ronment dependencies and are not easy to detect. For
instance, opening a window to cool a room can raise the
noise level (resp. the CO2 concentration). This can violate
an objective that limits the room noise level (resp. the CO2
concentration) at a given threshold.
In the literature, several solutions have been proposed

for the reliability of smart environments [1–16]. These
solutions use different methods (e.g., model checking,
pairwise comparison of rules) to prevent from explicit
and/or implicit conflicts and objectives violations. How-
ever, using these solutions requires to manually program
or model the behaviour of the smart environment. Then,
the program or the model is verified to detected specific
errors (e.g. conflicts). If an error is detected, the program
or the model is manually modified and verified again. This
can be tedious because developers have to consider all the
combinatorial possible cases. Moreover, these solutions
do not handle the inconsistencies due to communication
errors and hardware failures.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0067-y&domain=pdf
mailto: AdjaNdeye.Sylla@cea.fr
http://creativecommons.org/licenses/by/4.0/

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 2 of 21

This paper proposes a design framework for reliable and
environment aware management of smart environment
devices. The proposed framework allows for

• Declarative management of devices, by specifying the
target objectives and not how to reach them;

• Avoidance of both explicit and implicit conflicts;
• Avoidance of inconsistencies that are caused by

communication errors and hardware failures.

The framework is based on the combination of a rule
based transactional middleware (LINC [17]) and a reac-
tive language (Heptagon/BZR [18]). As shown in Fig. 1,
the proposed framework enables the autonomic manage-
ment of devices through a variant of the MAPE-K loop
[19] called MIADIE-K (Monitoring, Interpretation, Anal-
ysis, Decision, Interpretation, Execution and Knowledge)
and consists of:

• An abstraction layer: To deal with the heterogeneity
of smart environment devices;

• A transactional execution mechanism: To prevent
from the occurrence of inconsistencies;

• An environment aware controller: To make
appropriate decisions and prevent from both explicit
and implicit conflicts. The controller relies on a
generic model of the environment. The generic
aspect of this model allows to use the same controller
for other environments that have the same types of
devices (e.g., rooms of a building).

To improve environment monitoring, the proposed
framework allows developers to design monitoring rules,
in LINC, and create soft sensors from physical sensors.
A soft sensor aggregates or transforms the data of one
or more physical sensors. The framework also allows

developers to design rules that perform actions on the
environment assuming that these rules do not interact
with potential conflicting devices (which must be handled
by the environment aware controller).
The paper is structured as follows. Section 2 gives the

background material. Then, Section 3 describes the pro-
posed framework. Section 4 presents how devices are
managed using the framework. Section 5 illustrates the
framework through a case study, with concrete devices,
in the field of building automation. Section 6 discusses
related work. Finally, Section 7 concludes the paper and
presents the future works.

2 Background
The proposed framework relies on a transactional mid-
dleware and a reactive language that supports the synthe-
sis of controllers. The transactional middleware enables
the communication with devices and avoids inconsis-
tencies. The reactive language enables the declarative
management of devices while preventing from conflicts
and objectives violations. In this paper, the transactional
middleware LINC [17] and the reactive language Hep-
tagon/BZR [18] are used.

2.1 LINCmiddleware
LINC [17] is a rule based middleware used to develop
and deploy distributed applications. It has been used in
several domains such as building automation [20–22] and
wireless sensor networks [23–25].

2.1.1 LINC concepts
LINC relies on three paradigms:

• Associative Memory [26]: It is implemented as a set
of distributed tuple spaces containing resources
(tuples of strings). In LINC, tuple spaces are called

Fig. 1 Devices management through the framework

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 3 of 21

bags. They are grouped, according to the application
logic, in objects. Resources are used to model the
entities of an application and are manipulated using
three operations: rd, get and put. The rd is used to
verify the presence of a resource in a bag. The get is
used to remove a resource and the put is used to
insert a resource. These operations are used in
production rules.

• Production Rules [27]: A production rule consists of
two parts: a precondition and a performance. In the
precondition, the operation rd is used, with a
partially instantiated resource as parameter, to verify
specific conditions in the system (e.g., presence
detected). If these conditions are true, the
performance is triggered. The performance uses the
three operations. The rd is used to verify conditions.
The get and the put are used to perform actions on
the system and update its logical state (i.e., resources
stored in LINC bags).

• Distributed Transactions [28]: They are used in the
performance part of a rule. A transaction allows to
group as one operation the verification of conditions
(rd), the realisation of actions (put), and the update
of the system logical state (get, put). Thus, the
performance part of a rule may abort if, for instance,
the verification of a condition through a rd operation
is no longer true. The performance part also aborts if
a put operation fails because the corresponding action
(e.g., switch on a lamp) cannot be performed (e.g.,
due to a communication error or a hardware failure).

2.1.2 LINC in the context of smart environments
LINC provides a framework called PUTUTU [20, 21]
that enables the communication with devices and hides
their heterogeneity. PUTUTU consists of several LINC
objects. As shown in Fig. 2, these objects encapsulate

different technologies (e.g., TelosB, LON, Tellstick)
and inherit from four generic objects:

• Object_dongles_modules: It is used to manage a
dongle or any other equipment plugged in an
ethernet or a USB port. The dongle allows to
communicate with the devices of a specific
technology. It has two bags: Type and Location. Type
associates the id of a device to its type. Location
associates the id of a device to its location.

• Object_wsan_sensors: It is used to manage sensors.
It has one additional bag called Sensors which
associates the id of a sensor to its latest measured
value, in the format (id, value).

• Object_wsan_actuators: It is used to manage
actuators. It has one additional bag called Actuators
which is used to send commands to the actuators.
The resources of this bag are in the format (id,
command, parameters). The insertion of such a
resource, using the operation put, actually sends the
command to the specified actuator.

• Object_wsan_sensors_actuators: It is used to
manage technologies providing both sensors and
actuators (e.g. EnOcean). This object is derived from
the two previous generic objects and inherits from
their bags (e.g., Sensors, Actuators).

2.1.3 LINC rule example
Listing 1 presents an example of a LINC rule that switches
on the lamp of a room when a presence is detected. This
room is equipped with a TelosB presence sensor and an
EnOcean lamp actuator.
This rule consists of two parts: a precondition (before

the symbol ::) and a performance (after the symbol ::). The
precondition consists of a rd on the bag States contain-
ing the logical state off and a rd on the bag Sensors of

Fig. 2 PUTUTU framework

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 4 of 21

the TelosB object to detect a presence. When the lamp
is off, the rule waits for a resource indicating a presence
in the room. This triggers the performance. The perfor-
mance consists of two transactions (between {}). The
first transaction verifies if the presence is still detected
(line 5), sends the command to the lamp (line 6) and
updates its logical state (lines 7 and 8). LINC ensures that
all the actions are done or none of them. Hence, if the put
operation fails on the actuator (e.g., communication error,
actuator failure), the lamp stays off in the bag States.
If no error occurs in the first transaction, the second

transaction will fail at line 12 (the lamp is now on). If the
presence is not detected anymore, both transactions will
fail (lines 5 and 11). Finally, if the lamp cannot be switched
on (e.g., due to a communication error), the second trans-
action will send a SMS to the maintenance team to inform
them of the problem.
Executing this rule in another room simply requires

replacing the PUTUTU objects (i.e., TelosB and
EnOcean) and the ids (i.e., t_pr_1, e_l_1), respec-
tively, by the communication technologies and the ids of
the room presence sensor and lamp actuator.

2.2 Heptagon/BZR language
Heptagon/BZR or H/BZR [18] is a language used to build
reactive systems, by means of automata and equations. It
enables model checking to verify properties (e.g., absence
of objectives violations) and especially the synthesis of
controllers to enforce properties.

2.2.1 Design of a H/BZR program
A H/BZR program is designed as a set of blocks called
nodes. A node has input flows and output flows. It con-
tains equations defining output flows in terms of input
flows, local variables, and possibly intermediate states
variables. These equations can be encapsulated in states
of automata. They can also instantiate other nodes. Each
node can be provided with a contract that defines a set
of properties to be enforced on the program. These prop-
erties are enforced, at compilation time, through discrete
controller synthesis [18].

Automaton consists of states, one of them being the
initial state, and transitions between them. States are

associated to equations that give specific values to the out-
put flows of the automaton node. The value of an output
flow must be defined at each instant. Transitions are asso-
ciated to boolean expressions related to one or several
input flows of the automaton node.
Figure 3 presents an automaton modelling a lamp. This

automaton is contained in a node that has two input flows
(c1, c2) and two output flows (cmd, lum). The automaton
has two states (Off, On) and two transitions. Each state
is associated to two equations that give values to the out-
put flows. The equation cmd = s_off → nothing
means that at the state Off, cmd is equal to s_off
(switch off) if this state is newly activated and nothing
otherwise. The reason is twofold. First, the value of an
output flow must be defined at each instant. Second,
this prevents from continuously computing cmd = s_off
while the lamp is already off. The equation lum = 0
means that at the state Off the lamp provides a luminos-
ity equal to 0 lux. The input flows c1 and c2 are boolean
variables.
The initial state of the lamp automaton is Off. In this

state, when c1 is false (i.e., not c1 is true), the
automaton goes to the state On and the output flows take
the values given by the equations of this state. Otherwise
(i.e., c1 is true), the automaton remains in the state Off.
This means that in the state Off, there is an implicit tran-
sition associated to c1 that allows to remain in this state.
In the same way, when the automaton is in the state On,
if c2 is true, the automaton goes to Off. Otherwise
(i.e., c2 is false) it remains in the state On. There is an
implicit transition associated to not c2 allowing to stay
in the state On.
This node example could be designed using only one

input flow to reduce the number of variables used. For
instance, not c1 and c2, in the automaton transitions,
could be respectively replaced with not c and c.

Discrete controller synthesis (DCS) [18] is a formal
method used to enforce a set of properties, called objec-
tives, on a model. DCS is enabled by H/BZR at compila-
tion time. Given a model that represents all the possible
behaviours of a system and a set of target objectives, DCS

Fig. 3 Example of H/BZR node

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 5 of 21

inhibits all the behaviours that violate the objectives. To
do this, DCS requires to partition the variables of the con-
sidered model in two sets: controllable and uncontrollable
variables. Once the variables are partitioned, the DCS
algorithm explores the state space of the model and com-
putes the possible values of the controllable variables. The
aim is to enforce the target objectives, whatever the values
of the uncontrollable variables. For instance, c1 and c2 in
Fig. 3 can be defined as controllable variables to enforce
an objective related to the luminosity of a room.
After the controller synthesis, several solutions can be

possible regarding the objectives to achieve. For instance,
the lamp can be Off or On to provide a luminosity greater
or equal to 0 lux. However, one solution must be cho-
sen. For this, the backend of the H/BZR compiler selects
one of the solutions. It is possible to guide the selection
with two options. Firstly, the compiler backend favours the
value true to the value false for a boolean variable. For
instance, in the lamp automaton (Fig. 3), to favour stay-
ing Off, the transition from Off to On is associated to
not c1. Here, the implicit transition that remains in the
state Off (associated to c1) is favoured by the compiler
backend.
The second option is that the compiler backend follows

the declaration order of the variables and gives to them the
value true. If this does not enforce the target objectives it
changes the values to false following the inverse of the
declaration order. Hence, when declaring c1 before c2, if
two transitions T1 and T2 respectively associated to not
c1 and not c2 are possible, the compiler backend will
choose T2. It gives true to c1 and false to c2 (not
c2 is true and T2 is chosen).

2.2.2 Execution of a H/BZR program
The compilation of a H/BZR program generates a code
in C or Java. In both cases, the generated code includes a
function called step. The step takes as parameter a set
of input values, computes the output values that allow to
reach the target objectives, and updates the state of the
automaton that models the system. One execution of the
step function corresponds to one reaction of the system.
Therefore, the step must be executed each time a reac-
tion is required. Executing the step requires to ensure
that the state of the automaton is always consistent with
the state of the actual system. This is done by combining
LINC and H/BZR.

2.3 Combination of LINC and H/BZR
LINC is designed to implement rules that react to events
(e.g., production of a new sensor value). Hence, a LINC
rule is used to execute the step function when necessary
(i.e., each time an event occurs). This rule first collects
data (e.g., through sensors) and then, it invokes the step
in order to compute appropriate commands to send to

the system (e.g., through actuators). Thanks to its trans-
actional guarantees, LINC ensures that a group of actions
are all done or none of them is done. The step is thus
executed in a transaction, together with the sending of
the commands. Hence, if a command cannot be sent, the
step is not executed and the state of the automaton
stays consistent with the state of the actual system. More
details on the combination of LINC and H/BZR can be
found in [29].

2.4 Autonomic computing
Autonomic computing [19] has been used in several solu-
tions for the management of smart environment devices
[30–33]. It consists in creating systems that manage them-
selves by performing self-configuration, self-optimisation,
self-healing or self-protection. This is done for instance
through a MAPE-K loop. In an autonomic system (cf.
Fig. 4), an autonomic manager, based on knowledge, con-
tinuously

1. Monitors a managed element by collecting data;
2. Analyses the data to decide if changes are needed;
3. Plans changes based on the analysed data;
4. Executes the changes through actuators.

The knowledge consists of information related to the
managed element and to its environment. The knowledge
is updated when executing the changes.

3 Framework description
As depicted in Fig. 1, the framework consists of:

• An abstraction layer: It is based on the associative
memory of the middleware LINC. The operations rd
and put are used to respectively read the latest value
measured by any sensor (i.e.,
rd(sensor_id,val)) and to send a command to
any actuator (i.e.,
put(actuator_id,command)).

Fig. 4 Autonomic system architecture

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 6 of 21

• An environment aware controller: It is designed
through H/BZR and DCS. The controller computes
appropriate commands, to reach the objectives
without conflict, and is based on a generic model of
the environment. This model describes the behaviour
of the devices and captures environment
dependencies. The model is generic in the sense that
it does not describe the behaviour of specific devices
(e.g., lamp_12) but types of devices (e.g., lamp). This
allows to use the same controller for other
environments that have the same types of devices.
For instance, let us consider a controller designed for
a room equipped with one lamp and one shutter.
This controller can be instantiated in other rooms
equipped with a lamp and a shutter with any
communication technology. This controller can also
be instantiated in an open-space equipped with
several lamps and several shutters, all the lamps (resp.
shutters) are seen as one lamp (resp. one shutter) by
the controller. Finally, the controller can be
reconfigured, under some conditions, to deal with
changing objectives (e.g., weekdays vs. weekends).

• A transactional execution mechanism: It is based
on the distributed transactions of the middleware
LINC. The update of the controller state and the
update of the actual system is included in the same
transaction. Hence if an action cannot be performed
on the actual system (e.g., due to a communication
error), the controller state is not updated. Hence, the
inconsistencies between the controller and the actual
system are avoided.

3.1 Autonomic management of devices
The proposed framework enables the autonomic manage-
ment of smart environment devices, through a variant of
the MAPE-K loop (MIADIE-K loop). As shown in Fig. 1,
the devices are monitored and the collected data are inter-
preted (MI). Then, an analysis is done and appropriate
commands are computed (AD), based on knowledge (K).
Finally, the commands are interpreted and sent and the
knowledge is updated (IE).

• Monitoring and Interpretation (MI): Provide the
data required to make decisions. Sensor data are first
collected through the abstraction layer. Then, the data
may be interpreted. The aim is to aggregate them, to
transform them or to use them to estimate other
data. For instance if a temperature data is needed and
there are two temperature sensors, their average may
be used as the temperature. Another example is to
use the value measured by a CO2 sensor to estimate
the number of people. Data transformation,
aggregation and estimation are not subject to
conflicts (they do not involve actuators) and thus, are
performed by writing LINC rules, by the developers.

• Analysis and decision (AD): Analyse the data
obtained from the monitoring and compute the
commands to send to the actuators. To avoid
conflicts, the commands are computed by a
controller (step function) obtained through H/BZR
and DCS. Nevertheless, it is possible for developers to
manually write rules to achieve simple objectives
(involving devices that do not affect an environment
parameter for instance CO2). Such objectives are easy
to achieve while avoiding conflicts and thus, do not
require to use the controller. These rules also analyse
specific monitoring data and compute commands,
based on knowledge.

• Knowledge (K): The knowledge used by the
controller is one instance of the generic environment
model. It consists of a set of automata and equations.
Each automaton describes the behaviour of a specific
device by specifying its states, its transitions and its
effects on the environment. The knowledge used by
the LINC rules (achieving simple objectives) is a set
of resources stored in bags and modelling the states
of specific devices.

• Interpretation and execution (IE): Interpret the
computed commands, send them and update the
knowledge. The interpretation allows to send a
specific command to several actuators.

4 Framework usage by developers
The proposed framework allows developers to

• Generate an executable model from a model of the
environment and a set of target objectives;

• Create soft sensors and soft actuators respectively
from physical sensors and actuators;

• Deal with changing objectives through the
automatic reconfiguration of the controller;

• Consider a high number of devices through the
modular design of the MIADIE-K loop;

• Write LINC rules to manually achieve simple
objectives, involving a small number of devices, that
do not lead to conflicts.

4.1 Generating an executable model
Developers design a H/BZR program by defining a model
of the considered environment, the target objectives and
the controllable variables. Then, the framework gener-
ates an executable model that manages the devices of the
environment and achieves the objectives.

4.1.1 Modelling the environment
Developers first consider a set of parameters of the envi-
ronment and identify all the devices that affect at least one
parameter. Then, developers model each type of identi-
fied device as an automaton contained in a H/BZR node.

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 7 of 21

The automaton modelling a device type specifies the dif-
ferent states of the device type, its state transitions, the
environment parameters it affects and how it affects them.
Modelling types of devices, instead of specific devices,
allows for the models re-usability.
Let us consider as an example, in the context of building

automation, a room equipped with a shutter and a lamp.
To model this room, two parameters (luminosity and air)
are first considered. Then, two automata are designed to
model a shutter and a lamp.
Figure 5a presents the automaton that models a shut-

ter. This automaton is contained in a H/BZR node that
has two input flows (c, o_lum) and three output flows
(cmd, lum, air). The automaton has two states (Closed,
Opened) and two transitions. Each state is associated to
three equations to produce the command of the shutter
(cmd) and specify its effects on the environment (lum,
air). In the state Closed, the command is equal to
close (resp. nothing) if this state is (resp. not) newly
activated. This prevents from continuously computing the
command close while the shutter is already Closed.
In this state, the shutter provides a luminosity equal to
zero (lum = 0) and does not allow outdoor air to pass
(air = false). In the state Opened, the shutter provides
a luminosity equal to the outdoor luminosity (lum =
o_lum) and allows outdoor air to pass (air = true). The
transitions going from a given state to a different one
are associated to not c. This allows to open or close
the shutter only when necessary. Figure 5b presents the
lamp automaton. This automaton is the same than the one
presented in Fig. 3.

4.1.2 Defining the target objectives and the controllable
variables

Developers design a main H/BZR node that instantiates
the automata modelling the devices and has a contract
part. Then, developers define in the contract, the target
objectives and the controllable variables.

Defining the objectives Developers specify the values
that the considered environment parameters must take.
These values may depend on data collected from the
environment. This is done using variables and operators.
Variables are used to refer to the collected data and also to
the environment parameters. Operators, for instance, ⇒
(logical implication) and ∧ (and) are used to express the
relations between the variables. Examples of objectives for
a room are:

1. presence ⇒ luminosity in [500,600] lux;
2. presence ⇒ noise < 80 dB;
3. presence ∧ temperature < 17 °C ⇒ heat;
4. presence ∧ CO2 > 800 ppm ⇒ ventilation.

The first objective means that if a presence is detected,
in the room, the luminosity must be between 500 and
600 lux. The second objective means that if a presence
is detected, the noise level must be lower than 80 dB.
The third objective (resp. the fourth objective) means that
if a presence is detected and the temperature is below
17 °C (resp. the CO2 is above 800 ppm), the room must
be heated (resp. ventilated). The devices required to reach
the objectives and the actions to perform on them will
be decided by the step function. For instance, the first

Fig. 5 H/BZR program of the room example. a Shutter node, b Lamp node, c H/BZR contract

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 8 of 21

objective can be reached by switching on the lamp or
opening the shutter. The second action may be preferred
for energy savings.

Defining the controllable variables Developers first
analyse the input flows of the nodes that contain the
automata modelling the devices. The aim is to identify the
input flows that are controllable (their values are not given
by the monitoring). Then, developers declare the identi-
fied input flows, in the contract part of the main H/BZR
node, as controllable variables. For instance, in the lamp
automaton, presented in Fig. 5b, the input flows c1 and
c2 are controllable variables. In the shutter automaton,
presented in Fig. 5a, the input flow c is a controllable
variable. The input flow o_lum represents the value mea-
sured by an outdoor luminosity sensor and hence it is
uncontrollable.
Developers can use the declaration order of the control-

lable variables to express preference between the transi-
tions of the different automata. A transition T1 associated
not c1 is preferred to another transition T2 associated
to not c2 if is c1 is declared after c2.

4.1.3 Example of H/BZR program for a room
Let us consider again the room, equipped with a shutter
and a lamp. The objective to achieve is to maintain the
luminosity between 500 and 600 lux when a presence is
detected while minimising the energy consumption (i.e.,
prefer natural lighting to artificial lighting).
The H/BZR program defined for this room is presented

in Fig. 5. It consists of three nodes. The first two nodes
respectively contain the shutter and the lamp automata
(Fig. 5a and b). The third node, presented in Fig. 5c, is
the main node. It has two input flows (i_presence
and o_lum) and two output flows (shutter_cmd and
lamp_cmd). The input flows respectively represent the
values measured by the room indoor presence sensor and
outdoor luminosity sensor. The output flows respectively
correspond to the commands to send to the shutter and to
the lamp. This node defines a contract to enforce the
target objective, through DCS, with the controllable vari-
ables c1_lamp, c2_lamp and c_shutter. These con-
trollable variables are respectively related to the lamp and
the shutter. The luminosity objective is expressed as fol-
lows: i_presence ⇒ lum in [500,600] where
lum is equal to the sum of the luminosity provided by
the shutter and the lamp. The controllable of the shutter
is declared after those of the lamp to specify that natural
lighting is preferred to artificial lighting.

4.1.4 Executablemodel generation
Figure 6 shows how from the generic environment model,
the target objectives and the controllable variables (i.e.,
a H/BZR program designed by developers) are generated
the following elements:

1. A step function;
2. A LINC rule template;
3. An instance of the LINC rule template.

At runtime, the LINC rule instance invokes the
step function each time a relevant event occurs.
When invoked, the step computes and returns appro-
priate commands that will be executed by the rule
instance.

Step generation The step is generated through the
compilation of the H/BZR program designed by develop-
ers. For instance, the compilation of the H/BZR program
presented in Fig. 5 generates a step.

LINC execution rule template generation The execu-
tion rule template is generated from the H/BZR program
and the objects of the PUTUTU framework. This rule
template collects the inputs of the main H/BZR node,
invokes the step function with the collected inputs and
sends the computed commands (outputs of the main
H/BZR node). The precondition of the rule template con-
sists of a set of rd operations: one rd for each input of the
main H/BZR node and one rd to invoke the step. The
performance of the rule template consists of a sequence
of two transactions. The first transaction consists of a set
of rd operations to verify if the collected inputs have not
changed and a set of put operations to send the computed
commands and update the knowledge. One put is gener-
ated for each output of the main H/BZR node and one put
is generated to update the knowledge. The second trans-
action consists of a set of rd operations to verify if the
collected inputs did not change, one rd to verify if the
knowledge did not change and one put operation to signal
an actuator problem to the maintenance team. In the sec-
ond transaction, the fact that the collected inputs are still
the same and the knowledge did not change means that
the first transaction aborted when performing an action
on an actuator (it is faulty or unreachable). Otherwise, the
knowledge would be updated. Hence, the maintenance is
informed if the inputs are the same and the knowledge did
not change.
Listing 2 presents the rule template generated from the

H/BZR program presented in Fig. 5. The precondition
of this rule first reads the value measured by an indoor
presence sensor in the variable i_pres_id_val. This is
done by applying a rd on the Sensors bag of a PUTUTU
object. Then, at line 2, the precondition reads the value
measured by an outdoor luminosity sensor in the vari-
able o_lum_id_val. At line 3, the precondition stores
the read sensor values in one variable called inputs
using the LINC operation IC (i.e., INLINE_COMPUTE).
In LINC, the IC operation executes any python code
and returns a tuple of string (here containing only one

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 9 of 21

Fig. 6 Executable model generation

value). Finally, the precondition invokes the step func-
tion (line 4) and stores the computed commands in the
variables shutter_cmd and lamp_cmd (line 5). These
variables will be used in the first transaction of the perfor-
mance.
The first transaction verifies if the sensors data did not

change (lines 8, 9). Then, it sends the computed shutter
command to a shutter actuator. This is done by applying a
put on theActuators bag of a PUTUTU object. This trans-
action also sends the computed lamp command to a lamp
actuator (line 11) and updates the knowledge (line 12). If a
command cannot be sent due to a problem on the shutter
(resp. the lamp) actuator, the put at line 10 (resp. line 11)
fails and the knowledge is not updated. This prevents from
inconsistencies. To signal the shutter or the lamp problem,
the second transaction, sends a SMS to the maintenance
team.

LINC execution rule instance generation From the
generated rule template, a rule instance is generated with
the actual sensors and actuators. This is done using a file
that contains information related to the considered envi-
ronment devices (i.e., type, id, technology, location). To
generate an instance of the execution rule template, the
rule instance generator replaces:

• In rd operation, Objectname and id by the
technology and the id of the corresponding sensor;

• In put operation, Objectname and id by the
technology and the id of the corresponding actuator.

Listing 3 presents the file that describes the devices of
the room example. This file specifies that the room is
equipped with a TelosB indoor presence sensor with an
id equal to pr1, a RFXCOM outdoor luminosity sensor, an
EnOcean lamp actuator and a KNX shutter actuator.

Listing 4 presents the rule instance generated from the
execution rule template of Listing 2 and the description
file presented in Listing 3. This rule reads the values of

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 10 of 21

specific sensors, invokes the step and sends the com-
puted commands to specific actuators.

4.2 Creating soft sensors
Developers can create soft sensors from physical sensors
to aggregate the data collected from the environment, to
transform them or to estimate other data. For that, they
write specific LINC rules called monitoring rules. These
rules do not involve actuators and cannot be conflicting.
These rules rely on the abstraction layer which hides the
devices heterogeneity. Developers can also write monitor-
ing rules for other data sources (e.g., agenda) to transform
data or estimate required data.

Listing 5 presents an example of monitoring rule tem-
plate. This rule template creates a soft presence sen-
sor from a physical CO2 sensor. The precondition of
this rule first reads in the variable co2_id_val, the
value measured by a CO2 sensor. Then, the precondi-
tion invokes a function (i.e., pres_from_co2) with the
variable co2_id_val as parameter to estimate if a pres-
ence is detected or not. The result is stored in the vari-
able pres_val. The performance inserts the resource
(pres_id, pres_val) in the Sensors bag of the Soft-
Sensors LINC object. This specifies that a presence has
been detected or not by the soft presence sensor with the
id pres_id. This monitoring rule is triggered each time
a new CO2 value is produced.
Once designed, a monitoring rule template is instan-

tiated for a specific environment and the created soft
sensor is added in this environment information file. Soft
sensors and physical sensors are handled similarly when
instantiating the step execution rule template.

4.3 Creating soft actuators
Developers can create soft actuators to allow some com-
puted commands to be sent to more than one actuator. A

soft actuator groups several actuators, that have different
ids and possibly different communication technologies, as
one actuator. When creating a soft actuator, developers
specify the number of actuators that must perform the
action corresponding to the command (e.g., three lamps
must be switched on).
When used in a rule, a soft actuator is seen as any other

actuator: a put is done on itsActuators bag.When applied,
the put sends the specified command to all the physi-
cal actuators that are associated to the soft actuator. The
put succeeds if the action corresponding to the command
can be performed by the specified number of actuators.
Otherwise, the put fails.
Creating a soft actuator consists first in creating a spe-

cific PUTUTU object that encapsulates one or several
technologies. This is straightforward and is done by inher-
iting from the existing PUTUTU objects that encapsu-
late the technologies of the target physical actuators. By
default, the operation put(id,command) on a PUTUTU
object Actuators bag sends the command, given as param-
eter, to only one actuator. Therefore, it is required to
modify the behaviour of the put operation, on the cre-
ated object Actuators bag, to send the command to the
required number of actuators.
Once defined, a soft actuator is added in the environ-

ment information file and will be used by the rule that
invokes the step, as if it were a physical actuator.

4.4 Dealing with changing objectives
Controlling smart environment devices requires to deal
with changing objectives. The reason is that a realistic
environment can have different configurations with differ-
ent objectives (e.g., working time and holidays in a build-
ing). This is done by first designing a controller for each
configuration. Then, switching between the controllers, at
runtime, as illustrated in Fig. 7.
Let us consider a system and a set of controllers,

designed in H/BZR, to achieve different objectives. To
achieve its objectives, each controller accepts specific
states of the system and rejects the other states (i.e.,
those that can violate its objectives). A state rejected by
a given controller is not allowed to be reached when
this controller is activated. Hence, switching an activated
controller (e.g., Ct1) for another controller (e.g., Ct2) is
possible only if the current state of the system (accepted
by Ct1) is accepted by the controller Ct2.
Switching controllers is not an easy task in general

because it is not straightforward to decide if a given state
is accepted by a controller. Indeed, a state is accepted by a
controller if it:

• Belongs to the state space (set of known states) of the
controller;

• Does not violate an objective of the controller;

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 11 of 21

Fig. 7 Controller reconfiguration through the framework

• Does not lead, through one or several uncontrollable
transitions, to a state violating an objective.

However, in the context of smart environments, partic-
ular solutions can be performed to enable the switch of
controllers. An example of solution is to design the differ-
ent controllers in such a way that they all have the same
initial state. This allows to switch them when this state is
reached. For instance, a building may have a night state
where it is not occupied, completely closed, not heated
and not ventilated. This state can be use as the initial state
of all the building controllers. Another possible solution is
to try to synthesise the target controller from the current
state of the activated controller. If the controller synthesis
succeeds and the current state has not changed, the switch
can be done.
To enable the reconfiguration, the execution rule

of each controller is associated to a resource to be
activated or deactivated. For this, a LINC bag called
CurConfiguration is first created. This bag contains
one resource indicating the current configuration of the
considered environment. Then, each execution rule is
modified to enable its activation and deactivation.
To illustrate the reconfiguration, let us consider an

example in the context of building automation. One can
design two controllers (with the same initial state), for
different configurations of a building (e.g., working time
and holidays). Then, the execution rules of the controllers
are modified as shown in Listing 6 for the working time
execution rule. A rd on the configuration of the con-
troller is added in the beginning of the precondition
and in the beginning of each transaction. This ensures
that an execution rule is triggered only if the resource
corresponding to its controller configuration is present in
the bag CurConfiguration.

Hence, switching a controller for another one consists
in removing the resource of CurConfiguration and
adding the appropriate resource. This is done by writing a
switching rule. For instance, Listing 7 presents an exam-
ple of LINC rule that switches the working time controller
for the holidays one when the event holidays_start
is triggered and the night state of the building is reached.
The performance of the rule consumes the event resource
and the current configuration resource and inserts the
Holidays resource.
When the controllers are numerous, instead of writing

switching rules that may be conflicting (activate and deac-
tivate a controller at the same instant), one can design,
using H/BZR, a switching controller. This controller will
decide the actions to perform on the controllers (activate,
deactivate) and avoid conflicts.

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 12 of 21

4.5 Deployment
After the design phase, the framework generates a set
of LINC rules and objects that have to be deployed.
The objects consist of one HBZR object (used for the
step and several PUTUTU objects, one for each sen-
sors/actuators technology used in the target environment.
Each PUTUTU object (e.g., Plugwise) must be deployed
on a computing device that has the appropriate dongle
(e.g., plugwise dongle). The HBZR object does not require
a dongle and can be deployed on any computing device.
Once the deployment is performed, the control loop starts
and the controller will be invoked when a relevant event
occurs in the environment.

4.6 Handling a high number of devices
When the number of devices is high, using one single
loop may become a bottleneck. First, the synthesis of the
loop controller can take a lot of time or not succeed due
to computing resource limitations. Second, the execution
rule reads several data in its precondition part. This can
lead to runtime performance degradation.
In this case, the devices can be partitioned in several

sets. Then, one loop is used for each set, as illustrated
in Fig. 8. In this context, each set of devices has a con-
troller. If the devices sets are independent, nothing more
is required. Otherwise their controllers must be coordi-
nated, using priorities on their actions on shared devices.
In this case, an output value of a given controller can be
an uncontrollable input for another one.
The coordination of controllers is currently done in

LINC. The execution rule of a controller can insert a
value in specific bags or read a value inserted by another
controller execution rule. The coordination could also be
done in H/BZR, by exploiting the potential of modular
discrete controller synthesis, as done in [34].

5 Case study
This section illustrates the proposed framework through
a case study taken in the field of building automation. The
aim is to manage the devices of a building in order to

achieve a set of objectives. The building is first described.
Then, its devices are managed and a demonstrator is pre-
sented to show that the framework was able to reliably
achieve the target objectives. Then, the management cost
is evaluated to show the scalability of our approach. Finally
the case study is discussed to compare the framework to
related work approaches.

5.1 Building description
The considered building consists of ten small offices and
twelve big offices, that are separated. A small office con-
sists of a room that contains: a window, a shutter, a door,
a lamp, a reversible air-conditioner (RAC), a mechanical
ventilation (MV), a temperature sensor and a CO2 sen-
sor. A big office has an additional lamp, window, shutter
and temperature sensor compared to a small office. A
big office also has a presence sensor. Several sensors are
installed outside the building to enquire outdoor condi-
tions (i.e., luminosity, CO2, noise, temperature, pollen).
Noise sensors are also installed in the corridors. The
actuators and sensors of the building use different com-
munication technologies (e.g., EnOcean, TelosB). Each
room has a file that describes its devices (id, type, tech-
nology and location). Information about the meetings
(e.g., day, time, features) that will be held in each room
can be obtained through a specific agenda. The devices
of the rooms must be managed to achieve the following
objectives:

• For comfort, when a presence is detected, the
luminosity must be between 500 and 600 lux and the
noise level must be lower than 80 dB;

• For air quality, when a presence is detected and the
CO2 exceeds 800 ppm, the room must be ventilated.
It must not be be polluted by pollen or outdoor CO2
and must be quickly ventilated between meetings
separated by less than 30 minutes;

• For comfort, when a presence is detected and the
temperature is below 17 °C (resp. above 27 °C), the
room must be heated (resp. cooled);

Fig. 8 Example of multiple loops for a high number of devices

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 13 of 21

• For confidentiality, the room must be completely
closed during a confidential meeting;

• For energy savings, natural lighting, ventilation,
heating and cooling are preferred to artificial lighting,
ventilation, heating and cooling.

5.2 Devices management using the proposed framework
To achieve the objectives in the rooms, developers have
to design a H/BZR program, from which a step func-
tion and an execution rule template will be generated.
Then, developers have to write two monitoring rule tem-
plates to respectively estimate a presence in a small room
(not equipped with a presence sensor) and to compute a
temperature average in a big room (has two temperature
sensors). Developers also have to write a monitoring rule
template to know from an agenda, if there is a meeting
or not and if a meeting will be held in less than 30 min,
after a previous meeting. Finally, the rule templates are
instantiated in each room.

5.2.1 Designing a H/BZR program
This requires to design a generic model of a room. For
this, a set of environment parameters are first considered
(i.e., luminosity, noise, CO2, temperature, pollen and air).
Then, the effects of the devices on these parameters are
specified. As presented in Table 1:

• A window: affects five parameters (noise, CO2, air,
temperature, pollen). When the window is opened, it
introduces the outdoor noise in the room. It can
ventilate, heat or cool the room, depending on the
outdoor conditions. It can pollute the room by
introducing pollen or outdoor CO2;

• A shutter: affects two parameters (luminosity, air).
When the shutter is closed, it provides a luminosity
equal to zero and stops the outdoor air;

• A door: affects five parameters (luminosity, noise,
CO2, temperature, air). When the door is opened, it
lights the room (if the corridor lamps are on) and
introduces the corridor noise;

• A lamp: affects one parameter (luminosity). It
provides 500 lux when it is on and 0 when off;

• A RAC: affects the temperature of a room;
• AMV: affects the CO2 and the air.

Table 1 Environment parameters and devices

Window Shutter Door Lamp RAC MV

Luminosity × × ×
Noise × ×
CO2 × × ×
Temperature × × ×
Pollen ×
Air × × × ×

A generic room model is obtained by designing
automata that describe the behaviours of a window, a shut-
ter, a door, a lamp, a RAC and aMV. All the automata have
an output flow that is the command to send to the mod-
elled actuator. This command is equal to nothing when
the actuator should not receive a command. For instance,
to switch off a lamp, the command is equal to s_off
when the lamp is on and nothing as long as it remains
off. The lamp and shutter automata are those presented in
Fig. 5.
Figure 9 presents the automaton that describes a door.

This automaton has two states and two transitions. Each
state is associated to two equations to produce the com-
mand of the door and also specify its effect on a room
noise level. For instance, at the state Closed, the door
affects the noise level with a value equal to zero. The
effects of the door on the other parameters (i.e., air, CO2,
temperature, luminosity) are not considered because the
corresponding sensors do not exist in the corridor and
their values cannot be obtained. The transitions that go
from a state to a different one are associated to not c.
This allows to open or close the door only when necessary.
Figure 10 presents the automaton that describes the

behaviour of a reversible air-conditioner (RAC). This
automaton has three states and six transitions. Each state
is associated to three equations to produce the command
of the RAC and also specify its effects on the room. For
instance, at the state Off, the RAC does not cool nor
heat the room. This automaton is contained in a node
that has two input flows c1 and c2. The reason is that,
at each state, three transitions can be triggered (i.e., two
transitions that leaves the state and one that allows to
stay). To associate a different boolean expression to each
of the three transitions of a state, at least two variables are
needed. For instance, when the state Off is activated, if
the input flow c1 is false, the RAC automaton goes to
the state Cooling. If c2 is false, it goes to the state
Heating. If both c1 and c2 are true, it remains at
the state Off. Finally, if both c1 and c2 are false, at
the same instant, the transition that was first declared is

Fig. 9 Door automaton

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 14 of 21

Fig. 10 RAC automaton

chosen. Associating not c1 and not c2 (resp. c1 and
c2) to the transitions that leave (resp. come to) the state
Off means that it is preferred to maintain the RAC Off
for energy savings.
Figure 11 presents the automaton that describes the

behaviour of a mechanical ventilation (MV). This automa-
ton has three states. Each state is associated to three
equations to produce the command of the MV and spec-
ify its effect on the CO2 concentration of a room. For
instance, at the state Off, the MV does not ventilate
the room. At Mode1, the MV ventilates the room but
not quickly, as done in Mode2. The transitions that leave
(resp. come to) the state Off are associated to not c1
and not c2 (resp. c1 and c2) to express that it is prefer-
able to not use the MV.
Figure 12 presents the automaton that describes the

behaviour of a window. This automaton has two states.
Each state is associated to five variables to specify the
effects of the window on different parameters of a room.
At the state Closed, the window does not ventilate, heat,

Fig. 11MV automaton

Fig. 12Window automaton

cool, pollute nor introduce outdoor noise in a room. At the
state Opened, the window can heat, cool, ventilate, pol-
lute or affect the noise level of a room, depending on the
indoor and the outdoor conditions. The transitions that
lead to a different state are associated to not c to spec-
ify that the window should be opened or closed only when
necessary.
Once the devices modelled as automata, the H/BZR

node presented in Fig. 13 is designed. This node defines
one instance of each device automaton and has a con-
tract. The contract defines the target objectives and a set
of controllable variables. These variables are the input
flows associated to automata transitions with a value not
given by themonitoring. The energy savings objective (i.e.,
natural lighting, heating, ventilation and cooling are pre-
ferred) is expressed by declaring the controllable variables
of the shutter and the window after those of the lamp, the
RAC and the MV. This H/BZR node represents a room
automaton. It takes as input sensor values and meetings
information and returns the commands to send to the
actuators.
Once defined, the H/BZR program (set of defined

nodes) was compiled to generate a step function. The
H/BZR program was also used to generate an execution
rule template that was instantiated for each room.

5.2.2 Execution rule template generation
The H/BZR program and the objects of the PUTUTU
framework were used to generate an execution rule tem-
plate. This rule is presented in Appendix (Listing 9).
The precondition first applies nine rd operations on
the Sensors bags of nine PUTUTU objects, referred
as Objectname, to read the sensor values (e.g., pres-
ence, CO2). Then, the precondition applies a rd on a
bag that encapsulates an agenda to obtain information
related to meetings. Finally, the precondition invokes the
step with the sensor values and the meetings informa-
tion to compute actuators commands. The performance
of the rule template consists of two transactions. The first

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 15 of 21

Fig. 13 Room automaton

transaction verifies if the sensor values did not change.
Then, it applies six put operations on the Actuators bags
of six PUTUTU objects, referred as Objectname, to
send the computed command to the actuators. Finally,
it updates the room generic model (changes the room
automaton state). The second transaction sends a SMS to
the maintenance if a command cannot be sent (e.g., com-
munication error, actuator failure). The execution rule
template was instantiated in each room of the building.
For the big rooms, equipped with two lamps, two win-
dows, two shutters, one RAC, one door and oneMV, some
computed commands (i.e., lamp_cmd, window_cmd,
shutter_cmd) are sent to two actuators.

5.2.3 Monitoring rules design
Amonitoring rule template is designed to estimate a pres-
ence from the value measured by a CO2 sensor, in a small
room. This rule template is the one presented in Listing 5.
Another monitoring rule template is designed to compute
a temperature average in a big room (is equipped with two
temperature sensors). This rule is presented in Listing 8.
The precondition of this rule first reads two temperature
values measured by two different sensors. Then, it uses a
function to compute the average and stores it in the vari-
able temp_aver. The performance of this rule stores the
computed average in the Sensors bag of the SoftSensors
object. A monitoring rule template is designed to obtain

relevant meeting information from a room agenda. This
rule returns a resource that specifies if there is a meeting,
if it is confidential and if meeting will be started in less
than 30 min, after a previous meeting.
The designed monitoring rule templates were instanti-

ated in specific rooms. This was done by replacing, in each
operation, Objectname and id, respectively, with the
technology and id of the corresponding sensor.

5.3 Demonstrator with concrete devices
To illustrate the framework, a demonstrator was built.
The aim is to achieve, in a room, two objectives:
presence ⇒ luminosity in [500,600] lux,
confidential meeting ⇒ room completely
closed. The demonstrator, as shown in Fig. 14, consists
of:

• A Plugwise circle [35]: Is a plug used to
automatically switch on or off the lamp. This is done

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 16 of 21

Fig. 14 Demonstrator

by applying the operation put(id,command) on the
Actuators bag of a Plugwise PUTUTU object.

• An EnOcean switch [36]: Is used as a presence
sensor. The switch has a button that can be pressed
to emulate a presence. The value of the switch
(presence detected or not) is obtained by applying the
operation rd(id, value) on the Sensors bag of the
EnOcean PUTUTU object.

• A graphical interface: Is used to emulate a shutter.
A bag, contained in an object (Shutter), is created to
send a command to the shutter. The insertion of a
resource in this bag, shows the corresponding action
(open, close) on the interface.

• A Raspberry Pi: Is used to deploy the objects and
the execution rule. It is connected to the switch and
to the circle through two dongles.

Two bags (i.e., OutdoorLuminosity and Agenda)
contained in an object (Room) were created to respectively
emulate an outdoor luminosity sensor and an agenda for
meetings. These bags were manually filled. The step
function generated for the building was used.
Figure 15 presents the MIADIE-K loop that was set

up for the demonstrator. This loop is an instantiation of
the the generic loop presented in Fig. 1. Data are first
collected through the abstraction layer: the Room object
(outdoor luminosity and confidential meeting) and the
EnOcean object (presence detected by the switch). Then,
the collected data are used to invoke the step function
that, based on the automata of the shutter and the lamp,
computes and returns the commands that achieve the
objectives without conflict. Finally, the computed com-
mands are sent to the devices and the states of the two
automata are changed.
Several scenarios were performed to validate the

demonstrator. Some scenarios were with a potential con-
flict (i.e. presence detected, outdoor luminosity in [500,
600] lux and confidential meeting held), communication
errors or actuator failure (e.g., circle unplugged). In all
cases, there was no conflict and no inconsistency. Three
examples of scenarios are:

• First scenario: The button of the switch was pressed
to emulate a presence and the outdoor luminosity
was set to 500 lux by inserting the resource
("500") in the bag OutdoorLuminosity. A
confidential meeting was also emulated by inserting
the resource ("confidentialMeeting") in the
bag Agenda. This switched on the lamp and closed
the shutter. The conflict which consists in opening
the shutter for daylight and closing it at the same
instant for confidentiality was avoided.

• Second Scenario: It was performed just after the first
scenario. The presence was still detected, the outdoor
luminosity was equal to 500 lux, the shutter was
closed and the lamp was on. In this context, the end of
the confidential meeting was emulated by removing
the resource ("confidentialMeeting") from
the bag Agenda and inserting the new resource
("notConfidentialMeeting"). This opened
the shutter and switched off the lamp to save energy.

• Third Scenario: It was performed after the second
scenario. The presence was still detected, the lamp
was off and the shutter was opened. In this context,
the outdoor luminosity was set to 700 lux. In
addition, a failure was emulated on the lamp (i.e., the
circle was unplugged). In this case, the controller
decided to close the shutter and switch on the lamp
to maintain the luminosity between 500 and 600 lux.
Since there was a problem on the lamp, nothing was
done and a SMS was sent to the maintenance to
signal the problem. Hence, the inconsistency which
consists in wrongly assuming that the lamp was
switched on was avoided.

5.4 Evaluation of the devices management cost
This section evaluates the design cost and the runtime
cost of the proposed devices management approach.

5.4.1 Design cost evaluation
When using the proposed framework, developers
describe the actuators and define the target objectives.
They do not have to manually specify the desired
behaviour of the considered smart environment. This is
enabled by the generation of a controller, through Dis-
crete Controller Synthesis (DCS). For instance, in the case
study, one controller was generated using six automata
with a total of 65 variables, modelling a lamp, a shutter,
a window, a door, a RAC and a MV. The synthesis of the
controller took 1.4 s, on a computer with a processor Intel
i7 (3.4 GHZ) and 16 GB of RAM.
The controller synthesis algorithm is exponential in

the number of variables that are used in the model
that describes the devices [18]. These variables corre-
spond to the variables that are associated to the states
of the automata, modelling the devices, the controllable

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 17 of 21

Fig. 15 Demonstrator devices management

variables and the uncontrollable variables. The Table 2
shows the synthesis time of a controller for different
rooms with different number of devices that do not
have the same behaviour. The devices of each room are
described using automata associated to variables. The
Table shows that the synthesis time grows exponentially
with the number of variables of the model.
When the number of variables is high, the synthesis of

the controller can take a lot of time or not succeed to
due limitations of CPU and/or RAM. In our approach, the
generic environmentmodel allows to deal with this limita-
tion. All the devices that have the same behaviour are seen
as one device and hence they are modelled using one sin-
gle automaton and the associated variables. This improves
the scalability by reducing the controller synthesis time.
However, this is limiting for a high number of devices that
have different behaviours, several automata must be used.
In this case, the devices are managed by designing several
autonomic loops, as explained in the Section 5.4.3.

Table 2 Design costs comparison

Considered rooms Synthesis time

R1 (6 devices/65 variables) 1.4 s

R2 (12 devices/101 variables) 31 s

R3 (18 devices/137 variables) 797 s

R4 (24 devices/173 variables) 4888 s

R9 (48 devices/353variables) 10920 s

5.4.2 Runtime cost evaluation
At runtime, the generated execution rule reads data from
all sensors and other sources and invokes the step func-
tion to compute the commands. The step is similar to a
set of if then else and has a runtime cost that is low. Hence,
the runtime cost of the execution rule depends on the data
it reads in its precondition part.
The fact that the execution rule reads data from all sen-

sors and other sources leads to a runtime cost that is not
negligible, when the number of devices is high. The rea-
son is that the middleware LINC is used to design reactive
rules. To not miss an event and to react as soon as it
occurs, a rule is executed by building an inference tree
from the data read in its precondition. Hence, the more a
rule reads data, the bigger is the inference tree. This slows
down the rule execution.
However, to avoid conflicts and ensure reliability, it is

necessary to read data from all sensors and have a global
view of the environment. For instance, opening a window
to cool a room requires not only data from temperature
sensors but also outdoor noise, CO2 and pollen sensors to
not violate other target objectives.

5.4.3 Design cost and runtime cost improvement
When the number of devices is high, they are managed
as follows. The devices are first divided into several sets.
Then, a loop, as the one presented in Fig. 1, is designed
for each set of devices. These loops can be combined
in different modes (i.e., parallel, coordinated, hierarchic)
depending on the interactions between the devices sets

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 18 of 21

(e.g., independent) and the structure of the considered
smart environment (e.g., a building is composed of floors
that consist of rooms).
Managing the devices by designing multiple loops

improves the scalability of our approach, by reducing
the design cost. Indeed, the controller synthesis is done
for each devices set (not in all the devices) and can be
performed modularly [34]. This also improves the speci-
fication by allowing developers, when providing the envi-
ronment model, to consider sets of limited devices instead
of all the devices. Finally, this allows for the distribution of
the loops and improves the execution cost. More details
on how smart environment devices are managed using
multiple loops can be found in [37].

5.5 Discussion about the case study and qualitative
comparison with related work approaches

The proposed framework allows developers to generate an
executable model for the management of smart environ-
ment devices. To enable the executable model generation,
developers provide a model of the considered environ-
ment and the target objective. The environment model is
defined by specifying for each device, its states, its state
transitions and its effects on the environment parame-
ters. The objectives are defined by specifying the values
the environment parameters must take. From the envi-
ronment model and the objectives are generated a con-
troller and an execution rule. At runtime, the execution
rule collects data from the environment and invokes the
controller that makes appropriate decisions to reliably
achieve the objectives. In the followings, our approach is
compared with the related work approaches to show its
advantages.

5.5.1 Comparisonwith rule based approaches
In rule based approaches (e.g., [5, 6]), developers define a
set of rules to specify the actions to perform when events
occur. These approaches are intuitive for the management
of smart environment devices [38]. However, developers
have to manually consider all the possible cases to define a
set of complete rules. This prevents the system from being
in a state where no action can be performed because the
corresponding rules are not defined. For a large system,
manually considering all the possible cases is tedious.
In our approach, all the possible cases are computed

through discrete controller synthesis and a controller that
decides the actions to perform depending on the events
that occur is generated. This allows developers to not
manually consider all the cases and this ensures that there
is no conflicts and violations of objectives.

5.5.2 Comparisonwithmodel checking based approaches
In model checking based approaches (e.g., [3, 4]),
developers first model the entities of the considered

system and how they interact to achieve the target
objectives (i.e., decide the actions to perform when
events occur). Then, developers define a set of prop-
erties and the model checker verify if the properties
are satisfied by the given model. If a property is not
satisfied, the model is modified and verified again.
When the properties are satisfied, developers imple-
ment the corresponding executable model, for instance
by generating rules from the verified model, as done
in [13].
Verifying the model prevents from conflicts and objec-

tives violations. This ensures the reliability of the smart
environment. The model verification relies on the state
space exploration techniques and is, similarly to our
approach, exponential in the number of variables of the
model. The execution of the executable model is also the
same in both approaches. The advantages of our approach
is that developers do not have to model how the devices
interact to achieve the objectives (i.e., decision making)
and do not need to modify the model when a property is
not satisfied. Developers just describe each devices (states,
transitions, effects on the environment) and the objec-
tives. The decisions are reliably made by a controller that
is generated.

6 Related work
In [2–4, 13, 14, 39], the authors propose model check-
ing based approaches for reliable smart environments.
These approaches consist in first modelling the desired
behaviour of the considered smart environment (i.e., the
behaviour of the devices and how they interact to achieve
the target objectives). Then, verifying if a set of prop-
erties, expressed in temporal logics, are valid in the
designed model, using a model checker. In the oppo-
site, our approach does not require to model the desired
behaviour or verify properties. The properties are, auto-
matically, enforced on a model that describes the features
of each device (i.e., effects on the environment, states and
transitions). For this reason, our approach is more con-
venient than those based on model checking. It allows to
declaratively obtain the desired behaviour of the consid-
ered smart environment. The advantage of model check-
ing based approaches is that several methods have been
proposed for the reduction of the verification cost. To
benefit from these methods, for a large system, one can
combine model checking with our approach. In this case,
the considered system is first divided into several sub-
systems. Then, the subsystems with a desired behaviour
that can (resp. cannot) be easily specified manually are
designed using a model checking based approach (resp.
our approach).
In [1, 5–9, 16], the authors propose approaches for

reliable rule based smart environments. They first con-
sider a set of errors that can occur within a set of

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 19 of 21

rules (e.g., conflicts, circularities, constraints violations,
redundancy). Then, they propose methods to detect (e.g.,
pairwise comparison, model checking) and solve (e.g., pri-
ority) the considered errors. These approaches do not
enable the detection of implicit errors. Indeed, they do
not consider the effects of the rules on the environment.
Our approach prevents from both implicit conflicts and
constraint violations, by considering the devices effects on
the environment.
In [11, 12, 40], the authors propose environment aware

approaches for the reliable smart environments. These
approaches enable the detection of implicit conflicts
and/or objectives violations, by considering the effects of
devices. However, using these approaches require to man-
ually solve the detected conflicts and objectives violations.
In addition, they do not consider the inconsistencies that
are due to communication errors and hardware failures,
as done in our approach.
In [32, 41], the authors propose an approach that han-

dle inconsistencies. This approach consists in verifying
if the actual effect of an action, on an actuator, is equal
to its expected effect, using data from sensors or other
sources. An inconsistency is assumed if the actual effect
of an action is different from its expected effect. In this
case, the action is performed again using an alterna-
tive actuator. The limitation of this approach is that it
can take a lot of time to detect an inconsistency, for
instance when the effect of the action is not instan-
taneous (e.g., temperature variation). In our approach,
when performing an action, the fact that the actuator is
faulty or unreachable due to a communication error is
detected. This prevents from taking a lot of time to detect
that the action was not performed. However, an actua-
tor can become faulty after the action is done. Such a
failure is not detected by our approach. A possible solu-
tion to detect such a failure is to verify the actual effects
of actions, using data from sensors. For this reason, the
approach proposed in [32, 41] is complementary to our
approach.
In [42], the authors propose an approach that pre-

vents from implicit conflicts among a set of ECA rules
and enables the detection inconsistencies. For this, each
rule specifies its post-condition (expected effect). Post-
conditions are used to detect conflicts and inconsisten-
cies. A conflict is detected at design time when the same
event triggers rules with contradictory post-conditions
or at runtime when such rules are triggered by different
events. Conflicts detected at compilation time are solved
by users and those detected at runtime are solved by a set
of resolution rules. An inconsistency occurs if the actual
effect of a rule is different from its post-condition. In this
case, a failure event is raised to trigger alternative rules (if
they are defined). This approach is limited because users
have to solve conflicts and also it takes time to detect an

inconsistency, when the effect of the involved rule is not
instantaneous.
In [43], the authors propose an approach that enables

the detection of errors (conflicts and objectives viola-
tions) among a set of rules. This approach also enables
the detection of inconsistencies by verifying the actions
actual effects. In a more recent work [44], the authors
consider environment dependencies for the detection of
implicit errors. However, using this approach requires to
solve the detected errors. Moreover, the fact that an actua-
tor is faulty is not detected when performing an action on
it, as done in our approach, but after a certain time when
the expected effect is not observed.

7 Conclusion
This paper has proposed a framework for reliable and
environment aware management of smart environment
devices. This framework enables the declarative manage-
ment of devices, hides their heterogeneity, prevents from
inconsistencies (due to communication errors or actu-
ators failure), and conflicting decisions including those
caused by environment dependencies. This is done fol-
lowing the autonomic computing principles. First, an
abstraction layer is used to collect data from the environ-
ment. Then, based on the data and knowledge about the
environment, a generated controller computes appropri-
ate commands that allow to reach the target objectives
without conflict. Finally, a transactional execution mecha-
nism is used to atomically send the computed commands
to the actuators and update the knowledge to prevent
from inconsistencies.
In current status, the proposed framework has two

main limitations. First, developers have to describe the
behaviours of actuators and specify their effects on the
environment. Hence, the reliability of the devices manage-
ment depends on the accuracy of the descriptions given
by developers. Second, when performing an action on a
actuator that is not a soft actuator, if the action cannot
be performed (e.g., due to a communication error), a SMS
is sent to the maintenance team and nothing else is done
meaning that the controller stops until the problem is
solved by the maintenance.
An important perspective of this work is to improve

the handling of communication errors and actuators fail-
ures, by performing alternative actions before informing
the maintenance. The other perspective is to provide a
domain specific language that enables home occupants
or building managers to specify their devices (i.e., sen-
sors, actuators) and the objectives they want to achieve.
Then, the goal will be to generate from these specifications
an executable model that automatically and reliably man-
ages their homes or buildings devices. This executable
model can consist of the composition of multiple loops, as
illustrated in [37].

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 20 of 21

Appendix
Execution rule template of the case study

Abbreviations
DCS: Discrete controller synthesis; MV: Mechanical ventilation; RAC: Reversible
air conditioner

Funding
This work is funded by the H2020 TOPAs project (grant 676760).

Authors’ contributions
This work is done in the context of the Ph.D. studies of ANS under the
supervision of ML and ER. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Université Grenoble Alpes, CEA, LETI, DACLE, LIALP, F-38000 Grenoble, France.
2Université Grenoble Alpes, INRIA, CNRS, Grenoble INP, LIG, F-38000 Grenoble,
France.

Received: 15 February 2017 Accepted: 31 October 2017

References
1. Cano J, Delaval G, Rutten E. Coordination of ECA rules by verification and

control. In: International Conference on Coordination Languages and
Models. Berlin: Springer; 2014. p. 33–48.

2. Bonhomme S, Campo E, Esteve D, Guennec J. Methodology and tools
for the design and verification of a smart management system for home
comfort. In: Intelligent Systems, 2008. IS’08. 4th International IEEE
Conference. vol. 3. Varna: IEEE; 2008. p. 24–2.

3. Corno F, Sanaullah M. Modeling and formal verification of smart
environments. Secur Commun Netw. 2014;7(10):1582–98.

4. Augusto JC, Hornos MJ. Software simulation and verification to increase
the reliability of intelligent environments. Adv Eng Softw. 2013;58:18–34.

5. Nacci AA, Balaji B, Spoletini P, Gupta R, Sciuto D, Agarwal Y.
Buildingrules: a trigger-action based system to manage complex
commercial buildings. In: Adjunct Proceedings of the 2015 ACM
International Joint Conference on Pervasive and Ubiquitous Computing
and Proceedings of the 2015 ACM International Symposium on Wearable
Computers. New York: ACM; 2015. p. 381–384.

6. Sun Y, Wang X, Luo H, Li X. Conflict detection scheme based on formal
rule model for smart building systems. IEEE Trans Human-Machine Syst.
2015;45(2):215–27.

7. Magill E, Blum J. Exploring conflicts in rule-based sensor networks.
Pervasive Mob Comput. 2016;27:133–54.

8. Vannucchi C, Diamanti M, Mazzante G, et al. Symbolic verification of
event–condition–action rules in intelligent environments. J Reliab Intell
Environ. 2017;3(2):1–14.

9. Le Guilly T, Nielsen MK, Pedersen T, et al. User constraints for reliable
user-defined smart home scenarios. J Reliab Intell Environ. 2016;2(2):
75–91.

10. Le Guilly T, Smedegård JH, Pedersen T, Skou A. To do and not to do:
constrained scenarios for safe smart house. In: Intelligent Environments
(IE), 2015 International Conference on. Prague: IEEE; 2015. p. 17–24.

11. Maternaghan C, Turner KJ. Policy conflicts in home automation. Comput
Netw. 2013;57(12):2429–41.

12. Liang CM, Karlsson BF, et al. SIFT: building an internet of safe things. In:
Proceedings of the 14th International Conference on Information
Processing in Sensor Networks. New York: ACM; 2015. p. 298–309.

13. Sylla AN, Louvel M, Pacull F. Coordination Rules Generation from
Coloured Petri Net Models. In: Proceedings of the Int. Workshop on Petri
Nets and Software Engineering (PNSE’15). Brussels: Daniel Moldt and al.;
2015. p. 325–326.

14. Augusto JC, Hornos MJ. Using Simulation and Verification to Inform the
Development of Intelligent Environments. In: Intelligent Environments
(Workshops). Guanajuato: IOS Press; 2012. p. 413–424.

15. Corno F, Sanaullah M. Formal verification of device state chart models. In:
Intelligent Environments (IE), 2011 7th International Conference on.
Nottingham: IEEE; 2011. p. 66–73.

16. Shehata M, Eberlein An, Fapojuwo A. Using semi-formal methods for
detecting interactions among smart homes policies. Sci Comput
Program. 2007;67(2–3):125–61.

17. Louvel M, Pacull F. Linc: A compact yet powerful coordination
environment. In: Coordination Models and Languages. Berlin: Springer;
2014. p. 83–98.

18. Delaval G, Rutten É, Marchand H. Integrating discrete controller
synthesis into a reactive programming language compiler. Discret Event
Dyn Syst. 2013;23(4):385–418.

19. Kephart JO, Chess DM. The vision of autonomic computing. Computer.
2003;36(1):41–50.

20. Pacull F, Ducreux LF, Thior S, et al. Self-organisation for building
automation systems: Middleware linc as an integration tool. In: Industrial
Electronics Society, IECON 2013-39th Annual Conference of the IEEE.
Vienna: IEEE; 2013. p. 7726–7732.

21. Ducreux LF, Guyon-Gardeux C, et al. Resource-based middleware in the
context of heterogeneous building automation systems. In: IECON
2012-38th Annual Conference on IEEE Industrial Electronics Society.
Montreal: IEEE; 2012. p. 4847–4852.

22. Ducreux LF, Louvel M, et al. Dynamic Reconfiguration of Building
Automation Systems with LINC. Sensors Transducers. 2015;185(2):68.

23. Iris H, Pacull F. Smart sensors and actuators: A question of discipline.
Sensors Transducers. 2013;18(1):14.

24. Vergara-Gallego MI, Mokrenko O, et al. Implementation of an Energy
Management Control Strategy for WSNs using the LINC Middleware. In:
Proceedings of the 2016 International Conference on, Embedded
Wireless Systems and Networks. Graz: Junction Publishing; 2016. p. 53–58.

25. Louvel M, Pacull F, Vergara-Gallego MI. Reliable control through wireless
networks. In: Industrial Electronics Society, IECON 2016-42nd Annual
Conference of the IEEE. IEEE; 2016. p. 4922–4927.

26. Carriero N, Gelernter D. Linda in context. Commun ACM. 1989;32(4):
444–58.

27. Cooper T. Rule-based programming under OPS5. vol. 988. USA: Morgan
Kaufmann Publishers Inc.; 1988.

28. Bernstein PA, Hadzilacos V, Goodman N. Concurrency control and
recovery in database systems. vol. 370. Addison-wesley New York; 1987.

Sylla et al. Journal of Internet Services and Applications (2017) 8:16 Page 21 of 21

29. Sylla AN, Louvel M, Rutten É. Combining Transactional and Behavioural
Reliability in Adaptive Middleware. In: Proceedings of the 15th
International Workshop on Adaptive and Reflective Middleware. New
York: ACM; 2016. p. 5.

30. Bourcier J, Diaconescu A, Lalanda P, McCann JA. Autohome: An
autonomic management framework for pervasive home applications.
ACM Trans Auton Adapt Syst. 2011;6(1):8.

31. Cetina C, Giner P, Fons J, Pelechano V. Autonomic computing through
reuse of variability models at runtime: The case of smart homes.
Computer. 2009;42(10):.

32. Seiger R, Huber S, Heisig P, Assmann U. Enabling Self-adaptive
Workflows for Cyber-physical Systems. In: International Workshop on
Business Process Modeling, Development and Support. Ljubljana:
Springer; 2016. p. 3–17.

33. Warriach EU, Ozcelebi T, Lukkien JJ. Self-* Properties in Smart
Environments: Requirements and Performance Metrics. In: Intelligent
Environments (Workshops). Shanghai: IOS Press; 2014. p. 194–205.

34. Delaval G, Gueye SM, et al. Modular coordination of multiple autonomic
managers. In: Proceedings of the 17th int. ACM Sigsoft symposium on
Component-based software engineering. New York: ACM; 2014. p. 3–12.

35. Plugwise. Plugwise Circle. https://www.plugwise.com/circle/. Accessed
10 Nov 2017.

36. EnOcean. EnOcean Switch. https://www.enocean.com/en/
enocean_modules/ptm-210/. Accessed 10 Nov 2017.

37. Sylla AN, Louvel M, Rutten E, Delaval G. Design Framework for Reliable
Multiple Autonomic Loops in Smart Environments. In: 2017 IEEE
International Conference on, Cloud and Autonomic Computing (ICCAC).
Tucson, AZ, United States; 2017. To appear. Available from:https://hal-cea.
archives-ouvertes.fr/cea-01570026. Accessed 10 Nov 2017.

38. Ur B, McManus E, Pak Yong Ho M, Littman ML. Practical trigger-action
programming in the smart home. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. New York: ACM;
2014. p. 803–812.

39. Pedersen T, Le Guilly T, et al. A method for model checking feature
interactions. In: Software Technologies (ICSOFT) 2015 10th International,
Joint Conference on. vol. 1. Colmar: IEEE; 2015. p. 1–10.

40. Nakamura M, Ikegami K, Matsumoto S. Considering impacts and
requirements for better understanding of environment interactions in
home network services. Comput Netw. 2013;57(12):2442–53.

41. Seiger R, Huber S, Schlegel T. Toward an execution system for self-healing
workflows in cyber-physical systems. Softw Syst Model. 2016;1–22.

42. Shankar CS, Ranganathan A, Campbell R. An ECA-P policy-based
framework for managing ubiquitous computing environments. In: Mobile
and Ubiquitous Systems: Networking and Services, 2005. The Second
Annual International Conference on. San Diego: IEEE; 2005. p. 33–42.

43. Preuveneers D, Berbers Y. Consistency in context-aware behavior: a
model checking approach. In: Workshop Proceedings of the 8th
International Conference on Intelligent Environments. vol. 13.
Guanajuato: IOS Press; 2012. p. 401–412.

44. Preuveneers D, Joosen W. Semantic analysis and verification of
context-driven adaptive applications in intelligent environments. J Reliab
Intell Environ. 2016;2(2):53–73.

https://www.plugwise.com/circle/
https://www.enocean.com/en/enocean_modules/ptm-210/
https://www.enocean.com/en/enocean_modules/ptm-210/
https://hal-cea.archives-ouvertes.fr/cea-01570026
https://hal-cea.archives-ouvertes.fr/cea-01570026

	Abstract
	Keywords

	Introduction
	Background
	LINC middleware
	LINC concepts
	LINC in the context of smart environments
	LINC rule example

	Heptagon/BZR language
	Design of a H/BZR program
	Automaton
	Discrete controller synthesis (DCS) delaval2013integrating

	Execution of a H/BZR program

	Combination of LINC and H/BZR
	Autonomic computing

	Framework description
	Autonomic management of devices

	Framework usage by developers
	Generating an executable model
	Modelling the environment
	Defining the target objectives and the controllable variables
	Defining the objectives
	Defining the controllable variables

	Example of H/BZR program for a room
	Executable model generation
	Step generation
	LINC execution rule template generation
	LINC execution rule instance generation

	Creating soft sensors
	Creating soft actuators
	Dealing with changing objectives
	Deployment
	Handling a high number of devices

	Case study
	Building description
	Devices management using the proposed framework
	Designing a H/BZR program
	Execution rule template generation
	Monitoring rules design

	Demonstrator with concrete devices
	Evaluation of the devices management cost
	Design cost evaluation
	Runtime cost evaluation
	Design cost and runtime cost improvement

	Discussion about the case study and qualitative comparison with related work approaches
	Comparison with rule based approaches
	Comparison with model checking based approaches

	Related work
	Conclusion
	Appendix
	Execution rule template of the case study
	Abbreviations
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

