Floriano et al. Journal of Internet Services and Applications (2017) 8:19
DOI 10.1186/513174-017-0070-3

Journal of Internet Services
and Applications

RESEARCH Open Access

Providing privacy on the tuple space

model

Edson Floriano!, Eduardo Alchieri'”

@ CrossMark

, Diego F. Aranha? and Priscila Solis’

Abstract

Conceptually, tuple spaces are shared memory objects that provide operations to store and retrieve ordered sets of
data, called tuples. Tuples stored in a tuple space are accessed by the contents of their fields, working as an associative
memory. Although there are some proposals for secure tuple spaces, accessing tuples through field contents makes
these systems susceptible to attacks that could impair user and data privacy, since servers must access tuple data. In
order to deal with these limitations and provide privacy in the tuple space model, this paper proposes some
extensions to DEPSPACE, a tuple space system that implements dependability and security properties through a set of
mechanisms that are not enough to ensure privacy. The resulting system provides privacy and, at the same time,
allows tuple selection/matches similar to the traditional insecure model, i.e., it does not constraint the matching
possibilities. The main problem to be addressed is that servers must select tuples based on their contents without
knowing them. The proposed solution uses robust cryptographic schemes, as order-preserving encryption and
homomorphic encryption, to provide this functionality without revealing the tuple contents. An analysis concerning
security aspects of DEPSPACE is presented, as well as the benefits of the proposed solutions. A set of experiments,
executed with an implementation of the proposed protocols, shows the feasibility of the proposed solutions and
shed some light on both the behavior of the system and the costs to provide privacy in the tuple spaces model.

Keywords: Tuple space, Privacy, Searchable encryption, Homomorphic encryption

1 Introduction

The distributed computing community has given a lot of
attention to the security issues on the design and devel-
opment of distributed applications. A system is secure
if it satisfies the confidentiality, availability and integrity
properties [1]. Furthermore, one can intuitively under-
stand privacy, under the perspective of some entity, as the
confidentiality of its sensitive information (data and meta-
data) [2]. This entity may be a person, an organization, a
nation, etc. Therefore, privacy is closely connected to the
confidentiality of information.

Currently, there are many factors that increase the risk
related to the security of applications [2]: (i) the world is
becoming a huge infrastructure, interconnected and inter-
dependent; (ii) there are massive amounts of correlated
data available; (iii) the entities are exposing themselves

*Correspondence: alchieri@unb.br
'Department of Computer Science, University of Brasilia, UnB, Brasilia, DF, Brazil
Full list of author information is available at the end of the article

@ Springer Open

much more; and (iv) the number of software vulnerabili-
ties is increasing.

In face of this scenario, many systems aim to pro-
vide information confidentiality by protecting only the
secret data itself, without any care of the correlated non-
confidential data. However, statistical inference attacks
[3] often are able to recover secret information from the
analyses and correlation of public available data. Con-
sequently, it becomes interesting, if not mandatory, to
develop solutions and provide means to protect all infor-
mation handled by secure applications.

These aspects are particularly relevant when we con-
sider data shared through a tuple space [4, 5], since in this
model the accesses are done by the tuple contents, work-
ing as an associative memory. As examples of distributed
systems that could benefit from a secure tuple space, it
is possible to mention either high-level applications such
as secure biddings [6], and applications that need a dis-
tributed shared memory [6, 7] or synchronization building
blocks as shared counters and distributed lists [8].

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-017-0070-3&domain=pdf
http://orcid.org/0000-0002-6022-3631
mailto: alchieri@unb.br
http://creativecommons.org/licenses/by/4.0/

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Although there are some proposals to secure tuple
spaces [5, 8—11], the fact that the tuples are accessed by
their contents makes these systems susceptible to attacks
that could impair the privacy of the data and, conse-
quently, of their users. The main problem to be addressed
in order to provide privacy in this model is that servers
must select tuples based on their contents without know-
ing them.

Among the existent proposals, DEPSPACE [5] is the sys-
tem that provides the higher security level, employing
both access control and cryptographic mechanisms. This
system suggests the classification of the tuple fields as fol-
lows: public — the data is public and all parties/processes
can access it; comparable — a hash of the field content is
available, consequently, if the range of values that a field
can take is known and limited, then a preimage attack
can disclose its contents; and private — no information
is available. Given this classification, at least one field of
each tuple needs to be public or comparable to allow
tuple accesses, i.e., to allow servers to execute matches
among tuples and templates (Section 2). This approach,
although adequate since it provides some level of confi-
dentiality, brings a big challenge to the development of
applications: if a lot of public and/or comparable fields
are used, then the system becomes vulnerable to correla-
tion, preimage and collision attacks; otherwise, as servers
are not able to execute searches/matches in private fields,
the tuple searches/matches possibilities are significantly
reduced, limiting its use in the development of distributed
applications.

In order to circumvent these problems, this paper pro-
poses extensions to the DEPSPACE field classification to
prevent that the privacy of data and users are breached by
attackers. Through the use of robust and modern cryp-
tographic mechanisms, the proposed extensions preserve
the security properties and, at the same time, allows more
flexibility in the execution of tuples searches/matches.
Moreover, this paper presents an analysis about the secu-
rity provided by DEPSPACE, as well as about the resulting
system after the inclusion of the proposed solutions.

In summary, this paper makes the following
contributions:

e It increases the security provided by DEPSPACE,
mainly privacy, by proposing new field classification
that uses robust cryptographic schemes and,
consequently, reduces (and even eliminates) the need
for public or comparable fields. Additionally, the
proposed new fields bring more flexibility in the
execution of tuples searches/matches since they use
searchable encryption schemes.

e [t presents an analysis of the security provided by
DEPSPACE prior and after the inclusion of the
proposed solutions.

Page 2 of 16

e [t analyzes, through a set of experiments, the impact
on the system performance caused by the suggested
extensions.

e It discusses some relevant aspects around such
extensions, like other implementation possibilities
and current limitations.

The remainder of this paper is organized as follows.
Section 2 details the concept of tuple space and introduces
DEPSPACE, analyzing the security properties provided
by this system. Section 3 discusses robust cryptographic
schemes that are used in the proposed extensions, which
are presented at Section 4. Section 5 discusses the inte-
gration of the proposed solutions within DEPSPACE. An
experimental evaluation about the proposed solutions is
presented at Section 6. Section 7 brings some impor-
tant discussions about the proposed solutions. The related
works are discussed at Section 8. Finally, conclusions and
future work are given in Section 9.

2 Tuple space

Conceptually, a tuple space can be seen as a shared mem-
ory object that provides operations to store and to retrieve
ordered data sets, called tuples. Processes in a distributed
system can then interact through this shared memory
abstraction. A tuple is an ordered sequence of fields,
where a field that contains a value is said to be defined. A
tuple ¢ where all the fields are defined is called entry (or
tuple). A tuple ¢ is called template if any of its fields does
not have a defined value. A tuple ¢ and a template ¢ com-
bine (or match) if, and only if, both has the same numbers
of fields and all the values and types of the defined fields in
t are identical to the values and types of the corresponding
fields in t. For example, a tuple (JISA,2017,SBC) com-
bines/matches with the template (JISA, *,) (*’ denotes a
undefined field, called wildcard).

Process coordination through tuple spaces, introduced
by the programming language LINDA for parallel systems
[4], supports decoupled communications in space (pro-
cesses do not need to know each other locations) and in
time (processes do not need to be active at the same time).
Besides that, this model of coordination provides some
synchronization power.

Manipulations performed in tuple spaces consist in
invocations of three basic operations [4]: out(¢) that stores
the tuple ¢ in the space; in(¢), that removes from the space
a tuple that matches the template £; rd(f), used to read
from the space a tuple that matches the template ¢, with-
out removing it. Operations in and rd are blocking, i.e., if
there is no tuple that matches the template in the space,
the process gets blocked until one is available. A common
extension to this model is the inclusion of non-blocking
variants of these operations, denominated inpn and rdp.
These operations work exactly like the previously, except

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

by the fact that they return even if there is not a tuple that
matches the template (indicating its nonexistence).

Another operation implemented in some tuple spaces
(e.g., DEPSPACE [5]) is the cas()t (conditional atomic
swap) [12, 13]. This operation works like an atomic exe-
cution of the code: if — rdp(t) then out(t) (¢ is a template
and ¢ an entry/tuple). The operation inserts ¢ in the space
iff rdp(t) does not return any tuple, i.e., if there is no tuple
in the space that matches £; otherwise it returns a tuple
that matches ¢.

Notice that according to the previous definitions, tuple
spaces work as an associative memory: tuples/data are
accessed by their contents, not by their addresses. Figure 1
illustrates the out(t), rdp(t) and inp(f) operations, show-
ing the operation sent by the client, the servers replies and
the final state of the tuple space.

2.1 DEePSPACE: A BFT coordination system

The DEPSPACE [5] system provides a Byzantine Fault-
Tolerant (BFT) [14] coordination service based on the
tuple space model. The following security and dependabil-
ity attributes (or properties) are necessary for this model
[1]: (1) reliability — the operations executed in the tuple
space change its state according to their specification; (2)
availability — the tuple space is always ready to execute the
operations required by authorized parties; (3) integrity —
no improper alteration of the tuple space can occur; (4)
confidentiality — the content of tuple fields cannot be dis-
closed to unauthorized parties. With the goal of ensure
these properties, DEPSPACE is built over a set of lay-
ers, each one responsible for the execution of a different
functionality.

2.1.1 DEPSPACE layers

This section introduces the DEPSPACE layers emphasiz-
ing the confidentiality layer, which is responsible for the
aspects related to this work. Figure 2 shows the layers and
their location in the stack at both clients and servers.

Page30f 16

Replication. To maintain consistency in the tuple space,
DEPSPACE utilizes State Machine Replication [15, 16] as
the bottom layer. This mechanism is related mainly with
the properties of availability, integrity and confidentiality.
Considering a system with # replicas/servers, it ensures
that operations are executed according to their specifica-
tion even if up to f = (n — 1)/3 replicas are malicious (the
correct replicas mask the behavior of the malicious ones).
Through these protocols, the correct replicas execute the
same sequence of operations and returns the same values,
evolving in a synchronized way.

Confidentiality. Since tuples are maintained replicated
in a set of servers, the provision of confidentiality (and pri-
vacy) must not be attributed to a single server because up
to f of them could fail and expose the tuple contents to
unauthorized parties.

Consequently, DEPSPACE implements confidentiality
through the use of a (n,f + 1)-Publicly Verifiable Secret
Sharing (PVSS) [15] scheme. The clients, which represent
the dealers in the scheme, generate a secret that they use
to encrypt the tuples. Later, they generate a set of n shares
of this secret and one different share is sent to each server.
The secret can be recovered only with a combination of
f + 1 shares, what makes it impossible for a collusion of
up to f malicious servers to expose the tuple contents.

As servers cannot access the tuple contents (since they
are encrypted by the client), the protocol employs a finger-
print for the tuple, making it possible to implement and
compute the matches between tuples and templates at the
servers. The fingerprint is computed according to the type
of each tuple fields, which can be classified as follows:

e Public (PU): the field content itself is used as its
fingerprint, i.e, no cryptographic method is applied to
the field content and it remains exposed.

e Comparable (CO): a hash of the field content is used
as its fingerprint (using a collision resistant hash
function), allowing servers to execute

< JISA, 2017, SBC >

out(< JISA, 2017, SBC >)

< JISA, 2017, SBC >

rdp(< JISA, 2017, SBC >)

<JISA, 2017, SBC>

inp(< JISA, *,* =)

<JISA, 2017, SBC>

Fig. 1 Tuple space basic operations. a out(t): servers receive a tuple t from the client, store t in the tuple space and return “ok”. b rdp(t): servers
receive a template 7, find a tuple t that matches t and return t keeping it on the tuple space. If no tuple is found, servers return null. € inp(): servers
receive a template 7, find a tuple t that matches t and return t removing it from the tuple space. If no tuple is found, servers return null

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Page 4 of 16

Client

Replica 0

| Proxy |

0

| Access Control |

N

y

Confidentiality

Fig. 2 DEPSPACE layers

searches/matches in these type of fields while, at the
same time, providing some level of security.

e Private (PR): a special symbol (PR) is used as
fingerprint of these fields. Although it provides a
level of security higher than the CO classification, no
information in this field is available at the servers to
verify if a tuple matches a template.

Once it is not possible to send different versions of a
request for different servers in the state machine repli-
cation approach (containing only its share of the secret
used to encrypt the tuple), the client encrypts each
share with a secret key shared with the server that will
store it. Consequently, each server will access only its
share and, as a malicious server does not have access
to all shares, it can not restore and expose the tuples
contents.

In a nutshell, a insertion operation (out) works as
follows:

e The client generates a secret s and encrypts the tuple
using this secret.

o The client uses the PVSS scheme to generate n shares
of s.

e The client encrypts each share with a secret key
shared with each server (one share per server).

e The client computes the fingerprint according to the
fields classification.

e The client uses the state machine replication protocol
to send a request to the servers (in this protocol it
must wait for f + 1 replies to finish the request
execution). The request contains the encrypted tuple,
the encrypted shares, the proof that these shares are
valid and the tuple fingerprint.

e When a server executes this request, it only stores all
received data and sends an acknowledge to the client
as a reply.

On the other hand, the protocol to read/remove a tuple
works as follows:

e The client computes the fingerprint for the template
according to the field classification. The fingerprint
of a undefined field is the wildcard itself.

e The client uses the state machine replication protocol
to send a read/remove operation to the servers
containing the generated fingerprint.

e When a server executes this request, it chooses a tuple
deterministically such that its fingerprint matches the
received fingerprint (if it is a removal operation, this
tuple is removed from the space). In case its share
was not yet verified, it extracts its share and verify if
this share is valid using the proofs received during the
out operation. Afterward, the server replies to the
client with the encrypted tuple, its encrypted share
(to avoid eavesdropping on the replies), the tuple
fingerprint and proofs that the share is valid.

e The client waits for f + 1 replies, decrypts the shares,
verifies their validity and combines them to recover
the secret s. Finally, the client decrypts the tuple
using s.

e The client verifies if the fingerprint it used is valid for
the recovered tuple. If the fingerprint is valid, the
operation is finished. Otherwise, a repair procedure is
executed to remove invalid data from the space and
the operation is repeated.

Notice that, according to the fingerprint definitions,
searches are possible only in public and comparable fields,
i.e., private fields cannot be used to verify if a tuple

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

matches a template and are always used as undefined
fields on the template. This limitation brings at least two
consequences. On the one hand, a tuple with many private
fields makes the search very restricted, losing the flexibil-
ity in the development of applications because a template
with many undefined fields does not allow a fine-grained
match at the servers. On the other hand, a tuple with many
public and/or comparable fields is susceptible to many
attacks, like correlation and preimage attacks.

Policy enforcement. This layer allows a fine-grained
access policy execution [7] that takes into account three
parameters (identifier of the invoker, operation and argu-
ments, and the current tuples stored in the space) to
decide if an operation is approved or denied. These poli-
cies are defined by the users and are loaded at the servers
during the system setup.

Access control. Access control is a fundamental mech-
anism to keep the integrity and confidentiality of infor-
mation (tuples) stored in the DEPSPACE since it prevents
unauthorized clients from getting access to the tuples.
Moreover, this mechanism prevents malicious clients
from saturating the tuple space by sending a lot of tuples.
Currently, the DEPSPACE implements the access con-
trol based on credentials: for each tuple inserted in the
DEPSPACE, a set of credentials are necessary to access it,
both to read and to remove it from the space (access con-
trol at tuple level). These credentials are defined by the
process that inserts the tuple. Moreover, it is possible to
define which credentials are necessary to insert a tuple
into the space (access control at space level) during its
setup. The implementation of this functionality is realized
through the association of access control lists to each tuple
and space.

2.1.2 Security analysis

Below we briefly summarize some security definitions.
According to [17], the attacks against the cryptographic
schemes aim to obtain the plaintext or the decryption key
through the following methods:

e Ciphertext-only attack (COA): In this kind of attack,
an adversary tries to obtain the decryption key or the
plaintext only having the ciphertext at its disposal.
This is the weaker type of attack and, therefore, a
system vulnerable to this attack is considered
insecure.

e Known-plaintext attack (KPA): In this attack, the
adversary has at its disposal a significant amount of
plaintexts and their corresponding ciphertexts.
Through the comparison of plaintexts and their
corresponding ciphertexts, the adversary tries to
discover the decryption key or to decrypt another
ciphertext.

Page 50f 16

e Chosen-plaintext attack (CPA): the adversary
chooses a plaintext and receives the corresponding
ciphertext for analysis, which may allow him/her o
discover the plaintext corresponding to another
ciphertext.

e Adaptive chosen-plaintext attack (CPA2): This attack
is similar to CPA, however the attacker can choose
new plaintexts depending on the received answer.

e Chosen-ciphertext attack (CCA) In this kind of
attack, the adversary chooses a ciphertext and
receives (without access to the decryption key) the
corresponding plaintext. The adversary uses the
analysis of this correlation to discover the plaintext
corresponding to another ciphertext.

e Adaptive chosen-ciphertext attack (CCA2): This
attack is similar to the CCA, however the attacker
can choose new ciphertexts depending on the
received answer. This attack is considered very strong
and much harder to implement.

The attacks above are presented in order of increas-
ing complexity. A system vulnerable to a weak attack will
be classified at a lower security level, even if it resists
a stronger attack. Although these are the main attacks
considered in the literature, many other attacks could
be possible depending on the system characteristics. For
example, in [3] the authors show that it is possible to
perform inference attacks by means of correlation of the
ciphertexts with additional public information. In this
case, if there is a strong correlation between the encrypted
and the public data, the plaintexts could be recovered with
high accuracy. Considering encrypted databases of hos-
pitals, [3] presented a study in which more than 60% of
the data deterministically (Section 3.1) encrypted (e.g.:
sex, race and mortality risk) could be discovered in 60%
of the hospitals, while more than 80% of data encrypted
with order preserving (Section 3.2) encryption (e.g.: age
and disease severity level) were recovered in 95% of the
hospitals.

As in practice it is impossible to achieve total security
against these attacks for all the mathematically possi-
ble adversaries, a weaker security definition is necessary,
taking into account only the computationally possible
adversaries. In this context, a system is defined infor-
mally as semantically secure if it is able to resist, with
high probability, to attacks performed by any adver-
sary computationally efficient [18]. Based on the formal
definitions of [19], we define informally that for any effi-
cient adversary A, a cipher E = (E,D) defined over
(K, M, C) offers:

¢ [ndistinguishability against chosen-plaintext attacks
(IND-CPA): the cipher offers IND-CPA if for all
attempts i = 1,2, ...q, given two messages

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

mjp, mj1 € M of the same size, chosen by A and
submitted to an oracle that answers with the
ciphertext ¢; = E(k, m;p) € C for some key k selected
randomly in K and b € {0, 1}, the probability that A
can distinguish between ¢; = E(k, m;p) or

¢; = E(k, m;) is negligible.

e Indistinguishability against chosen-ciphertext attacks
(IND-CCA): the cipher offers IND-CCA if, for the
same conditions of the IND-CPA, the adversary A
also can get access to a oracle that given a ciphertext
¢ ¢ {c1, ..., ci—1} answers with the corresponding
plaintext m; = D(k, ¢;) and, in the same way, the
probability that A can distinguish between
¢i = E(k, mjp) or ¢c; = E(k, m;1) is negligible. In this
case, A can make as many requests as it wants to the
decryption oracle, however only until it has received
the challenge ciphertext from the encryption oracle.

e Indistinguishability against adaptive chosen-cipher-
text attacks (IND-CCA2): the cipher offers
IND-CCA2 if, besides the conditions established to
the IND-CCA, the adversary can continue using the
decryption oracle even after it had received the
challenge cryptogram. The only restriction is that it is
not allowed to submit this cryptogram for decryption.

Additionally, we have the following IND-CPA relax-
ations for both deterministic (Section 3.1) and order-
preserving (Section 3.2) ciphers, respectively:

e [ndistinguishability against distinct chosen-plaintext
attacks (IND-DCPA): the cipher & offers IND-DCPA
if it is deterministic and for all attempts i = 1,2, ..., q,
given two messages 1,9, m;; € M of the same size
chosen by A, distinct for each attempt
(Vi,j € {1,2,..,q}, mj # mjo and m;1 # m;1),
submitted to the oracle that answers with the
ciphertext ¢; = E(k, m;) € C for some key k selected
randomly in K and b € {0, 1}, the probability that A
can distinguish between ¢; = E(k, m;p) or
¢; = E(k, mj1) is negligible [19].

o [ndistinguishability against ordered chosen-plaintext
attacks(IND-OCPA): the cipher & offers IND-OCPA
if it preserves the order between the plaintexts and
for all attempts i = 1,2, ..., g, given two messages
mijo, mj1 € M of the same size, chosen by A and
submitted always in the same order (i.e.,
miyy < mjy <= m;; <mj foralll <i,j <g)toan
oracle that answers with the ciphertext
¢i = E(k,my,) € C for any key k selected randomly in
K and b € {0, 1}, the probability that A can
distinguish between ¢; = E(k, mjp) or ¢c; = E(k, m;1)
is negligible [20].

Using these definitions, it is possible to highlight some
vulnerabilities of DEPSPACE. The main focus for the

Page 6 of 16

investigation is the way the fingerprint is generated. In
the following we discuss the vulnerabilities related with
comparable and public fields classifications:

e Comparable fields allow tuple selection/matches
without servers knowing the field contents, but the
use of hash functions makes the system vulnerable to
collision and preimage attacks. In fact, an adversary is
able to get a desired amount of inputs and their
respective outputs by calculating their hashes.
Consequently, if the set of values that a comparable
field could assume is small and known, then the
attacker can calculate the hashes for all possible
values, learning the correspondence between
plaintexts and ciphertexts. This attack is similar to the
known-plaintext attack, except for the fact that in this
case there is no encryption and decryption functions.

e Public fields are not subject to a disclosure attack
since their contents are already public. However,
these fields could provide useful information to an
attacker, which could correlate the encrypted tuple
contents with a public database and execute an
inference attack. Comparable fields also could be
used for these attacks since their contents could be
inferred.

3 Robust cryptographic schemes

In order to circumvent the aforementioned limitations
and vulnerabilities, this section introduces some robust
cryptographic schemes that allow searches and compu-
tations over encrypted data. These schemes were used
to improve DEPSPACE security. Based on its character-
istics, mainly the way fingerprints work, we looked for
cryptography schemes that best fit this system.

3.1 Deterministic and probabilistic ciphers
A cipher £ = (E, D) defined over (I, M, C) is called prob-
abilistic if, for a fixed key k € IC and messages m € M that
are used as inputs of the encrypt function E : £ x M —
C, the output ¢ = E(k,m) may assume different values.
Otherwise, the cipher is said to be deterministic [18].
Naturally, an inherent characteristic of deterministic
ciphers is the leakage of equality of texts encrypted under
the same key, that is, my = m; <<= E(k,mp) =
E(k,my). This fact could be used to perform equality
searches over encrypted data [21, 22]. Clearly, this kind
of cipher does not achieve security against the Chosen-
Plaintext Attack (CPA) since an adversary may submit in
the beginning two copies of the same message mg to the
oracle and receive two identical ciphertexts co = E(k, my).
Afterwards, the attacker could send the messages m and
m; to the oracle, receiving ¢, = E(k, my), where b € {0, 1}.
Now, it is enough to compare ¢, (b € {0,1}) with ¢y to
know if it is E(k, mg) or E(k, m1).

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Probabilistic ciphers can resist stronger attacks, achiev-
ing the IND-CCA2 security level when combined with
authentication primitives.

3.2 Order-preserving encryption - OPE

A symmetric order-preserving cryptography scheme pre-
serves the order relation among the encrypted values [20]:
for all i and j and for all keys &, E(k,i) < E(k,j) <
i < j. This kind of cipher leaks the order among plaintexts
through the ciphertexts, therefore not achieving the IND-
CPA security level. Observing that this security level is not
achievable by a deterministic algorithm with such prop-
erty, even considering a weak security level (IND-OCPA),
applying pseudo-random generators and functions (PRF’s
and PRG’s) was proposed [20]. This approach provides a
flexible (but strong) level of security called pseudorandom
order-preserving function under chosen-ciphertext attack
(POPE-CCA).

However, this security definition does not determine
what kind of data could leak, besides the order. In [23],
Order Revealing Encryption (ORE) is proposed, a con-
struction that minimizes the amount of leaked data.
Although this approach presents a higher level of secu-
rity, it is impractical since the initial proposal presents
poor performance. Trying to circumvent this limitation,
a practical ORE algorithm [24] was proposed. This algo-
rithm achieves the IND-OCPA security level since it could
leak only the first bit that differs in the compared values.
Finally, an ORE algorithm that resists inference attacks
[25] was proposed and presents a good performance for
encrypted database applications [22].

3.3 Homomorphic encryption

Homomorphic encryption [26] allows computations over
encrypted data without decrypting them and without the
knowledge of the secret keys. Given any two messages, #11
and m3, a homomorphic encryption function E and a key
k, we have that E(k,my) o, E(k,my) = E(k,my o, my),
where o,, denotes an arithmetic operation on the mes-
sage domain and o, denotes an arithmetic operation on
the ciphertext domain.

Fully homomorphic systems generally present poor per-
formance and are not practical in the development of
applications. However, it is possible to avoid the per-
formance issues of fully homomorphic schemes while
preserving some of their functionality, since many appli-
cations need only some kind of operations, what can be
done by a “somewhat” homomorphic scheme [27]. These
schemes present a better performance and are practical.
Paillier [28] and exponential ElGamal [29] are exam-
ples of efficient “somewhat” homomorphic ciphers. These
schemes are also probabilistic, achieving the IND-CPA
security level.

Page 7 of 16

4 Providing privacy on DEPSPACE

This section presents our proposal to increase security of
the DEPSPACE system. In a nutshell, new types for field
classifications are introduced, which use the previously
discussed robust cryptographic schemes to provide the
same functionality as the originally proposed DEPSPACE
(or even bringing more flexibility to the development of
applications since these fields allow the implementation
of previously impossible secure searches), however, with
stronger security properties.

Before presenting the new field classifications, let
us introduce another very important characteristic of
DEPSPACE. This system uses a (n, f + 1)-PVSS scheme
[15] to split a secret key, that is used to encrypt some
tuple (Section 2.1), among #n servers, requiring f + 1 of
them to recover the secret key. This approach works fine
since at most f malicious servers are supposed in the
system. However, to avoid such compromise, these keys
must be known only to the clients, that must previously
share it utilizing a public-key cryptographic algorithm
with a mechanism that provides public key verification
and protection against “man-in-the-middle” attacks [30].
Independent groups of processes that must communicate
through the space can have a different shared key. This
protocol is orthogonal to the way fingerprints work in
DEPSPACE, which is the focus of this paper.

4.1 Improving fingerprint security

The analysis presented in Section 2.1.2 showed that
DEPSPACE is subject to many simple attacks. To circum-
vent this problem, we propose the reduction (and even
elimination) in the use of public and/or comparable fields
and the adoption of the following ones to create the
fingerprints:

e Comparable deterministic (CD): the field content f
is encrypted through a deterministic symmetric
encryption algorithm by using a function
encryptCD(keysparea, f)- The resulting ciphertext is
used as fingerprint and, as the algorithm is
deterministic, it allows servers to execute
searches/matches in these fields. Notice the same key
is used to decrypt these fields.

e Operable (OP): the field content f is encrypted
through a homomorphic or “somewhat”
homomorphic asymmetric encryption algorithm by
using a function encryptOP(key,upiic, f). The
resulting ciphertext is used as fingerprint and allows
computations at the servers. Notice that this scheme
is asymmetric: the public key is used for encryption
and computations over f; the private key is used to
decrypt the result.

¢ Orderly (OR): the field content f is encrypted
through an order-preserving symmetric encryption

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

algorithm, as OPE, by using a function
encryptOR(keYspared» f)- The resulting ciphertext is
used as fingerprint, allowing the execution of
matches and the ordering among these fields. Notice
the same key is used to decrypt these fields.

The fingerprint function ensures that if a tuple ¢
matches a template ¢, the fingerprint ¢, of ¢ matches the
fingerprint ¢ of ¢ if both are generated using the same
protection type (field classification) for each field [5]. The
fingerprint t;, = (hi1,...hy) of a tuple t = (fi,....fm) is
generated according to the formula presented at Fig. 3.

The new field classification brings a key management
issue since it is necessary to share a secret key for CD and
OR fields or a key pair (public and private) for OP fields.
These keys must be shared among the processes that are
communicating through the tuple space. For OP fields, the
public key also is available to the servers allowing they
to execute computations over these fields. Fortunately,
key management is not a problem in our model since
the tuple space itself could be used for this coordination
(Section 7.3).

CD fields. We strongly recommend the preference of CD
fields over CO. By using a deterministic symmetric cipher
instead of a hash value, an attacker would need to access
the secret key to encrypt a field, making it impossible
to mount a preimage attack (Section 2.1.2). However, the
CD classification must be employed carefully since this
cipher reveals if plaintexts are equal. Consequently, if the
field content belongs to a small domain, using few external
information is enough to disclose it. For instance, consider
the encryption of a field that contains the sex in a database
that is known to have more men than women. An attacker
could observe that there are only two possible ciphertexts
and conclude that the one with more occurrences refers
to the male sex. Therefore, this cipher should be used for
fields that store indexes, with a high amount of possible
values, and for non-sensitive data like identifiers, e-mail
address, name of process nodes, among others.

Some cryptographic algorithms use operation modes
with randomized initialization vectors (IV), in the form
¢ = E(k,m,IV), as a way to provide probabilistic

(x if f; =
fi if f; is PU
hash(f;) if f; is CO

h; = PR if f; is PR
encryptCD(keyshared, fi) if fi is CD
encryptOP (keypupiic, fi) if fi is OP
encryptOR(keyshared, fi) if fi is OR

Fig. 3 Fingerprint generation

Page 8 of 16

encryption. To provide deterministic encryption, these
algorithms usually fix the IV (e.g. in zero). In these cases,
we recommend the use of a PRF (pseudo random func-
tion) over the message m by using a key kj, producing
a pseudo-random output r = F(k;, m). The encryption
function then uses r as IV and another key ky to pro-
duce the encrypted output ¢ = E(ky, m;r). Since the PRF
generates the same output for the same message and key,
the algorithm remains deterministic. Moreover, the PRF
generates different outputs for different messages inputs
(even under the same key) and, therefore, different IV’s are
obtained for different messages, achieving the IND-DCPA
security level [18].

OP fields. OP fields allow the computation over
encrypted data. For these fields, a homomorphic or a
“somewhat” homomorphic cipher (Section 3.3) should be
used, such as Paillier [28], according to the application
requirements. These fields increase the functionality pro-
vided in DEPSPACE. For instance, it is possible to update
values used to synchronize decoupled process without
revealing process status.

If the field needs only one kind of arithmetic operations
(e.g.: addition/subtraction or multiplication/division), a
“somewhat” homomorphic cipher can be used to offer
better performance than a fully homomorphic alternative.

Notice that all fingerprint fields are used only to select
tuples, except for OP fields. In these cases, the updated
value to be read is in the fingerprint, not in the decrypted
tuple, and the client must consider this value during a
reading/removal operation.

OR fields. This classification brings a lot of function-
alities for the tuple spaces allowing servers to execute
some operations, as (1) tuples ordering based on a field,
(2) execution of queries for a field belonging to some
range and (3) select a tuple with a field storing the maxi-
mum/minimum value. To execute these operations in the
original DEPSPACE system, fields should be classified as
PU, losing security. If they are classified as PR, clients
need to read and decrypt all tuples prior to perform these
operations. Allowing servers to execute such processing
improves the system performance since fewer data are
transferred through the network [8].

The OR fields must be chosen carefully since these fields
are vulnerable to inference attacks if all possible values of a
domain are present in the data collection [3]. For instance,
if a tuple field refers to the age of patients in a hospital that
is known to have patients of all ages from zero to 100 years
old, then data could be revealed due to this association.

To overcome this vulnerability, we suggest the use of
a composition of algorithms. First, encrypt the data with
an OPE algorithm [20] and later use the output as input
of an ORE algorithm [24]. By this approach the system

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

achieves the IND-OCPA security level, with the leakage of
the first bit that differs in the compared values. The dis-
tance between OPE encrypted numbers is a random value
and it does not have any connection with the distance of
the original numbers. This is the reason for the first step
since in this case the leaked bit is from the OPE encrypted
number instead of the original number.

Security analysis. Table 1 shows the intrinsic security
level for the ciphers used in each field type, ordered by
the lower to the higher security level. It is important to
remember that both IND-OCPA and IND-DCPA rep-
resent weaker notions of security based on IND-CPA.
Although the OR fields reveal more than equality (the
order among the ciphertext is also revealed), the IND-
OCPA level is considered more secure than IND-DCPA by
the fact that it is not achieved by deterministic algorithms.

Finally, the security of a system depends on the correct
use of each cipher, considering the characteristics of the
data stored in each field. Keeping all data encrypted, it is
possible to avoid inference attacks that could cause a big
damage to applications using lower computational effort.

5 Implementation

We used the original DEPSPACE implementation [5] and
introduced some modifications to apply the previously
discussed robust cryptography primitives. Basically, the
tuple space operations still work as in the original system
(e.g., the PVSS scheme was unchanged), but we extended
the system by providing new possibilities in the finger-
print generation. In the following we discuss how the
fingerprint is processed according to each field classifica-
tion.

e Public (PU): no cryptography is used in these fields
since their original contents are used in the
fingerprint (plaintext).

e Comparable (CO): to process these fields we used the
SHA-1 algorithm, which generates a hash output of
20 bytes.

e Private (PR): no original field information is used in
the fingerprint, only a special symbol PR indicating its
classification.

e Comparable Deterministic (CD): for these fields we
used a HMAC-SHA256 (Hash-based Message
Authentication Code with SHA-256) algorithm and a
secret key of 256 bits to generate an encrypted output
of 32 bytes.

Table 1 Security level for each field type
PU Cco CcD OR opP PR
Insecure Preimage/collision IND-DCPA IND-OCPA? IND-CPA IND-CCA2

?Level achieved if an ORE method is applied

Page 9 0of 16

e Operable (OP): for these fields we used the javallier
library [31], a Java implementation of the Paillier
algorithm [28]. This “somewhat” homomorphic
encryption library implements the addition operation
between two encrypted numbers, from which the
subtraction can also be derived. Additionally, an
encrypted number could be multiplied by a small
plaintext number using repeated addition operations.
For the asymmetric algorithm we used a key pair
(public and private) of 512 bits.

e Orderly (OR): for these fields we used the jope library
[32], a Java implementation of an OPE algorithm [20].
We employed this library without the composition
with a ORE algorithm (see Section 3.2). This library
outputs a deterministic BigInteger that preserves
exactly the same order than the non encrypted
number, with pseudo-random distances between any
two encrypted numbers. To perform inequality
queries (e.g.: less than or greater than), we
implemented at the proxy layer of the client side a
detector to identify the presence of these queries and
handle them in a way that the tuple space layer at the
servers side can understand, i.e, the tuple space layer
was modified to perform matches using these queries.
For instance, a tuple field containing the number 10
matches a template field containing a query “less than
117. The current supported queries are: It (less than),
le (less than or equal to), eq (equal to), gt (greater
than), and ge (greater than or equal to).

Considering the previously example, the OR tuple
field contains the encrypted number 10 while the OR
template field contains a query /£(11) (less than 11).

Since these solutions allow computations at the servers,
it is possible to implement secure extensible distributed
coordination services [8], like shared counters, distributed
queues and distributed barriers. Figure 4 shows a rep-
resentation of DEPSPACE layers with an additional layer,
called Extension Manager, to deal with operations in OP
and OR fields according to applications need. The figure
shows also that there is a query detector in the proxy layer
at the client side (this layer receives the tuple space opera-
tions called from the applications), which is responsible by
the already mentioned identification of functional queries.
For example, to implement an extended shared counter,
servers must access and update the counter value stored
into a tuple field [8], which could be done using an OP
field. Moreover, to implement a distributed queue, servers
must define the order among the tuples available in the
space [8] (tuples represent list entries), which could be
done using OR fields. Notice that these extended coor-
dination services cannot be implemented with security
properties without the extensions proposed in this paper
since they allow these computations at the servers.

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Page 10 of 16

Client Replica 0 Replican
= e — ——— . ———f oo oo ———————L.,
i
|Proxy [query detector]] ! l TS Replica l Tuple Space TS Replica i

______ e

| Access Control]

[Access Control l

Access Control

Yy

Policy Enforcement

Policy Enforcement

Confidentiality | [

Confidentiality |

Confidentiality

Extension Manager

Extension Manager

Fig. 4 DEPSPACE layers with the extension manager

Network

6 Experimental evaluation

In order to assess the performance of the proposed solu-
tions and better understand the costs to provide privacy
in the tuple space model, we conducted some experi-
ments with the previously described implementation in
Emulab [33].

6.1 Experimental setup
The Emulab environment was configured with 5 d710
machines (2.4 GHz 64-bit Intel Quad Core Xeon E5530
with 2 CPU threads per core, 12 GB of RAM and 1 Gbps
network cards) and a 1Gbps switched network. The soft-
ware installed on the machines was Ubuntu 14 64-bit and
a 64-bit Java virtual machine version 1.8.0_121. For all
experiments, the system was configured with four replicas
hosted in separate machines to tolerate up to one replica
failure, while the clients were executed in the remaining
machine.

We employed this library without the composition with
a ORE algorithm (see Section 3.2). This library outputs a
deterministic Biglnteger that preserves exactly the same
order than the non encrypted number, with pseudo-
random distances between any two encrypted numbers.
To perform inequality queries (e.g.: less than or greater
than), we implemented at the proxy layer of the client
side a detector to identify the presence of these queries
and handle them in a way that the tuple space layer at
the servers side can understand, i.e, the tuple space layer
was modified to perform matches using these queries. For
instance, a tuple field containing the number 10 matches
a template field containing a query “less than 11” The cur-
rent supported queries are: [t (less than), le (less than or

equal to), eq (equal to), gt (greater than), and ge (greater
than or equal to).

For executing out operations, we used tuples with only
defined fields for each configuration described above
(e.g:(1,2,3),(1,2,3,4,5) and (1,2, 3,4, 5,6)). Notice these
fields were protected according to their configuration (PU,
CO, PR, CD, OP or OR). On the other hand, the templates
used for rdp and inp operations were configured with one
defined field while the remaining ones were configured as
wildcards (e.g.: (1, %, %), (1, %, %, *,) and (1, %, *, *, *, %, %)),
except for the configurations PR and OP in which all fields
were configured as wildcards since it is not possible to
execute matches in these fields (Section 7).

We evaluated the raw throughput of the system at the
servers and the latency perceived at the clients in all
configurations. To evaluate latency, we used one client
to execute each operation 1000 times and obtained the
90th percentile and the average time discarding the 10%
values with greater variance. On the other hand, to exe-
cute throughput experiments, we variated the number of
clients (from one to ten) and measured the maximum
throughput obtained in each configuration. In order to
stress the servers, each client preprocessed 1000 requests
(most of the cryptographic costs are at the client side)
before sending them to the servers, that measured the
throughput periodically at each 100 executed requests.
Although the DepSpace does tolerates faults, all perfor-
mance values were obtained in fault-free executions.

6.2 Results
This section reports the results obtained in the exper-
iments. First, Fig. 5a and b present the 90th percentile

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Page 11 of 16

)

T

PUC—
Co X=X
PR
cb ==
orP
OR (x100) =21

= @
® 3

Latency - 90th percentile (ms)

r0 ©

U]
co ==
PR =3 7}
co ==

opP
OR (x100) =21

@
3

Latency - average (ms)
£

©

NEY

arl ol il

5
Number of fields

Fig. 5 Tuple insertion (out) latency. a Latency - 90th Percentile. b Latency - Average

Number of fields

and the average latency for the out operation, respectively.
The cryptographic costs for these operations are related
to: (1) the execution of the PVSS scheme [5], that is the
same cost for all configurations; and (2) the generation
of the fingerprint, that is different for each approach (see
Table 2).

A configuration with fields PU or PR presented the best
performance since no cryptographic operations is need to
generate the fingerprint, followed by configurations CO
and CD. Although more time is necessary to process the
fingerprint for CD when compared to CO (Table 2), this
fact does not impact its performance since it demands
less than a millisecond to execute (0.033 ms). The con-
figuration OP also presented an acceptable performance,
although more time is necessary to process the finger-
print. On the other hand, the configuration OR presented
poor performance since a lot of time was necessary to
process the fingerprint.

Besides that, Table 3 shows the amount of information
that must be exchanged among clients and servers for
each configuration. The request size is important since it
goes through the replication protocols that have complex-
ity of O(n?) messages [5]. The reply size also is important
since every server may send it to the client, resulting in a
communications of n to 1.

Table 2 Costs related to cryptographic processing necessary to
(1) generate a fingerprint, (2) verify if a fingerprint is good for a
tuple received from servers, (3) extract a operable field from the
fingerprint and (4) execute a match at the servers

Fingerprint Verify Extract Query/Match
(@v/o) @v/o) (@v/o) (@v/o)

PU - - - -

CO (0.003/0.0003) (0.003/0.0003) - -

PR - - - -

CD (0.033/0.0067) (0.033/0.0067) - -

OP (0619/00322) - (0.601/0.1064) -

OR (375.091/2.3129) (375.348/1.9041) - (0.001/0.0002)

All values presented in the table consider the costs to process only one field and it is
presented the average (av) and the standard deviation (o) in milliseconds (ms)

Figure 6a and b present the latency results for the rdp
operation. These results are very similar to the results for
the inp operation (Fig. 7a and b), since the only difference
is that the inp operation removes the tuple from the space.
The cryptographic costs for these operations are related
to: (1) the client must generate the fingerprint f for the
template; (2) servers search for a tuple with a fingerprint
that matches f; (3) servers execute the PVSS scheme to
extract their shares; and (4) the client must execute the
PVSS scheme to combine the received shares and recover
the tuple and verify if f is valid for the received tuple.
Moreover, it is necessary to extract the values of oper-
able fields from the fingerprint. Table 2 presents these
costs, except for the PVSS scheme that are the same for
all configurations. The size of a request/reply also is pre-
sented at Table 3 and, as already commented, impacts the
communication costs. The performance presented by the
system in the execution of reading (rdp) and removal (inp)
operations followed the same pattern of the insert (out)
operations, basically for the same reasons.

Another very important aspect is that most of the cryp-
tographic costs are executed at the client side, i.e., the
costs reported at columns fingerprint, verify and extract
of Table 2. Only the query/match (last column of Table 2)
for OR fields are executed by the servers during the search
for a tuple which has a fingerprint that matches the fin-
gerprint of the template in a read or removal operation.
Moreover, most of the costs related to the execution of the
PVSS scheme also are placed at the client side [5]. This
is important because it shows that it is possible to have
a tuple space that ensures the privacy of the information
it stores and, at the same time, is scalable. Consequently,
although these costs impact the latency, it is not expected
to have a significant impact on the system throughput.

Trying to investigate this aspect, Fig. 8 presents the
throughput presented at the servers for each operation
and configuration. The throughput is similar for all con-
figurations since no significant cryptographic operation is
executed at the servers (only a negligible time is demanded
to execute a query/march for the OR configuration).

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Page 12 of 16

Table 3 Amount of data (in bytes) sent in a request/reply for each configuration and operation

OUT (request / reply) RDP/INP (request / reply)

3 fields 5 fields 7 fields 3 fields 5 fields 7 fields
PU (874/133) (917/133) (951/133) (364 /1081) (386/1122) (408/1156)
cOo (937/133) (1064 /133) (1195/133) (336/1147) (358/1269) (380/1405)
PR (794 /133) (831/133) (859/133) (288 /996) (310/1038) (332/1072)
cD (1144 /133) (1399/133) (1665 /133) (403 /1342) (425/1610) (447 / 1868)
OopP (1763 /133) (2433/133) (3113/133) (288 /1969) (310/ 2640) (332/3324)
OR (825/133) (866 /133) 916/ 133) (297 /1026) (319/1081) (341/1124)

Moreover, the throughput to insert (Fig. 8a) a tuple in the
space is higher than the throughput to read (Fig. 8b) or
to remove (Fig. 8c) it from the space. In fact, in the exe-
cution of a reading or removal operation, servers must
extract and verify the shares while no cryptographic func-
tion is executed at the servers for insertion operations
(Section 2.1).

Another important aspect to be observed in the exper-
iments is that the number of fields in a tuple does not
significantly impacted the system performance for both
latency and throughput. In fact, for all configurations and
operations, the performance for 3, 5, and 7 fields are sim-
ilar, except for the OR fields since they demanded much
more time to generate the fingerprint (Table 2).

7 Discussions
This section presents some important discussions about
some aspects of the proposed solutions.

7.1 (Im)possibility of combinations of fields types

The proposed protocol and implementation do not permit
that a field assumes more than one type. However, some
types could be seen as a combination of some types since
they provide equivalent functionalities. Below we present
some examples.

® OR type also provides a deterministic encryption and
could be used as CD or CO, i.e., it allows equality
match queries.

e CO and CD provide the same functionality but with
different security levels.

e PU type provides all functionalities, but it is insecure.

On the other hand, the combinations presented below
are not possible:

e QP fields are not deterministic since they use an
asymmetric randomized algorithm and, therefore,
each encryption of the same number with the same
key may produce different results. Consequently, it
does not provide the functionalities of CD or CO.
OP is the only secure field that allows computation.
OR is the only secure field that allows ordering.

PR type presents the best security level, but does not
provide any functionality.

7.2 State machine replication vs. operable fields
Operable fields could be changed through the execution
of computations at the servers. These changes occur in the
fingerprint instead of in the tuple that is encrypted as a
single piece of data. This approach brings two issues that
need some attention:

(V]

T

PUC— o
co =3
PR
cb ==
oP
OR (x100) =21

Latency - 90th percentile (ms)

NEY

ol

PUC }
co ==x

PR

cb ==

opP {"
OR (x100) =21

36 [

Latency - average (ms)

r0 ©

| L

Number of fields

7

18
L Ir} %
r ﬂ.rﬁ /
3 5

Number of fields

Fig. 6 Tuple reading (rdp) latency. a Latency - 90th Percentile. b Latency - Average

Floriano et al. Journal of Internet Services and Applications (2017) 8:19 Page 13 of 16

a — ‘ — b — ‘ —7
COo === COo ==
_ser PR =3 1 361 PR =1
2 cb == . cb ==
o op 2 [o N m |
b= OR (x100) 2 o OR (x100) 2
9 (=]
8 g
88t 5181
g 3
/ :
S of 9t /
6 6
al al
s 5 7 s 5 7
Number of fields Number of fields
Fig. 7 Tuple removal (inp) latency. a Latency - 90th Percentile. b Latency - Average

e Firstly, when decrypted after a reading/removal which require f + 1 identical replies to terminate by
operation, the OP fingerprint field may not match the returning some of these replies. In order to
corresponding OP tuple field. Consequently, during circumvent this problem, it is necessary to decrypt
this verification (Section 2.1), OP fields are always the OP fields prior to count the number of received
considered valid. Moreover, the value in the tuple replies.
field should be replaced by the updated value in the
fingerprint field. 7.3 Key management

e Secondly, and more critical, during the State Machine =~ Key management almost always is a big challenge in the
Replication (SMR) protocols execution at the client development of secure systems. Fortunately, in our model
[16, 34], the replies received from the servers may be we can use the computational power of the tuple space
different since the OP fields use a non-deterministic itself for this management. The idea is to use a combina-
algorithm. In fact, the cryptograms resulting from tion of PU and PR fields to exchange, among the group of
some computation at the servers may differ among communicating processes, the keys used to compute the
them, although they refer to the same decrypted fingerprint for CD, OP and OR fields. The protocol is quite
value. These aspects impact the SMR protocols, simple:

a ‘ ‘ ‘ b ‘
PUC PUC]
co CO EZX2
PR 3 PR
. CcD 3 . CcD 3
Ed oP 2 op
é OR (x100) £Z3 ﬁ OR (x100)
A M
, st NE o g

3 5 7

Number of field: Number of fields

@

Cc

PUC
CO EZXA
PR I
cD ==
oP 3
OR (x100) 22

T [0

Number of fields

Throughput (Kops/seg)
~

Fig. 8 Throughput for insert (out), read (rdp) and remove (inp) a tuple from the space. a Tuple insertion (out) throughput. b Tuple reading (rdp)
throughput. € Tuple removal (inp) throughput

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

e Each client ¢ generates a secret key k and defines a
tuple t = (secret_key, k) and a template
t = (secret_key, x), both defined as { PU, PR} (first
field is public and the second is private).

e Later, ¢ invokes a cas(, t) operation. If it returns null,
then c uses k as a shared secret key since no other
previous defined secret key was inserted into the
space. Otherwise, the operation returns a tuple
t' = (secret_key, k') read from the space and c uses k’
as the shared secret key.

The protocol to exchange a key pair (OP fields) is very
similar, the only difference is that the client should cre-
ate a tuple t = (OP_keys, kyup, kpriy) and a template
t = (OP_keys,*,*) in the first step, both defined as
(PU, PU, PR).

Finally, the DEPSPACE access control subsystem must
be used and it is enough to ensure that only the group of
communicating processes is allowed to access the tuples
storing the keys (notice that is is possible to use different
keys for different fields). To remove some process from
the group, the key must be redefined and shared with the
appropriated access control configuration, as previously
described. Notice that all tuples/fingerprints generated
through the old key need to be replaced by another that
uses the new key. On the other hand, the addition of
some process in the group is straightforward since a new
tuple with the same key but with appropriated access con-
trol configuration (including the new process) must be
inserted into the space and the joining process only needs
to read it from the space.

7.4 Alternatives for fingerprint implementation

Section 5 reports on our choices to implement the fin-
gerprint for each field. However, other alternatives are
possible and could be investigated to increase the system
security level and/or to boost the system performance.
Among many ciphers available in the literature, we discuss
below some alternatives for each one of these aspects.

® Increasing the system security level.

— CD fields: it is possible to improve the security
level provided in or implementation for CD
fields to achieve the level reported in Table 1
in the following way. First, use the tuple field
as input of a HMAC-SHA?256 function under
the first 16 bytes of a secret key of 256 bits,
generating the IV (initialization vector). After,
apply the native Java AES CBC mode
encryption over the tuple field using the
second half of the secret key and the
computed IV.

— OR fields: we used a OPE algorithm alone for
OR fields, but it is possible to use it in

Page 14 of 16

conjunction with an ORE algorithm to meet
the security level reported in Table 1.

¢ Improving system performance: our implementation
for OR fields presented a poor performance because
it is based on hyper-geometric distribution functions,
which present high computational costs. This is a
natural candidate to be replaced by another cipher
with the same functionality.

8 Related works

There are several systems developed to provide security
and/or fault-tolerance in the tuple spaces model. Among
these proposals, the DepSpace [5] and its extended version
to distributed coordination [8] are the unique to consider
both fault-tolerance by using replication techniques and
security by combining cryptographic and access control
mechanisms. Some of the proposed systems implement
only replication mechanisms [12, 38], while others use
only access control techniques [9-11]. These proposals
for security in the tuple space model have a very lim-
ited focus since they consider only simple attacks like
invalid access or use weak cryptography mechanisms,
which are not enough to ensure the security of the stored
information. Other systems provide some level of fault-
tolerance by using the concept of transactions [35-37].
Table 4 compares the features provided by these tuple
space approaches and the solutions proposed in this paper.

Stronger and robust cryptographic mechanisms were
used in the database context aiming to provide confiden-
tiality and protection against information leakage through
the processing of queries over encrypted databases
[21, 22]. In these works, different cryptography schemes
are used in the same application according to the speci-
ficity of the data to be stored and the expected queries
to be executed over these data (e.g.: equality, comparison
and words occurrence in texts). Homomorphic encrypted
data, for instance, can accept UPDATE operations without
been decrypted. In the same way, OPE and ORE ciphers
are used to perform comparison queries, like < or >,
with a good performance/security trade-off. Our proposal
for new field classification employs these cryptographic
mechanisms aiming to mitigate the security problems
for applications that use the tuple space programming
paradigm.

In CryptDB [21] and related works, such as the frame-
work for searching encrypted databases [22], the perfor-
mance decreases with the use of cryptographic functions,
being more substantial when increasing either the num-
ber of client or database sizes. In the proposed system, the
server side is not significantly impacted with the execution
of cryptographic functions since the heavy cryptographic
processing occurs at the client side (Table 2).

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

Table 4 Comparison among tuple spaces approaches

Page 15 0f 16

Replication Transaction Access control Confidentiality Allows operations and searches
over encrypted data
TSpaces [35] X v X X X
JavaSpaces [36] X v X X X
GigaSpaces [37] X Vv X X X
FT-Linda [12] Vv X X X X
Parallel-Linda [38] N X X X X
SecSpaces [10] X X N X X
KLAIM [9] X X Vv X X
SECOS[11] X X J X X
DepSpace [5] Vv X J Vv X
DepSpace+this paper solutions Vv X J J v

9 Conclusions and future work

This paper reports on our efforts to provide privacy in
the tuple spaces model by applying robust cryptographic
schemes. The main challenge in this model is that tuples
are accessed by their contents (associative memory), being
necessary to supply some information about them to allow
servers to select tuples that match templates. To over-
come this problem, this paper proposes the use of robust
cryptographic schemes that allow both computations and
definition of an order over encrypted data. A set of
experiments illustrated the costs related to the proposed
solutions.

As future work we intend to investigate the performance
of other robust cryptographic libraries that provide the
same security level and characteristics of these used in the
first implementation. Additionally, we intend to develop a
application that uses all the computation power provided
by our solution and some secure extensible distributed
coordination services, like shared counters, distributed
queues and distributed barriers.

Acknowledgements
We would like to thank the universities involved for the support provided. We
also thank the many contributions from the reviewers.

Funding
Not applicable.

Availability of data and materials
Not applicable.

Authors’ contributions

EF is a student at PPGInf/CIC/UnB and has conducted the analysis about the
security of DepSpace and proposed the new fields classifications and
implementations. Prof. EA is the advisor of EF and helped mainly in the
definitions of the proposals and in the implementations and experiments.
Prof. DA is co-advisor of EF and, together with Prof. PS, worked mainly in the
security aspects of the work. Moreover, all authors participated in all
discussions and in the written phase of the final text. All authors read and
approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
All authors agree to the submitted version.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

! Department of Computer Science, University of Brasilia, UnB, Braslia, DF,
Brazil. ZInstitute of Computing, University of Campinas, UNICAMP, Campinas,
SP, Brazil.

Received: 6 September 2017 Accepted: 22 November 2017
Published online: 20 December 2017

References

1. Avizienis A, Laprie JC, Randell B, Landwehr C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Trans Dependable
Secure Comput. 2004;1(1):11-33.

2. Verissimo P. Dialogue on Cyber Policies between Brazil and the EU:
prospecting threats and opportunities of the cyberspace. Dialogue Cyber
Policies. 2016.

3. Naveed M, Kamara S, Wright CV. Inference attacks on
property-preserving encrypted databases. In: Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security.
New York: ACM; 2015. p. 644-55.

4. Gelernter D. Generative Communication in Linda. ACM Trans Programing
Lang Syst. 1985;7(1):80-112.

5. Bessani AN, Alchieri EP, Correia M, da Silva Fraga J. DEPSPACE: A
byzantine fault-tolerant coordination service. In: Proceedings of the 3rd
ACM SIGOPS/EuroSys European Conference on Computer Systems 2008.
New York: ACM; 2008. p. 163-76.

6. Alchieri EAP, Bessani AN, Fraga dSJ. A dependable infrastructure for
cooperative web services coordination. In: IEEE International Conference
on Web Services. Beijing: IEEE; 2008. p.21-8.

7. Bessani AN, Correia M, FragaJS, Lung LC. Sharing memory between
Byzantine processes using policy-enforced tuple spaces. In: Proceedings
of 26th IEEE International Conference on Distributed Computing Systems.
Lisboa: IEEE; 2006.

8. DistlerT, Bahn C, Bessani A, Fischer F, Junqueira F. Extensible distributed
coordination. In: Proceedings of the Tenth European Conference on
Computer Systems. EuroSys '15. New York: ACM; 2015.

9. De Nicola R, Ferrari GL, Pugliese R. KLAIM: A Kernel Language for Agents
Interaction and Mobility. IEEE Trans Softw Eng. 1998;24(5):315-30.

10. BusiN, Gorrieri R, Lucchi R, Zavattaro G. SecSpaces: a Data-Driven
Coordination Model for Environments Open to Untrusted Agents.
Electron Notes Theor Comput Sci. 2003;68(3):310-27.

Floriano et al. Journal of Internet Services and Applications (2017) 8:19

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34

. Vitek J, Bryce C, Oriol M. Coordinating processes with Secure Spaces. Sci

Comput Program. 2003;46(1-2):163-93.

Bakken DE, Schlichting RD. Supporting Fault-Tolerant Parallel Programing
in Linda. IEEE Trans Parallel Distrib Syst. 1995;6(3):287-302.

Segall EJ. Resilient distributed objects: Basic results and applications to
shared spaces. In: Proceedings of the 7th IEEE Symposium on Parallel and
Distributed Processing - SPDP'95. San Antonio: IEEE; 1995. p. 320-7.
Lamport L, Shostak R, Pease M. The Byzantine generals problem. ACM
Trans Program Lang Syst. 1982;4(3):382-401.

Schoenmakers B. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In: Proceedings of the 19th Annual
International Cryptology Conference on Advances in Cryptology -
CRYPTO'99. Santa Barbara: Springer Berlin Heidelberg. 1999. p. 148-64.
Castro M, Liskov B. Practical Byzantine fault-tolerance and proactive
recovery. ACM Trans Comput Syst. 2002;20(4):398-461.

Menezes AJ, Vanstone SA, Oorschot PCV. Handbook of Applied
Cryptography, 1st. Boca Raton: CRC Press, Inc.; 1996.

Boneh D, Shoup V. A Graduate Course in Applied Cryptography. 2015.
https://crypto.stanford.edu/~dabo/cryptobook/draft_0_2.pdf. Accessed
Nov 2017.

Bellare M, Desai A, Pointcheval D, Rogaway P. Relations among notions
of security for public-key encryption schemes. In: Advances in Cryptology
- CRYPTO 98, 18th Annual International Cryptology Conference. Santa
Barbara: Springer Berlin Heidelberg. 1998. p. 26-45.

Boldyreva A, Chenette N, Lee Y, O'Neill A. Order-Preserving Symmetric
Encryption. 2012. Cryptology ePrint Archive, Report 2012/624. http://
eprintiacr.org/2012/624. Accessed Nov 2017.

Popa RA, Redfield CMS, Zeldovich N, Balakrishnan H. CryptDB:
Protecting confidentiality with encrypted query processing. In:
Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles. New York: ACM; 2011. p. 85-100.

Alves PGMR, Aranha DF. A framework for searching encrypted databases.
In: XVI Simpdsio Brasileiro em Seguranca da Informagao e de Sistemas
Computacionais (SBSEG 2016). Niterdi: SBC; 2016. p. 142-55.

Boneh D, Lewi K, Raykova M, Sahai A, Zhandry M, Zimmerman J.
Semantically Secure Order-Revealing Encryption: Multi-Input Functional
Encryption Without Obfuscation. 2014. Cryptology ePrint Archive, Report
2014/834. http://eprintiacr.org/2014/834. Accessed Nov 2017.

Chenette N, Lewi K, Weis SA, Wu DJ. Practical Order-Revealing
Encryption with Limited Leakage. 2015. Cryptology ePrint Archive, Report
2015/1125. http://eprintiacr.org/2015/1125. Accessed Nov 2017.

Lewi K, Wu DJ. Order-revealing encryption: New constructions,
applications, and lower bounds. In: Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS '16. New
York: ACM; 2016. p. 1167-78.

Tourky D, ElKawkagy M, Keshk A. Homomorphic encryption the “holy
grail” of cryptography. In: 2016 2nd IEEE International Conference on
Computer and Communications (ICCC). Chengdu: IEEE; 2016. p. 196-201.
Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption
be practical? In: Proceedings of the 3rd ACM Workshop on Cloud
Computing Security Workshop. New York: ACM; 2011. p. 113-24.

Paillier P. Public-key cryptosystems based on composite degree
residuosity classes. In: Proceedings of the 17th International Conference
on Theory and Application of Cryptographic Techniques. EUROCRYPT'99.
Berlin: Springer-Verlag; 1999. p. 223-38.

Gamal TE. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Trans Inf Theory. 1985;31(4):469-72.

Khader AS, Lai D. Preventing man-in-the-middle attack in diffie-hellman
key exchange protocol. In: 22nd International Conference on
Telecommunications. Sydney: IEEE; 2015. p. 204-8.

Analytics N. A Java library for Paillier partially homomorphic encryption.
Available at https://github.com/n1analytics/javallier. Accessed Nov 2017.
Sawvides S. Order-preserving encryption in Java. Available at https://
github.com/ssavvides/jope. Accessed Nov 2017.

White B, Lepreau J, Stoller L, RicciR, Guruprasad S, Newbold M, Hibler
M, Barb C, Joglekar A. An Integrated Experimental Environment for
Distributed Systems and Networks. In: Proc. of 5th Symp. on Operating
Systems Design and Implementations. Boston: ACM; 2002.

Schneider FB. Implementing fault-tolerant service using the state
machine aproach: A tutorial. ACM Comput Surv. 1990;22(4):299-319.

35.

36.

37.

38.

Page 16 of 16

Lehman TJ, et al. Hitting the distributed computing sweet spot with
TSpaces. Comput Netw. 2001;35(4):457-72.

JavaSpaces. JavaSpaces Guide. 2016. Available at http://www.oracle.com/
technetwork/articles/java/javaspaces-140665.html. Accessed Nov 2017.
GigaSpaces. GigaSpaces Homepage. 2016. Available at http://www.
gigaspaces.com/. Accessed Nov 2017.

Xu A, Liskov B. A design for a fault-tolerant, distributed implementation
of Linda. In: Proc. of the 19th Symposium on Fault-Tolerant Computing.
Chicago: IEEE; 1989. p. 199-206.

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://crypto.stanford.edu/~dabo/cryptobook/draft_0_2.pdf
http://eprint.iacr.org/2012/624
http://eprint.iacr.org/2012/624
http://eprint.iacr.org/2014/834
http://eprint.iacr.org/2015/1125
https://github.com/n1analytics/javallier
https://github.com/ssavvides/jope
https://github.com/ssavvides/jope
http://www.oracle.com/technetwork/articles/java/javaspaces-140665.html
http://www.oracle.com/technetwork/articles/java/javaspaces-140665.html
http://www.gigaspaces.com/
http://www.gigaspaces.com/

	Abstract
	Keywords

	Introduction
	Tuple space
	DepSpace: A BFT coordination system
	DepSpace layers
	Replication.
	Confidentiality.
	Policy enforcement.
	Access control.

	Security analysis

	Robust cryptographic schemes
	Deterministic and probabilistic ciphers
	Order-preserving encryption - OPE
	Homomorphic encryption

	Providing privacy on DepSpace
	Improving fingerprint security
	CD fields.
	OP fields.
	OR fields.
	Security analysis.

	Implementation
	Experimental evaluation
	Experimental setup
	Results

	Discussions
	(Im)possibility of combinations of fields types
	State machine replication vs. operable fields
	Key management
	Alternatives for fingerprint implementation

	Related works
	Conclusions and future work
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher's Note
	Author details
	References

