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Abstract

Connecting multiple and heterogeneous hardware devices to solve problems raises some challenges, especially in
terms of interoperability and communications management. A distributed solution may offer many advantages, like
easy use of dispersed resources in a network and potential increase in processing power and data transfer speed.
However, integrating devices from different architectures might not be an easy task. This work deals with the
synchronization of heterogeneous and distributed hardware devices. For this purpose, a loosely coupled computing
platform named Virtual Bus is presented as main contribution of this work. In order to provide interoperability with
legacy systems, the IEEE 1516 standard (denoted HLA - High Level Architecture) is used. As proof of concept, Virtual
Bus was used to integrate three different computing architectures, a multi-core CPU, a GPU and a board with an Altera
FPGA and an ARM processor, which execute a remote image processing application that requires a communication
between the devices. All components are managed by Virtual Bus. This proposal simplify the coding efforts to
integrate heterogeneous distributed devices and results demonstrated the successful data exchanging and
synchronization among all devices, proving its feasibility.
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1 Introduction
Integrating heterogeneous devices allows to raise the pro-
cessing capacity without, necessarily, having a centralized
control on a single device. To improve performance and
increase cost-effectiveness, the processing tasks can be,
normally, distributed. However, the integration of diverse
devices demands a reliable communication, which is not
an easy task, needing a mechanism that manages and
synchronizes the members’ messages. Building an envi-
ronment to manage the exchange of data is even more
difficult, because problems may arise from the integration
of different devices.
The integration of computing systems (software and

hardware) allows to create a System of Systems (SoS).
Without a careful management there is high probability
to instability and difficulties. According to [1], two sys-
tems can be considered stable when working individually,
but nothing can be said about their operation at the time
they are operating in an integrated manner. There are two
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major problems: to split processing between all involved,
dividing a task in subtasks to be processed by members;
and assign a specific predefined task to each member in
the system. A possible solution is to use a distributed com-
munication architecture that allows the data exchange
synchronously between the system’s components.
A case study which puts the synchronization problem

into evidence is presented in this paper. This problem
appeared during the research when trying to verify some
specific functionalities working with distributed systems
in a functional verification setup. The main problems
arise in the synchronization of the messages exchanged
by the components. There was an inconsistency with
regard to the way in which the components expected to
exchange information. It often generated a certain rework
and some communication problems during the previous
experiments. Thus, this work aims at synchronizing com-
munication of heterogeneous systems. Another key issue
addressed in this work is the challenge of integrating
legacy codes written in different languages for hetero-
geneous hardware architectures. The proposed solution
provides a distributed computing platform with an API
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of high level functions for data exchanging and synchro-
nization, independent of languages and architectures. To
achieve this aim, our solution is based on the IEEE 1516
standard High Level Architecture (HLA) [2] as communi-
cation and synchronization platform.
HLA is a specification of a software architecture

which has the purpose of facilitating intercommunica-
tion between distributed heterogeneous systems, mainly
simulations, and allows the division of tasks among mem-
bers [3]. This standard is a general-purpose architecture
defined by the Defense Modeling and Simulation Office
(DMSO) and designed to use a wide number of differ-
ent types of simulators [2]. In this paper, HLA is used
in an innovative way to provide interoperability of dis-
tributed heterogeneous hardware devices, instead of only
simulations.
One of the possibilities proposed by the HLA spec-

ification is the use of diverse applications to compose
a heterogeneous co-simulation. Therefore, it is feasible
to build a computing platform based on the integration
of heterogeneous devices and properly manage tasks to
accelerate processing.
The purpose of this work is to create a platform that

simplifies the intercommunication of distributed hetero-
geneous devices (composed of hardware and software).
So, the main contribution of this work is the develop-
ment of a platform to integrate heterogeneous computing
devices (independent of architecture) in a loosely cou-
pled way. As already being introduced, initially this work
started from the idea of building a middleware to inter-
mediate distributed devices to perform functional verifi-
cation of components developed in the laboratory. Then,
we decided to build a more general purpose software to
abstract the underlying distributed architecture, instead
of doing a specific solution. For this, the HLA standard
for inter-operation among those systems was used, and a
library was developed to unify the way of programming
communication and synchronization. In previous work,
HLA has been used to integrate circuit simulation tools
for functional verification and power consumption esti-
mation. In that case, different hardware architectures were
simulated, but no physical devices were integrated [4, 5].
The HLA supports our implementation of a platform

that emulates a bus, here named Virtual Bus. This paper
also explores parallel computing in order to allow that
multiples processing elements available in distributed
devices can be used independent of their architectures.
Virtual Bus is presented to programmers as an API with
basic functions for reading and writing data to the bus,
check available data and do synchronization.
As proof of concept, Virtual Bus was used to integrate

three different computing architectures in a single plat-
form: a multi-core CPU, a GPU and a System-on-Chip
composed by a FPGA and an ARM processor. An example

was developed running a remote image processing appli-
cation that requires communication between the devices.
The usage of Virtual Bus permits to reduce the number of
code lines necessary to integrate all components. Without
Virtual Bus, it would be necessary to write at least about
1000 lines of code for each one, making it impractical as
the number of components increases. With the Virtual
Bus, it only takes a couple of lines to instantiate Virtual
Bus and the Federatesmight be reused always when neces-
sary. The platformmay be extended to other architectures
and to more devices in future works.
This paper is organized as follows. In the following

section, related Works involving heterogeneous systems
are presented. Section 3 gives a brief explanation of HLA
and other background details. Then, in Section 4 the pro-
posed platform that intercommunicates heterogeneous
systems, the Virtual Bus itself, is addressed. Section 5
presents the methodology of the proposed experiments.
The results of computational experiments are exposed
in Section 6. Finally, a conclusion and perspectives are
presented in Section 7.

2 Related work
This section presents some discussion about relevant
aspects in related papers, i.e. works involving technologies
with integration of distributed systems and heterogeneous
hardware. Table 1 highlights the pros and cons of the
related work compared to our approach.
In [6] a model that simulates a heterogeneous system

controlled by Ptolemy II is presented. The major contri-
bution of this work is the integration of different simu-
lators with Ptolemy such as Simulink to model building
automation systems. In our work, we do not use sim-
ulation to abstract heterogeneous hardware, but we use
a distributed simulation platform, based on HLA and
adapted to provide interoperability among heterogeneous
hardware platforms.
In contrast with our approach, the work in [7] presents

a programming model for modeling distributed systems,
but it does not allow the execution of such systems in a
distributed manner. This hinders the scalability of those
systems. Other works use the concept of heterogeneous
distributed systems to provide the connection of multiple
systems. As the authors of [8], who propose a networked
virtual platform to develop simulatable models of large-
scale heterogeneous systems and support the program-
ming of embedded applications. Different to our work, the
contribution of that paper is the simulation of a system
that includes processors and peripherals and uses binary
translation to simulate the target binary code on top of a
host instruction-set architecture. The integration of dif-
ferent hardware architectures in a distributed way is not
considered.
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A network solution is also suggested in [9], which pro-
poses the integration of TCP/IP network simulators into
a Discrete Event (DE) co-simulation platform. The paper
proposes splitting network topologies into several mod-
els and defining input/output ports inside existingmodels.
Our work delegates the network management to HLA,
which defines all operations necessary for data exchange
and synchronization.
In [10], a mixed simulation is introduced to coordinate

several parallel simulations as a distributed simulation
system. The parallel simulations are conducted accord-
ing to HLA. The HLA has been used as co-simulation
bridge. The work exposed by [11] uses HLA to run a fight
simulation of aircraft attacking air defense units. In [12]
HLA is applied for real time aircraft simulation, to validate
real time behavior on target computing platform. None
of these works deals with the problem of integrating het-
erogeneous architectures in a unique computing platform.
Their focus is on simulation, while our work focuses on
heterogeneous distributed computing.
The work [13] proposes to use HLA as a master for

Functional Mockup Interface (FMI) compatible simula-
tion components. The main objective is to provide a
generic and standalone master for the FMI, making FMI-
based simulation components usable as plug-and-play
components, on a variety of distributed environments
including grids and clouds. It is related to our work due to
its goal to create a distributed computing platform, but its
main objective is the simulation of FMI models, while we
focus on heterogeneous distributed architectures.
In [14] the authors replace the transport layer of HLA-

based system by Data Distribution Service (DDS) com-
munication. They present a combination of distributed
HLA-based simulation with network control using DDS.
The HLA and DDS are combined to form a unique
middleware. It consists of service and network config-
uration and an API for interconnecting the data object
between HLA and DDS. HLA-DDS does not only allow
network controllable distributed simulation but also pre-
serves existing HLA-based distributed simulation sys-
tems. The goal is to implement a bridge between HLA
and DDS, while our work focuses on lower level inte-
gration, when different hardware architecture can be
integrated.
DDS has also been used in [15] to manage the inter-

action between high computation power nodes and
ARM-based embedded computers. In that work, a flex-
ible library to create the communication using different
underlying communication software is presented. The
target system integrates heterogeneous nodes and base
servers. Although our solution is built on HLA, another
version could also be implemented over DDS. In future
works, our solution may also use DDS in replacement of
HLA for distributed and heterogeneous applications.

Our work brings a contribution regarding abstraction
and intercommunication, but in the case of time-sensitive
applications, the work of [16] is more specific. The authors
propose a middleware with high degree of integration
with the hardware platform, through the use of operating
system calls to control the computing cores. However, our
work proposes a more generic solution, independent of
hardware architecture or operating system.
There are other works that investigate middlewares

that supports composition of components, services and
modules, with support to dynamic changes in real time
[17, 18]. The authors propose reconfigurable middleware
for real-time distributed services-based systems. How-
ever, our solution focuses on the integration of differ-
ent hardware platforms in a unique environment in a
loose-coupled way, not necessarily based on services nor
components.
The authors in [19] propose a Gateway/Middleware

High Level Architecture (HLA) implementation and
the extra services that this implementation provides
to a simulation. That paper contributes to incorporate
Gateway/Middleware Services into HLA interface that
is denoted, a Simulation Object Middleware Classes
(SMOC) Gateway.
In our previous work, HLA is used to integrate five dif-

ferent simulations tools: Ptolemy II, SystemC, Omnet++,
Veins, Stage and physical robots [20]. The idea is the
development and evaluation of a distributed simulation
platform of heterogeneous simulators. That work inspired
the present work with the idea to extend HLA for not
only simulations, but to general computing applications
running in heterogeneous hardware architectures.
In our solution, OpenCL is used to explore parallel

computing in multi-core CPU and in GPU, due to its ver-
satility. Other works have also used OpenCL, to explore
high-performance computing [21, 22], though it presents
lower performance than CUDA solutions [22]. There-
fore, the most advantage in using OpenCL in our context
is the vast compatibility with heterogeneous hardware
platforms.
In Table 1 the related works are compared with our work

focusing on main contributions of this paper.

3 The high level architecture (HLA)
The High Level Architecture (HLA) is a standard of the
Institute of Electrical and Electronic Engineers (IEEE),
developed by Simulation Interoperability Standards Orga-
nization (SISO). Initially it was not an open standard,
but it was later recognized and adopted by the Object
Management Group (OMG) and IEEE [2].
There are several standards based on distributed com-

puting, such as SIMNET, Distributed Interactive Simu-
lation (DIS), Service Oriented Architecture (SOA), Data
Distribution Service (DDS), HLA, among others. HLA
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was chosen as standard to integrate distributed heteroge-
neous devices because it manages both, data and synchro-
nization, and allows the interoperability and composition
of the widest possible range of platforms. One of the
most notable advantages of using HLA for this purpose is
that it already has a trustworthy and widely used solution
for time synchronization. There are also a large quantity
of simulations and tools compatible with it (e.g. Matlab,
Simulink, OMNet++, Ptolemy) which turns easier further
applications with different tools.
HLA is not a software implementation, but a stan-

dard with diverse independent implementations, includ-
ing some open-source, like CERTI [23] and Portico [24].
HLA is specified in three documents: the first deals with
the general framework and main rules [2], the second
deals with the specification of the interface between the
simulator and the HLA [25] and the third is the model
for data specification (OMT) transferred between the
simulators [26].
The main HLA characteristics are defined under the

leadership of the Defence Modelling and Simulation
Office (DMSO) to support reuse and interoperability.
Interoperability is a term that covers more than just
send and receive data, it also allows multiple systems
to work together. However, the systems must operate in
such a way that they can achieve a goal together through
collaboration.

3.1 Architecture
The main idea of the HLA is to provide a general pur-
pose platform where the functionality of a system can be
separated in distributed machines without loss of consis-
tency. For this, it uses the Runtime Infrastructure (RTI),
whichmanages data exchanging and centralize the control
of a global time for synchronization among the Federates
(see Fig. 1). This union of Federates through RTI is called
Federation. Here we use the term HLA Time to distin-
guish it from local time of each Federate and it refers to a
logical time and not a clock time.

To connect various Federates with RTI, two compo-
nents must exist: one local RTI Ambassador (RTIA) and
a global RTI Gateway (RTIG). RTIA defines the inter-
face of the Federate with RTI, calling functions of RTIG
for updating, reflection, transmitting and receiving data.
RTIG is responsible for synchronization and data consis-
tency. Messages among RTIG and RTIA are exchanged
through a TCP/IP network in order to perform the ser-
vices in a distributed manner. In this work, the HLA
implementation CERTI [23] was used. CERTI is an open
source implementation of HLA specification and is devel-
oped by its open source community and maintained by
ONERA. This implementation supports HLA 1.3 speci-
fication and it is already used in robust co-simulations
[4, 20, 27–29].

3.2 Interfaces
Federates do not communicate directly with other Feder-
ates. Each one is connected to the RTI, then they com-
municate with each other using only the services that the
RTI provides. There is always an interface between the
RTI and the Federates, and each member has a unique
connection with the RTI.
The RTI provides an interface called RTI Ambassador

and for each Federate an interface called Federate Ambas-
sador must be implemented for communication with RTI,
as presents in Fig. 1. Typically, RTI Gateway (RITG) is
provided by HLA implementations and developers must
implement (or reuse) a Federate Ambassador for each sys-
tem or device that will be part of the Federation. In this
work, three Federate Ambassadors were developed, for
GPU, SoC andMulti-core CPU. The Federate Ambassador
has two main objectives: to exchange data through RTI,
and to manage the synchronization with the RTI.
In our implementation, we use the available “publish

and subscribe” communication mechanism provided by
RTI. Messages are used to update values by calling the
function updateAttribute of the Federate Ambassador.
All updating is requested by a Federate to RTI, which

Fig. 1 Structure of the HLA architecture



Silva et al. Journal of Internet Services and Applications  (2018) 9:4 Page 6 of 17

propagates it, calling the function reflectAttribute of all
Federate Ambassadors. Once it happens, our implementa-
tion of this function save the values into internal variables,
and signalize that a new data have been received. This
flag will remain on, until the getReceivedData function is
called for reading.

3.3 Timemanagement
To deliver the messages in a consistent order, the HLA has
specific mechanisms of time management. They are asso-
ciated with the idea of advancing time step, which is an
abstraction of a global time to all Federation, which we
call HLA time. RTI manages the advancing of HLA time
to guarantee that each Federate will advance to next step
only when all the others reach the same HLA time.
For this, the Federate Ambassador defines the federate-

Time and advanceTime functions. The first one is used to
read to current global time (or HLATime), and the second
is to send an advancing time request to RTI. The Federate
is blocked until RTI grants the time advancing. The grant
will occur only when all registered Federates request the
time advancing to the same point.
As a Federate communicates with each other through

RTI, the data exchanging is performed in terms of interac-
tions and objects. An interaction is the operation of send-
ing data in one time-step, and objects are the data packets
sent during an interaction. To initiate a Federation, it is
necessary to start the RTI Gateway (RTIG) to allow all
Federates to join the Federation. Updates of newmessages
are received when a Federate applies for an object. There-
fore, all updates in those objects are reflected to those
interested Federates. The Virtual Bus encapsulates both
the request and the reflection of objects.
Each Federate knows its own internal logical time and

can advance it following some policies. A Federate can
be time-constrained, when the advance of local time is
restricted by other Federates; can be time-regulating, in
which the advance of its local time regulates other Fed-
erate; both or none. In this project the Virtual Bus con-
figures the time management of all Federates to both,
time-constrained and time-regulating.

4 The platform for distributed heterogeneous
computing (Virtual Bus)

In this section is presented the proposed platform for
distributed heterogeneous computing called Virtual Bus,
which is responsible for sending and receiving data on
the network and for allowing interoperability between
multiple heterogeneous hardware platforms.
This work used the intercommunication standard HLA

(see Section 3) as a middleware for communication
between these platforms. Virtual Bus has the role of letting
data exchange operations transparent to the user, pro-
viding an API over the HLA, without the user having to

perform its configuration explicitly. So, each device is a
Federate that will communicate through the Virtual Bus.
Figure 2 presents the extensions of HLA proposed here

(called Virtual Bus) implemented to turn the distributed
computing more transparent. Different architectures as
CPU, GPU, ARM and FPGA might be connected using
the Virtual Bus, which is built on top of the CERTI/HLA
environment.
To join a Federation, a Federate must call the

runFederate function from Virtual Bus API, described in
Code 1. This function creates an instance of RTI Ambas-
sador, requesting the RTI to create the Federation if it does
not exist, and create the Federate Ambassador. The actual
Federate joins the Federation and signals the RTI that it
is ready to run as soon as all other Federates reach the
synchronization point called READY_TO_RUN. Finally,
when a Federate calls the method publishAndSubscribe()
the time policy is set and all interesting objects to receive
and send updates are registered.

Code 1 Pseudocode of runFederate function
1 runFedera te ( char∗ federateName ) {
2 / / Crea te F ed e ra t i on i f doesn ’ t e x i s t
3 rt iamb = new RTI : : RTIambassador ( ) ;
4 rt iamb−>c r e a t e F ed e r a t i onEx e cu t i on ( ) ;
5
6 / / Crea te the FederateAmbassador
7 fedamb = new FederateAmbassador ( federateName )

;
8 rt iamb−>j o i nF ed e r a t i onEx e cu t i on ( federateName

, fedamb ) ;
9 rt iamb−>s ynch ron i z a t i onPo i n t ( READY_TO_RUN ) ;

10
11 pub l i shAndSubscr ibe ( ) ;
12 oHandle = r e g i s t e rOb j e c t ( ) ;
13 }

Virtual Bus also offers in its API two functions for writ-
ing and reading data to facilitate communication between
the Federates. The writeData function is responsible for
sending data through Virtual Bus. Themain logics of these
functions are presented in Code 2. It creates an object
to manipulate its attributes. All new values are set to
these attributes, which are sent to the RTI together with
the HLA local time of that Federate. As previously pre-
sented in section 3, Virtual Bus configures all Federates
to Time Constrained and Time Regulating policies. This

Fig. 2 General architecture of Virtual Bus
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guarantees that a Federate will advance its local time to
a specified global time (HLA time) only when all other
Federates also reach a time equals or greater than that.

Code 2 Pseudocode of writeData function.
1 wr i t eDa ta ( id , da t a ) {
2 a t t r i b u t e s = new RTI : : A t t r i b u t e ( ) ;
3 a t t r i b u t e s −>add ( id ) ;
4 a t t r i b u t e s −>add ( da ta [ 0 ] ) ;
5 a t t r i b u t e s −>add ( da ta [ 1 ] ) ;
6 a t t r i b u t e s −>add ( da ta [ 2 ] ) ;
7 . . .
8 a t t r i b u t e s −>add ( da ta [N] ) ;
9

10 / / Get HLA time from Fede ra t e
11 time = fedamb−>federa teT ime ( ) ;
12
13 / / Updata va lue in RTI
14 rt iamb−>updateVa lues ( oHandle , ∗ a t t r i b u t e s ,

time ) ;
15
16 / / Advance t ime
17 fedamb−>advanceTime ( ) ;
18 }

To explicitly request time advancing, Federatesmust call
the advanceTime function from Virtual Bus API and wait
for a granting message from RTI. Only when all Federates
are granted, the global time of the Federation is advanced.
Meanwhile, the Federate is blocked waiting for this grant-
ing. In Virtual Bus, the advanceTime is called always when
the function writeData of Virtual Bus is called. It means
each Federate advances its local time after each updating
the values of the attributes registered to it. When every
Federate advances its local time, RTI advances the global
time and one cycle is completed.
To receive data, the Federate must use the readData

function that returns the last received data from RTI. The
function works as follows: if any data has been received,
the Federate updates a flag to true. This flag can be
checked by hasReceivedData function. If there is available
data, it is returned, otherwise a null value is returned. The
pseudo code of readData function is shown in Code 3.

Code 3 Pseudocode of readData.
1 Object readData ( id , da ta ) {
2 i f ( fedamb−>hasRece ivedData ( i d ) ) {
3 da ta = fedamb−>ge tRece i vedData ( id , da t a ) ;
4 return data ;
5 }
6 e l s e
7 return nu l l ;
8 }

The Virtual Bus works as illustrated in the Fig. 3. On the
sender side, the writeData function is used to send data
through RTI. Once this function has been called, the val-
ues are updated calling the updateValues function, which
calls updateAttributes. In this step, each component of an
array item is rearranged and passed to RTI Ambassador.
The control of time and distribution of data is carried out
by the RTI, calling the functions to synchronize all Feder-
ates (waitSync) and to distribute data among all registered
Federates (distributeData).

On the receiver side, data is reflected into internal
variables by the reflectAttribute function, called by the
Federate Ambassador. This method calls receivedData to
store data internally and set the flag hasReceivedData to
true. A Federate in Virtual Bus is configured to check at
each internal cycle if some new data was received by call-
ing readDatamethod. This method checks the flag and, if
it is true, the data is returned to application.

Code 4 Data Object Model for Virtual Bus.

1 (FED
2 ( Fede r a t i on Test ) ( c l a s s Vi r t u a lBu s
3 ( a t t r i b u t e p r i v i l e g e )
4 ( c l a s s RTIpr i v a t e )
5 ( c l a s s por t
6 ( a t t r i b u t e id )
7 ( a t t r i b u t e data0 )
8 ( a t t r i b u t e data1 )
9 ( a t t r i b u t e data2 )

10 . . .
11 ( a t t r i b u t e dataN ) ) ) ) )

The format of the data exchanged by the Ambassadors
is defined following the Object Model Template (OMT)
of the HLA [26], which is specified in a file common to
all Federates. In Virtual Bus, each object has attributes
to identify the destination and origin of message, besides
attributes of N data values. The size of N is set in advance
depending on each configuration scenario. The descrip-
tion file for the Data Object Model for Virtual Bus is
presented in Code 4.
The Virtual Bus offers a general propose API for dis-

tributed systems, and its use must be easy and simple.
So, the only changes that are needed to integrate new
projects, or even legacy codes, are to add some libraries
from the CERTI HLA and to include the Virtual Bus
package. As shown in the Fig. 4, the package contains basi-
cally the Virtual Bus Federate and Federate Ambassador
(classes and interfaces). From this point, to use the Vir-
tual Bus the only necessary functions to be called are:
runFederate, writeData and readData. The first one is to
initialize the Federate, the second one to send and the last
one to receive data. The Federate Ambassador is refer-
enced as a black box code, used by the Virtual Bus Federate
and does not have to be called directly.

5 Experiment
The main idea of these experiments is to run some Fed-
erates that exchange data of different types and sizes.
Therefore, the experiment was assembled with four Fed-
erates: the Sender Federate (running in a PC), the SoC
Federate (ARM+FPGA), the Multi-core Federate and the
GPU Federate. The Sender Federate sends images to the
other Federates, that will process some operation on
the images and return the result back to the Sender Feder-
ate. All Federates use the same implementation of Virtual
Bus developed in C++.
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Fig. 3 Virtual Bus flow

To ease the manipulation of the images, the OpenCV
framework was used in Sender and Multi-core Feder-
ates. OpenCV is a library used to manipulate and process
images, originally developed by Intel (http://opencv.org).
It was used in this work only for basic handling of pixels
through its functions and data structures.
In this section is presented the configuration of the

experiment and some lessons learned during the work. In
Subsection 5.1 the list of equipment specifications can be
found and how they are connected. The Subsection 5.2
shows the scenarios that were configured. Many data for-
mats were tested and they are presented in Subsection 5.3.
Then, it is given a more detailed description of how each
Federate works in Subsections 5.4 and 5.5.

5.1 Equipments
In general, a Federation was configured composed by four
computing machines, corresponding to the following Fed-
erates: the Sender Federate, the Multi-core Federate, the
GPU Federate and the SoC Federate (ARM+FPGA). The
basic configuration of each one is describe in Table 2. The
Sender Federate is a desktop computer running Ubuntu
14.04 LTS. The SoC (ARM+FPGA) has an Altera Cyclone
V SE SoC, which has a Cyclone V FPGA integrated with a

Fig. 4 Components of the Virtual Bus Package, needed to be included
tho use the proposed solution

dual-core ARMCortex A9 processor on a single chip, run-
ning Ubuntu 12.04 LTS. TheGPU Federate uses a GeForce
GT from NVidea, and was running Ubuntu 16.04 LTS.
The multi-core Federate runs OpenSuse 13.2 Harlequin.

5.2 Scenarios
The experiment was divided in five scenarios as listed in
Table 3. In the first scenario, the Sender Federate com-
municates only with the SoC. Following, it communicates
separately with Multi-core and then with GPU Federate in
scenarios 2 and 3, respectively. In scenario 4 the commu-
nication is done between the Sender, SoC and Multi-core
Federates. Then, in the last scenario, the Multi-core Fed-
erate is replaced by the GPU Federate.
The idea in these scenarios is to test separately each Fed-

erate with the Sender Federate in scenarios 1 to 3, and later
to integrate two Federates per experiment in scenarios 4
and 5. With this, it is possible to analyze the behavior of
the Virtual Bus in separated cases.
Figure 5 gives an overview of how the devices are con-

nected. The Sender Federate is in the left side of the figure.
the Sender Federate. It is responsible to generate data
to all other Federates and collect the results from them.
In the right side of the same figure are the other Feder-
ates: SoC, where the ARM bridges the Virtual Bus with
the FPGA, and the Multi-core and GPU Federates, which
use OpenCL to interface the Virtual Bus with the parallel
architecture.

Table 2 Equipment specification

Device Configuration

Sender Intel Celeron 430 with 2 GB SDRAM

SoC (ARM+FPGA) DE1-SoC Board from Terasic

Multicore Intel i3-4005U with 4 GB DDR3

GPU GeForce GT 740M

http://opencv.org
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Table 3 Scenarios used in the experiments

Scenario Sender SoC (ARM+FPGA) Multi-core GPU

1 X X - -

2 X - X -

3 X - - X

4 X X X -

5 X X - X

5.3 Data configuration and exchanging
One of the contributions of this work is to improve
the data transfer to an acceptable rate. In this subsec-
tion, we present some results in the development process
with some details regarding the implementation of data
exchanging in Virtual Bus. This discussion is more rel-
evant in the cases where a considerable amount of data
must be transfered, like an image, for example. In this
experiment the following data exchanging strategies were
used:

• one-by-one: pixels are sent one by one in each HLA
message;

• multi-pixel: a group of N pixels are sent in N
attributes, one attribute for each pixel;

• multi-pixel in one attribute: a group of N pixels is
sent in one array attribute of N size.

Some formats for the messages were defined to improve
the data exchanging in Virtual Bus. The overall format is
presented in Fig. 6.
The field called data contains part of the image that fol-

lows in each message. During the experiments, a variation
of sizes of the data in messages were experimented, which
resulted into different data transfer methodologies. They
essentially differ in the number of pixels per message and
the way the pixel information is organized in attributes.

Fig. 5 Configuration of experiments using Virtual Bus

Fig. 6 General structure of messages

The first methodology, hereinafter referred as one-by-
one, has been implemented to send one pixel per message.
That is, to send an image, each message have the infor-
mation of the source, plus the position of pixel (x and y)
and the corresponding pixel data. Thus, the amount of
messages is equal to the number of pixels in the image.
These messages were structured like presented in Fig. 7.

For example, the source field is the ID of the Sender Fed-
erate, the address is the ID of the target Federate that
must receive the message, the position x and y are the
pixel coordinates being sent and the pixel_data field is the
content of pixel itself.
In the second methodology of the experiment, called

multi-pixels, it has been adopted the strategy of send-
ing image information only in the first message, such as
resolution and number of channels. And then the next
messages carry only the pixels (multiple ones by mes-
sages). It also means a variation in the number of fields per
message.
Remembering that the number of elements is equal to

the number of pixels multiplied by the number of chan-
nels. For example, five pixels in a image of three channels
(RGB) means fifteen data fields per message. The struc-
ture of the messages is presented in Fig. 8.
Based on the first message sent with the resolution

information and number of channels, it is possible toman-
age the receipt of pixels. Hence, to send a complete image,
this strategy produces the following number of messages:
the number of pixels, times the number of channels,
divided by the number of elements sent per message,
adding yet the first message.
The last methodology to transfer the images, called

multi-pixel in one attribute, is a variation of the second
implementation. The structure of the message is the same
as presented in Fig. 8, but here the HLA is used in a dif-
ferent way. Now, it adds multiple pixel content in only one
field of HLA message attribute. Here the Object Model
used in Virtual Bus (as shown in Code 4) is changed to
use one unique data field of multiple elements. This field
is managed by HLA as an array, thus the data of all pixels
is encapsulated in a unique array type (also called data).
In HLA, it means the RTI will try to send as maximum
as data per TCP packet, instead of been limited by a fixed
number of data fields.
As it is presented in next section, this methodology

calledmulti-pixel in one attribute achieved the best per-
formance. Therefore, this was the chosen approach to be
used in the following experiments presented here.
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Fig. 7 Structure for one-by-one messages

As presented in next section, the aforementioned
methodology called thereafter multi-pixel in one attribute
provides the best performance. Consequently, this strat-
egy has been used in the following experiments.

5.4 Sender federate
The Sender Federate is responsible for sending data to
be processed by the other Federates and for receiving the
results back. The Sender Federate opens an image file with
resolution of 512 × 512 pixels and sends all the pixels. In
practice, this image is a matrix of unsigned char elements.
Because the image is colored, each pixel is represented in
three channels, this is due to the RGB representation.
The data transmission using Virtual Bus turns the inter-

actions between those Federates involved with the execu-
tion transparent. After the image is loaded into memory,
each pixel is fragmented in a scalar format to be sent in
bursts, repeated in a main loop. In the Code 5 the main
logic is presented. Notice that the first action is to start up
the RTI (lines 2-4). Following, the value of each channel
in a pixel is stored in an array (lines 7-10). The next lines
(14-21) check if all elements of image were already sent or
if it must send the next line of the image matrix. Finally,
the data array is sent to RTI (line 26). In the last lines
(28-35), it receives the processed data from RTI and han-
dle it according to which is the destination Federate.
This loop code is for sending data up to the value of

NUMBER_OF_ELEMENTS_BURST variable is reached.
For example, if 900 elements burst size is chosen, that
means 300 pixels per message will be sent. So, the for
structure has the stop condition because it buffers the 300
pixels in the variable called data, to send it subsequently.
The x and y variables represent the coordinates of the pixel
which is being accessed.

5.5 SoC integration with Virtual Bus
As proof of concept, theMD5 algorithmwas implemented
and executed in FPGA.MD5 is a hash function vastly used
as a checksum to verify data integrity [29], which takes as
input a message of arbitrary length with maximum of 512
bits and produces as output a fingerprint of 128 bits.

Code 5 Main loop in Sender Federate to send images
1 . . .
2 V i r t u a lBu sF ede r a t e ∗ f e d e r a t e ;
3 f e d e r a t e = new Vi r t u a lBu sF ede r a t e ( ) ;
4 f e d e r a t e −>runFedera te ( federateName ) ;
5 . . .
6 for ( i =0 ; i <NUMBER_OF_ELEMENTS_BURST ; i ++) {
7 Vec3b s = image . at <Vec3b >( Po in t ( x , y ) ) ;
8 da ta [ p o s i t i o n ++] = s . v a l [ 0 ] ;
9 da ta [ p o s i t i o n ++] = s . v a l [ 1 ] ;

10 da ta [ p o s i t i o n ++] = s . v a l [ 2 ] ;
11
12 numberElemSent += 3 ;
13
14 i f (++x == re so l u t i onX ) {
15 i f ( numberElemSent == t o t a l E l emen t s ) {
16 s en tA l l E l emen t s = true ;
17 break ;
18 } e l s e {
19 / / jump to nex t l i n e
20 x = 0 ;
21 y ++;
22 }
23 }
24 }
25 f ed e r a t e −>wr i t eDa ta ( Sender_ID , da ta ) ;
26
27 i f ( f e d e r a t e −>readData ( src , da ta ) ) {
28 switch ( s r c ) {
29 case FPGA_ID :
30 / / hand le s data from FPGA
31 . . .
32 case PROCESSOR_ID :
33 / / hand le s data from Mul t i c o r e /GPU
34 . . .
35 }

The input message should be an arbitrary and not nega-
tive integer.
The Code 6 shows how the Federate is implemented in

the ARM processor. As an initial solution, a loop is pro-
posed instead of using processor interrupts to check if any
data is received. Once received, the function to calculate
MD5 by the FPGA is called (line 9). The result is only
sent to the Virtual Bus when the calculation is completed.
This is controlled by a flag called received (line 11). When
the result of the calculation is sent by the FPGA, then the
four words is sent to Virtual Bus (line 12) and received by
Sender Federate on the other side.
The communication between the ARM and FPGA in

the software layer is made by the calculatemd5 function

Fig. 8 Example of multi-pixel message, transporting five pixels of three channels



Silva et al. Journal of Internet Services and Applications  (2018) 9:4 Page 11 of 17

Code 6 Logic of the Federate running on ARM
1 . . .
2 / / c r e a t e and run the f e d e r a t e
3 V i r t u a lBu sF ede r a t e ∗ f e d e r a t e ;
4 f e d e r a t e = new Vi r t u a lBu sF ede r a t e ( ) ;
5 f e d e r a t e −>runFedera te ( federateName ) ;
6
7 while ( 1 ) {
8 i f ( f e d e r a t e −>readData ( source , da ta ) ) {
9 ca l cu l a t e_md5 ( data , a , b , c , d ) ;

10 }
11 i f ( r e c e i v e d ) {
12 f ed e r a t e −>wr i t eDa ta ( federateName , a , b , c , d ) ;
13 r e c e i v e = f a l s e ;
14 }
15 }
16 f ed e r a t e −> f i n a l i z e ( ) ;
17 . . .

in line 8 at Code 6. In ARM, this communication is done
through written records. This is configured with the Qsys
framework, which maps the FPGA as a peripheral device
of the ARM processor. The MD5 was implemented as a
FSM which receives a sequence of 512 bits, separated in
16 blocks of 4 bytes each.
The Cyclone V SE SoC has a physical limitation that

does not allow the transmission of 512 bits in one clock
cycle. So, we have created a wrapper in Verilog to con-
nect the MD5 code (in FPGA) with the ARM. This logic
splits the transfer between FPGA and ARM in transfers
of 32 bits, until the 512 bits are transfered (see Code 7).
Thus, the input signals inwdata and inaddr and output
signal outrdata are mapped in the ARM registers and can
be easily accessed from the software layer.

Code 7 Verilog MD5 block: a wrapper to connect MD5 into ARM
1 \ begin { l s t l i s t i n g } [ ]
2 module md5_wr ( c lk ,
3 r e s e t ,
4 in_wdata ,
5 in_addr ,
6 ou t_ rda t a ) ;
7
8 / / De f i n e Input / Output
9 input wire c l k ;

10 input wire r e s e t ;
11 input wire [ 3 1 : 0 ] in_wdata ;
12 input wire [ 6 3 : 0 ] in_addr ;
13 output reg [ 3 1 : 0 ] ou t _ rda t a ;
14 . . .

The wrapper receives data from ARM via inwdata, and
store it in a register bank at address provided by inaddr.
To read the result from MD5, it is necessary to wait 63
positive clock edges, then set inaddr to the address that
holds the results and read outrdata. For reading and writ-
ing 32-bit words are used, while for addressing 64 bits are
used.
The registers from 0 to 15 (4 bytes each) are used for

transmitting parts of the message. After sending the mes-
sage completely, the least significant bit from register 16
is set in order to turn the MD5 block available. So, after
64 clock cycles the result is stored in registers 32 to 35.

Finally, inaddr is set to indicate the address of registers
and their values are returned via outrdata.

5.6 Federates based on OpenCL
In our implementation, two Federates are based on
OpenCL, the Multi-core Federate and the GPU Feder-
ate. Both of them work in similar ways. They receive all
data of image from Sender Federate in the same way the
other Federates, then they build the image matrix in the
device memory and an OpenCL kernel is initialized. So,
they execute a mask operation in the image. It consists on
recalculating all the image pixels by applying the Eq. 1.

I(i, j) = 5 ∗ I(i, j)−[ I(i − 1, j) + I(i + 1, j)
+ I(i, j − 1) + I(i, j + 1)]⇔ I(i, j) ∗ M,

(1)

I(i, j) ∗
⎡
⎣

0 −1 0
−1 5 −1
0 −1 0

⎤
⎦ (2)

The Eq. 1 was obtained by multiplying each image ele-
ment by the mask matrix, as shown in Eq. 2. This calcula-
tion adjusts each pixel value based on howmuch influence
the current and the neighbor pixels have.
To reach a satisfactory portability of the kernel between

the diverse hardwares, some calculations were done to
adjust the runtime environment of the OpenCL. When
using OpenCL is important to calculate properly the
number of work-groups [30, 31]. For this implementa-
tion, it was taking into account the number of elements
to be calculated based on the resolution of the image,
the number of cores of the current architecture and the
number of compute units of the processor. This last two
parameters are based on the values returned by some
OpenCL functions appropriate for querying hardware
attributes.
Given the low degree of complexity of the kernel in this

experiment, only this information is necessary to calcu-
late the required number of threads. Dividing them into
work-groups with appropriate amounts according to the
number of compute units.
In the experiment involving Multi-core CPU and GPU

Federates, the following steps were executed:

1. Sender Federate reads an image and shows it on the
screen;

2. Sender Federate sends the image to the
Multi-core/GPU Federate;

3. Multi-core/GPU Federate receives the image and
displays it on the screen for a subjective integrity
check;

4. Multi-core/GPU performs the processing of OpenCL
kernel;

5. Multi-core/GPU shows the resulting processed
image;
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6. Multi-core/GPU sends a response to the Sender
Federate;

7. Sender Federate receives the response and displays it
on the screen.

6 Results
The results presented in this section refer to an analysis
of the data transfer approaches, presented in Subsection
5.3, and then some results from the experiments dis-
cussed in Section 5, and specifically presented in
Subsection 5.2. In Subsection 6.1 are presented the data
exchanging results, and in the next subsections are pre-
sented the overall results for the different experiment
scenarios.

6.1 Data exchanging analysis
Table 4 presents the time and throughput to transmit an
image from the Sender Federate to other Federates via
an Ethernet LAN network. The Lena image used in the
experiments is presented in Fig. 9, with the resolution of
512 × 512 in RGB (a matrix of 786,432 unsigned char
elements, or 768 KB).
In the first experiment, pixels are sent one by one in each

HLA message. A multi-pixel approach is used in experi-
ment 2, where 15 pixels are sent in 15 attributes (HLA),
one attributes for each pixel. In experiment 3 the same
approach is executed, but now with 100 pixels. In experi-
ments 4 and 5, a group of 100 and 300 pixels, respectively,
are sent in arrays of the same size. In these two last exper-
iments the time is much lesser because HLA tries always
to send to complete array in a uniquemessage. This exper-
iment was important to evaluate the impact of different
approaches in HLA to organize data in messages.
It is important to note that this throughput average is

based only on the image data sent and received (pay-
load), not including the traffic of control messages sent by
the CERTI RTI implementation. This gives an idea of the
necessary time to transfer data via Virtual Bus. Thus, it
turns more evident the Virtual Bus capacity of sending the
image from one Federate to another.
The first line of the table contains the values from

the one-by-one experiment, line 2 and line 3 refers to
results in the multi-pixel experiments, where there is one

Table 4 Transfer times of Lena image with 786,432 elements

# Experiment Time Throughput average Speedup

1 One-by-one 72 s 87 Kbps –

2 15-pixels 7.8 s 800 Kbps 9.5 X

3 100-pixels 4.4 s 1.4 Mbps 16.5 X

4 100-px/one attrib. 1.7 s 3.7 Mbps 20.0 X

5 300-px/one attrib. 234 ms 27 Mbps 317.7 X

Fig. 9 The Lena image used in the experiments

attribute for each element to be sent. Finally, line 4 and 5
are the results for multi-pixel in one attribute, that sends
multiple pixels in a single HLA attribute. The last col-
umn named “speedup” presents an overall speedup of
each throughput result in comparison with one-by-one
approach.
Comparing the line 3 and 4, the same number of pix-

els per message was sent, but with different transmission
approaches. In this case occurred a time reduction and an
increase in throughput when more pixels were transmit-
ted by message.
The increase of the number of attributes from one to

15 pixels per message, respectively (experiments 1 and
2 in Table 4), brought a speedup of 9.5 times. When
transferring 100 pixels per message (experiments 3),
the speedup was 16.5 times, demonstrating a smooth
increasing. And the highest speedups were achieved
when the multiple data was encapsulated in a unique
array attribute, reaching speedups of 20 and 317.7 times
(experiments 4 and 5, respectively), demonstrating a
exponential increasing.

Table 5 Processing time and total time of Lena image with
786,432 elements by GPU Federate

# Experiment Processing time Total time

1 One-by-one 281 ms 72 s

2 15-pixels 281 ms 7.8 s

3 100-pixels 281 ms 4.4 s

4 100-px/one attrib. 281 ms 1.7 s

5 300-px/one attrib. 281 ms 515 ms
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Fig. 10 Sender Federate activity during the transition to SoC Federate

This result demonstrates the improvement obtained
from different methodologies addressed in the pro-
posed environment. The speedup is presented comparing
the different configurations with the most simple one,
where only one pixel is transmitted per simulation cycle.
This provides data for comparisons in future work to assist
the choice of which HLA configuration is more appro-
priate when using Virtual Bus. In this experiments, we
demonstrated that for applications where large amounts
of data must be transfered, the must appropriate approach

is to transfer multiple data in a unique HLA array type,
like in experiments 4 and 5.
With OpenCL it was possible to implement a com-

ponent that allows the use of heterogeneous hardware
platforms integrated to Virtual Bus. This enables the use
of both multi-core CPU, and GPU. It was also possi-
ble to adaptively manage the number of work groups.
This number is calculated dynamically according to the
image resolution and to the number of cores, among
other device-specific features. This calculation made pos-

Fig. 11 SoC Fed erate activity during the communication with Sender Federate
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Fig. 12 Transmission activity between Sender and Multi-core Federates

sible to achieve better results while exploring more cores
per device.
Table 5 presents the time to process the mask operation

over Lena image by the OpenCL kernel in a GPU Federate.
For all experiments, the processing time was the same,
281 ms to process the mask, because this time is indepen-
dent of the transmission strategy. This table demonstrates
that the data transfer can be the highest bottleneck in this
scenario. Although, the results demonstrated that when
transmitting 300 pixels per attribute, the transmission
decreases to 45% of overall time.

6.2 Scenario 1: SoC (ARM+FPGA)
The results presented in the following sections show the
interaction among the Federates in Virtual Bus. They
demonstrate how the data exchanging occurred and when
each Federate took action.
In Figs. 10 and 11 are presented the processing activ-

ity of the Sender and the SoC Federates, respectively. It
is possible to see that both charts have the same shape
and the average is 129μs for each. This is because the SoC
returns the result of MD5 hash in the next HLA time after
the Sender Federate sends the input data. After receiving

Fig. 13 Transmission activity between Sender and GPU
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Fig. 14 Transmission activity between Sender, FPGA and Multicore

the last data to be processed, the SoC is the unique Feder-
ate transmitting via Virtual Bus, so it expends only 4μs to
conclude the data transfer to Sender Federate.

6.3 Scenario 2: Multi-core
Figure 12 presents the communication between Sender
and Multi-core Federates. Now the x-axis represents the
number of interactions. The Sender sends eachmessage in
131μs on average to theMulti-core Federate. After receiv-
ing all data, the Multi-core Federate takes 811μs to apply
the mask operation and start to send the result to Sender

Federate, this is shown in peak around interaction 2600.
The result is sent back in messages, which take 6μs on
average to reach the Sender Federate.

6.4 Scenario 3: GPU
Figure 13 presents the activity during communication
among Sender and GPU Federates. The results are similar
to the communication between Sender and Multi-core
Federates. The only difference is that the GPU takes
940μs to apply the filter and return the first message
to the Sender Federate. Since the focus of this work

Fig. 15 Transmission activity between Sender, FPGA and GPU
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is the communication among heterogeneous devices,
this code was not optimized for the GPU, resulting in
this discrepancy.

6.5 Scenario 4: Multi-core and SoC (ARM+FPGA)
In order to evaluate three devices communicating via
Virtual Bus, the Sender, SoC (ARM+FPGA) and Multi-
core Federates were connected. The Fig. 14 represents the
activity during this communication. The integration of
these three devices did not interfered in results that were
obtained when two devices were exchanging data. In the
Fig. 14 the FPGA activity overlaps the Sender as previously
described.

6.6 Scenario 5: SoC (ARM+FPGA) and GPU
The same experiment was made but replacing the Multi-
core by GPU, and the result was repeated as could be seen
in Fig. 15. A similarity between this result and scenario 4
is clear, since both use the same OpenCL code, and the
communication bottleneck continues in same amount.

7 Final considerations
In this work a platform named Virtual Bus for commu-
nication between distributed heterogeneous embedded
systems was presented. It provides a simple and clear
way of exchanging data, without necessity to know in
details the architectures involved. The Virtual Bus can
also be adapted for many devices, as it is based on the
consolidated standard HLA (IEEE 1516).
The experiments demonstrated the communication

between different devices using Virtual Bus. Some differ-
ent devices were integrated in a unique execution envi-
ronment. A PC, a DE1-SoC with an ARM and an Altera
FPGA, a GPU and a Multi-core processor. Once the Vir-
tual Bus was implemented in devices, the communication
and synchronization among them were transparent and
only three functions were necessary for any application to
deal with the bus.
With the experiments it was possible to prove the

feasibility of the proposed architecture to perform data
transfers preserving consistency of time and content of
messages, as well as enabling the necessary infrastruc-
ture for parallel processing in a each device connected via
HLA. To support massive parallel processing of images,
an OpenCL Federate was developed to manage multiple
compute units in GPU and multi-core CPU.
The potential and limitations of our platform became

evident. The main potential is the possibility to inte-
grate heterogeneous architecture in a transparent and
synchronous fashion. The most important limitation is
the transmission overhead. HLA is a centralized approach,
which is important to manage synchronization but
increases the communication bottleneck. However, we
have demonstrated that when using array types in HLA

the transmission overhead can be decreased. This possibly
enables the use of Virtual Bus by distributed applica-
tions which demands synchronization and explore mul-
tiple compute units of heterogeneous architectures. For
example, multiplayer games, distributed simulation, dis-
tributed hardware-in-the-loop simulation, etc. In future
works, Virtual Bus will be applied in these and other
scenarios. Also, other communication middlewares (e.g.
DDS) could replace HLA and the results compared with
our current implementation.
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