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Abstract

The literature regarding attacks in Networked Control Systems (NCS) indicates that covert and accurate attacks must
be designed based on an accurate knowledge about the model of the attacked system. In this context, the literature
on NCS presents the Passive System Identification attack as a metaheuristic-based tool to provide the attacker with
the required system models. However, the scientific literature does not report countermeasures to mitigate the
identification process performed by such passive metaheuristic-based attack. In this sense, this work proposes the use
of a randomly switching controller as a countermeasure for the Passive System Identification attack, in case of failure
of other conventional security mechanisms - such as encryption, network segmentation and firewall policies. This
novel countermeasure aims to hinder the identification of the controller, so that the model obtained by the attacker is
imprecise or ambiguous, in such a way that the attacker hesitates to launch covert or model-dependent attacks
against the NCS. The simulation results indicate that this countermeasure is capable to mitigate the mentioned attack
at the same time that it performs a satisfactory plant control.

Switching controller
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1 Introduction

A Networked Control System (NCS) is constituted by a
physical plant whose dynamics is controlled by a digi-
tal controller — i.e. a computational system — through
a communication network which, indeed, integrates the
cyberspace to the physical domain. The integration
of controllers and physical processes via communica-
tion networks aims to provide these systems with bet-
ter operational and management capabilities, as well
as reduce costs. By virtue of these advantages, the
number of NCSs applied to industrial processes and
critical infrastructure systems is increasing [1-10]. A
diagram of an NCS is depicted in Fig. 1, wherein
G(z) is the transfer function of the plant, C(z) is the
control function executed by the controller and both
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devices are interconnected through the forward and
a feedback streams. The forward stream carries the con-
trol signals from the controller to the plant’s actuators.
The feedback stream, in turn, carries the sensed data from
the plant to the controller.

Despite the advantages provided by the NCSs, the
integration of controllers and physical plants through
a communication network also exposes such control
systems to threats originated in the cyber domain.
In this context, there is a research effort to char-
acterize vulnerabilities and propose security solutions
for NCSs.

Recent researches on the security of NCSs demonstrate
the development of a set of sophisticated attacks [6, 11, 12]
that, to be covert and accurate, are designed based on the
models of the attacked system. For instance, in [12, 13]!,
the authors present an attack where false data is injected
in the communication process of an NCS to degrade the
service performed by a plant. The changes driven by this
attack are dimensioned so that the modifications in the
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plant’s behavior are physically difficult to be perceived.
For this reason, this attack is classified as physically covert
[12]. To ensure that the attack proposed in [12] is phys-
ically covert, the authors indicate that the attacker must
plan the offensive based on an accurate knowledge about
the system dynamics — otherwise the consequences of
the attack may be unpredictable. In this case, the unpre-
dictable behavior of the plant can provide physical evi-
dence that it is being manipulated, drawing the attention
to the possibility of a cyber-physical attack.

One possible way to obtain such knowledge about the
NCS is through conventional intelligence operations, per-
formed to collect information regarding the design of
the system. Another way to gather information about the
targeted system is through a Cyber-Physical Intelligence
attacks [12]. To this end, the authors of [12] propose a
metaheuristic-based Passive System Identification attack,
which aims to collect information about the plant’s trans-
fer function G(z) and the controller’s control function
C(z) of an NCS. As shown in Fig. 2 (draw based on the
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taxonomy proposed in [12]), the Passive System Identi-
fication attack constitutes a path to build sophisticated
model-dependent attacks, once they are capable to pro-
vide the attacker with the required system knowledge.
Indeed, the results of [12] demonstrate the effectiveness of
the Passive System Identification attack in supporting the
design of covert/model-dependent attacks.

Although the authors of [12] encourage the develop-
ment of countermeasures for the Passive System Identi-
fication attack, the scientific literature — to the best of
our knowledge — does not report countermeasures to
mitigate the identification process performed by such pas-
sive metaheuristic-based attack. In this sense, this work
aims to discuss and propose a countermeasure for the
mentioned attack.

The straightforward countermeasure to prevent the suc-
cess of a System Identification attack in an NCS is to avoid
unauthorized access to the control loop using, for exam-
ple, network segmentation, demilitarized zones (DMZ),
firewall policies and implementing specific network archi-
tectures, such as recommended in [14]. A complemen-
tary countermeasure — in case the attacker is capable to
access the control loop — is to hinder the access to the
data flowing in the NCS using, for example, symmetric-
key encryption algorithms, hash algorithms and a times-
tamp strategy to form a secure transmission mechanism
between the controller and the plant, as proposed in [15].
However, when the mentioned countermeasures fail and
the attacker gain access to the data flowing in the NCS,
the alternative to prevent the attacker to obtain the model
of the system is to hinder the analysis of the captured data
— i.e. make the System Identification algorithm inaccu-
rate/ineffective.

One possible strategy to cause difficulties to the System
Identification algorithm is to have, in the NCS, specific
control functions that are, at the same time, harder to be
identified and capable to control the plant. Based on this
reasoning, the contribution of this work is the proposal of
a randomly switching controller design as a feasible coun-
termeasure to mitigate the Passive System Identification
attack proposed in [12]. As far as we know, there is no
other countermeasure reported in the literature that miti-
gates the Passive System Identification attack by hindering
the analysis of signals captured from the NCS.

The rest of this paper is organized as follows: First, in
Section 2, some related works are presented. Later, in
Section 3, the Passive System Identification attack and a
subsequent Data Injection attack are described, in order to
provide the underlying information necessary to compre-
hend the countermeasure proposed in this paper. Then,
in Section 4, the switching controller is presented and
discussed as a countermeasure for the Passive System
Identification attack. After that, Section 5 presents sim-
ulation results, where the performance of the switching
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controller is analyzed from the countermeasure and con-
trol perspectives. Finally, in Section 6, some conclusions
and possible future works are presented.

2 Related works

The launch of cyber-physical attacks in real world sys-
tems, such as the case of the Stuxnet [16] worm, raised
the concern of governments and NCS owners, and is
motivating the research on cybersecurity of industrial
and critical infrastructure facilities. In this context, recent
studies demonstrate the development of a set of sophisti-
cated attacks that, to achieve a high level of covertness and
accuracy, rely on the knowledge about the model of the
attacked system. As recognized by the literature on NCS
[12, 17], System Identification attacks are considered a key
step in the development of those sophisticated attacks.
So, this section presents a review on attacks in NCSs,
giving special attention to the role that System Identifi-
cation attacks play in the context of the cybersecurity of
these control systems.

In [18], the authors evaluate the impact of delay jit-
ter and packet loss in an NCS under a Denial of Service
(DoS) attack. The conception of such DoS attack does not
take into account the models of the controller and phys-
ical plant of the attacked NCS (i.e. these models are not
known by the attacker). Therefore, to affect the physical
process, the attacker arbitrarily floods the network, caus-
ing jitter and packet loss in the communication links of
the NCS. In this tactic, the excess of packets in the net-
work may reveal the attack, allowing the implementation
of countermeasures such as packet filtering [18] or block-
ing the malicious traffic on its origin [19]. Additionally,
as stated in [12], the arbitrary intervention in a system
which the models are unknown may lead the plant to
an extreme physical behavior, which is not desired if a
physically covert [12] attack is intended.

In [4], the authors demonstrate an attack where false sig-
nals are transmitted to the controller and the actuator of
an NCS. The false signals are randomly generated by the
attacker, aiming to cause the instability of the plant (a DC
motor). To evaluate this arbitrary data injection attack,
the authors propose a testbed for Supervisory Control
and Data Acquisition (SCADA) system, using TrueTime (a
MATLAB/Simulink based tool). Such arbitrary data injec-
tion attack does not require a previous knowledge about
the models of the plant and its controller. Therefore, the
desired physical effect and the covertness of the attack
cannot be ensured due to the unpredictable consequences
of the injection of random false signals in a system which
the model is not known.

In [20], the authors analyze a wide variety of attacks
in NCSs and establish the requirements for the attacks
in terms of model knowledge, disclosure and disruption
resources. In their work, it is stated that the design of
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covert attacks requires a high level of knowledge about the
model of the attacked system. In [6, 11, 21], examples of
covert attacks that agree with the statement provided in
[20] are proposed and analyzed. In [11, 21], the attacker,
acting as a man-in-the-middle (MitM), injects false data
in the forward stream of the NCS to take control of
the plant. Then, to make the attack covert, the attacker
uses the model of the attacked plant to compute the data
injected in the feedback stream. The covertness of the
attack proposed in [21] is analyzed from the perspective
of the signals arriving at the controller and, as demon-
strated in [11], it depends on the difference between the
actual model of the plant and the model known by the
attacker. In [6], the attacker, aware of the model of the
NCS, injects data in its communication links to covertly
steal water from the Gignac canal system located in
Southern France.

In [6, 11, 20, 21], although the attacks are designed
based on the models of the NCS, the authors do not
describe how these models are obtained by the attacker. It
is just stated that the models, used for the design of the
covert/model-dependent attacks, are previously known by
the attacker. In order to fill this gap, [12] and [17] pro-
pose two new kinds of attack to estimate the models of the
attacked system: the Passive System Identification attack
[12]; and the Active System Identification attack [17]. As
shown in Fig. 2 — and, according to the taxonomy pro-
posed in [12] —, these attacks belong to the category of
Cyber-physical Intelligence attacks.

The Passive System Identification attack [12] — formerly
referred to as System Identification attack’? — does not
need to inject signals in the NCS to estimate its models.
However, the effectiveness of the Passive System Iden-
tification attack depends on the occurrence of events —
not controlled by the attacker — to produce signals that
carry meaningful information for the system identifica-
tion algorithm. This attack passively estimates the transfer
functions of both controller and plant by simply eaves-
dropping the forward and the feedback streams of the
system. On the other hand, the Active System Identifica-
tion attack constitutes an alternative to the Passive Sys-
tem Identification attack, in situations where the attacker
cannot wait so long for the occurrence of such meaning-
ful signals. In the Active System Identification attack, as
described in [17], the attacker estimates the open-loop
transfer function of the NCS by injecting an attack sig-
nal and eavesdropping its response at a single point of
interception.

A synthesis of the attacks referred in this section is pre-
sented in Table 1. Based on these works, it is possible to
verify how useful may be a System Identification attack for
the design of covert/model-dependent attacks in NCSs.
However, in the scientific literature, we still do not find
specific countermeasures to mitigate the identification
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process performed by the attack proposed in [12]. In this
context, this work proposes a countermeasure to mitigate
such metaheuristic-based Passive System Identification
attack, even when the attacker gets access to the data that
is transmitted in the NCS.

3 Covert attack for service degradation

For the sake of completeness, this section describes the
attack proposed in [12], in order to provide the infor-
mation necessary to comprehend the countermeasure
proposed in the present work. The attack consists of
the joint operation of two attacks: the Passive System
Identification Attack, detailed in Section 3.1; and the
SD-Controlled Data Injection attack (model-dependent),
detailed in Section 3.2. Section 3.3 presents simulation
data that demonstrate the effectiveness of the Passive
System Identification attack when supporting the design
of SD-Controlled Data Injection attacks. These data,
obtained from [12], are used as a reference for the evalua-
tion of the proposed countermeasure.

3.1 Passive system identification attack

The Passive System Identification attack, proposed in [12],
is intended to assess the coefficients of the plant’s trans-
fer function G(z) and the controller’s control function
C(z) of an NCS. To do so, the attack is modeled as an
optimization problem, where the transfer function of the
attacked device — be it a controller or plant — is estimated
by minimizing a specific fitness function. This modeling
is explained in Section 3.1.1. To minimize the mentioned
fitness function, the attack uses the Backtracking Search
Optimization Algorithm (BSA) [22], briefly described in
Section 3.1.2.

3.1.1 Modeling the passive system identification attack as
an optimization problem
If the input i(k) and output o(k) signals of an attacked
device are known, the model of such device can be
assessed by applying the known i(k) in an estimated
model, which must be adjusted until its estimated output
o(k) converges to o(k). In the present attack, the estimated
model of the attacked device is iteratively adjusted by the
BSA, that minimizes the fitness function herein presented,
until the estimated model converges to the actual model
of the real device.

To establish the fitness function, firstly, it must be con-
sidered a generic LTI system, whose transfer function Q(z)
is represented by (1):

_ O(2) _ an?dt + a1V + . a1 +ag
T Iz 24 by2m 4+ bzl + by
(1)

Q(2)
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Table 1 Synthesis of the related attacks
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Attack Method Knowledge about the system? How the knowledge is obtained?
Stuxnet worm [16] Modifications in the Yes Experiments in a real system
Long, etal.[18] Jitter and packet loss None N/A
Farooqui, et al. [4] Data injection None N/A
Smith [11, 21] Data injection Yes Not described
Teixeira [20] Packet loss None N/A
Data injection Yes Not described
Amin [6] Data injection Yes Not described
SD-Controlled [12] Data injection Yes Passive system identification attack
de S4, etal. [17] Data injection @ Yes Active system identification attack

2ln [17], the data injection is not used to cause the disruption or degradation of the plant. The data is injected in the NCS to support the Active System Identification attack

wherein /(z) is the input of the system, O(z) is the output
of the system, n and m are the order of the numerator and
the denominator, respectively, and [a,,a,—1,...a1,ao)
and [by-1,bm—2,...b1,bg] are the coefficients of the
numerator and the denominator, respectively, that are
intended to be found by the Passive System Identifica-
tion attack. Also, it must be considered that i(k) and o(k)
represent the sampled input and output of the system,
respectively, where I(z) = Z[i(k)], O(z) = Z[o(k)],
k is the number of the sample and Z represents the
Z-transform operation.

In this Passive System Identification attack, i(k) and o(k)
are firstly captured by an eavesdropping [23, 24] attack,
during a monitoring period 7. To deal with the eventual
loss of samples, that may not be received by the attacker
during 7, the algorithm holds the value of the last received
sample, according with (2), wherein x(k) can either be i(k)
or o(k):

x(k) = {zgi)— 1)

Then, after acquiring i(k) and o(k), the captured i(k)
is applied to the input of an estimated model, that
is described by a transfer function whose coefficients
[an,j,anfl,j, -+ - A1), 40, bmflyj, l’)mfz_j, cee bl,j’ b(),/'] are the
coordinates of an individual j of the BSA. The application
of i(k) to the input of the estimated model results in an
output signal 0;(k). After obtaining 0;(k), the fitness f; of
the individual j is computed comparing the output o(k) —
captured from the attacked device — with the output 0;(k)
of the estimated model, according with (3):

if the sample & is lost;
otherwise.

()

N
kgo(O(k) —0;(k))?
=% © ) (3)

wherein K is the number of samples that exist during the
monitoring period T. Note that, if the attacker does not
lose any sample of i(k) and o(k) during 7, then minf; = 0
when [an,j, An—1,s - - - A1,j, A0, bmfl_j, bmfzyj, ce. bl,j, bO,j] =

[an,an-1,...a1,a0,bm—_1,bm—_s,... b1,bg], i.e. when the
estimated model converges to the actual model of the
attacked device.

It is possible to establish an analogy between this System
Identification attack and the Known Plaintext cryptan-
alytic attack [25], wherein i(k) and o(k) correspond to
the plaintext and ciphertext, respectively, the form of
the generic transfer function Q(z) corresponds to the
encryption algorithm and the actual coefficients of Q(z)

corresponds to the secret key.

3.1.2 Backtracking search algorithm

In this section, the basic concepts of the BSA are
briefly described, in order to provide a clear compre-
hension regarding the parameters of the algorithm that
are adjusted for the attack. The BSA is a bio-inspired
metaheuristic that searches for solutions of optimization
problems using the information obtained by past genera-
tions — or iterations. According to [22], its search process
is metaphorically analogous to the behavior of a social
group of animals that, at random intervals returns to
hunting areas previously visited for food foraging. The
general, evolutionary like, structure of the BSA is shown
in Algorithm 1.

Algorithm 1: BSA
begin
Initialization;
repeat
Selection-I;
Generate new population
Mutation;
Crossover;

end
Selection-II;

until Stopping Condition;

end
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At the Initialization stage, the algorithm generates and
evaluates the initial population Py and sets the historical
population Pp;. The latter constitutes the BSA’s memory
that, in the Selection-I stage, is updated with historical
coordinates visited by the individuals.

During the first selection stage (Selection-I), the algo-
rithm randomly determines, based on a uniform distribu-
tion U, whether the current population P should be kept
as the new historical population, and thus replace Py;s
(ie. ifa < b | a,b ~ U(0,1), then Py; = P). Sub-
sequently, at every iteration, it shuffles the individuals of
Prist (having Py;s been replaced or not).

The mutation operator creates P,,,4, which is the pre-
liminary version of the new population Pyey). It does so
according to (4):

Pod =P +n-T'(Ppigt —P), (4)

wherein 7 is empirically adjusted through simulations and
I' ~ N(0, 1), with N being a normal standard distribution.
Thus, P,,04 is the result of the movement of P’s individu-
als in the directions established by vector (Py;; — P) and
n controls the displacements’ amplitude.

In order to create the final version of Py.,, the crossover
operator randomly combines, also following a uniform
distribution, individuals from P,,,,; and others from P.

At the second selection stage (Selection-II), the algo-
rithm firstly evaluates the individuals of Py, using the
fitness function f; (3). After that, individuals of P (i.e.
individuals before applying the mutation and crossover
operators) are replaced by individuals of Py, (i.e. indi-
viduals obtained after mutation and crossover) with bet-
ter fitness. Hence, P includes only new individuals that
evolved. While the stopping condition has not yet been
reached, the algorithm iterates. Otherwise, it returns the
best solution found.

Note that the algorithm has two parameters that are
empirically adjusted: the size |P| of its population P; and
n, that establishes the amplitude of the movements of the
individuals of P. The parameter n must be adjusted to
assign to the algorithm good exploration and exploitation
capabilities. With these parameters adjusted, the BSA is
used to search for the global minimum of the fitness func-
tion described in Section 3.1.1 and, therefore, discover the
model of the attacked device.

3.2 SD-Controlled data injection attack
The SD-Controlled Data Injection attack is a model-
dependent attack, which the purpose is to reduce the
MTBF of the plant and/or reduce the efficiency of the
physical process that it performs, by inserting false data in
the control loop of the NCS. At the same time, this attack
is designed to be physically covert [12].

One way to degrade a physical service is through the
induction of an overshoot during the transient response
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of a plant. The overshoots, or peaks occurred when the
system exceeds the targeted value during the transient
response, can cause stress and possibly damage physical
systems such as mechanical, chemical and electromechan-
ical systems [26, 27]. Additionally, once they occur in a
short period, the overshoots are difficult to be noticed by
a human observer. Another way to degrade the service of a
plant is causing a constant steady state error on it, i.e. pro-
ducing a constant error when ¢ — oo. A low proportion
steady state error, besides being difficult to be perceived
by a human observer, may reduce the efficiency of the
physical process or, occasionally, stress and damage the
system in the mid/long term.

In the SD-Controlled Data Injection attack, to achieve
either of the two mentioned effects, i.e. an overshoot
or a constant steady state error, the attacker interfere
in the NCS’s communication process by injecting false
data into the system in a controlled way. To do so, the
attacker act as a MitM that executes an attack function
M(z), as presented in Fig. 3, wherein U'(z) = M(z)U(z),
U(z) = Zlu(k)] and U'(z) = Z[u/'(k)]. The function
M(z) is designed based on the models of the plant and
the controller, both obtained through the Passive System
Identification attack, described in Section 3.1. The effec-
tiveness of the attack, therefore, depends on the design of
M(z), which in turn depends on the accuracy of the Sys-
tem Identification attack. It is worth mentioning that, in
Fig. 3, although the MitM is placed in the forward stream,
it is also possible to perform an attack by interfering in the
feedback stream of the NCS.

3.3 Performance of the covert attack for service
degradation

This section presents the results of the joint operation
of the Passive System Identification attack and the SD-
Controlled Data Injection attack. These results, obtained
from [12], demonstrate the effectiveness of the Passive
System Identification attack when accomplishing its task
in an NCS without the countermeasure proposed in this
paper.

The attacked NCS has the same architecture of the
NCS shown in Fig. 1. It consists of a Proportional-Integral
(PI) controller that controls the rotational speed of a DC
motor. The PI control function Cj(z) and the DC motor
transfer function G(z) are represented by (5) and (6),
respectively:

€1,1Z2 — €21

Cie) = o (5)
g1z+ 2

G(z) = 6

(2) o ——— (6)

wherein ¢;; = 0,1701, ¢,; = —0,1673, g1 = 0,3379,

g =0,2793, g3 = —1,5462 and g4 = 0,5646. The sample
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rate of the system is 50 samples/s and the set point r(k) is
a unitary step function.

It is considered that the structure of the Egs. (5) and (6)
are previously known by the attacker given that, as a
premise, he/she knows that the target is an NCS that con-
trols a DC motor using a PI controller. Therefore, the goal
of the Passive System Identification attack is to discover
1,82, 83, 84> 1,1 and ¢ 1.

Each time that the DC motor is turned on, the forward
and the feedback streams are captured by the attacker
during a period T = 2s. All initial conditions are consid-
ered 0, by the time that the motor is turned on. To assess
[21,22, g3, g4], the attacker considers the forward stream
as the input and the feedback stream as the output of the
estimated plant. In the opposite way, to assess [c1,1,¢2,1],
the attacker considers the feedback stream as the input
and the forward stream as the output of the estimated
controller.

According to [12], in these simulations, the BSA pop-
ulation has 100 individuals and n = 1. To assess the
coefficients of the controller [ cy1,1, ¢2,1], the algorithm was
executed for 600 iterations. To assess the coefficients
of the plant [gi, g, g3,g4], the number of iterations was
increased to 800, due to the higher number of dimen-
sions of the search space in this case. The limits of each
dimension of the search space are [ —10, 10].

In [12], the authors also demonstrate the robustness of
the Passive System Identification attack in the face of sam-
ple loss. To evaluate such robustness, they considered four
different rates [ of sample loss: 0%, 5%, 10% and 20%. For
each rate of sample loss, 100 different simulations were
executed.

Figure 4 shows the mean estimated values of g1, g2, g3,
g4, c1,1 and ¢p1, considering the four mentioned rates of
sample loss. All mean estimated values are represented
with a Confidence Interval (CI) of 95%. The actual val-
ues of the coefficients of C;(z) and G(z) are also depicted
in Fig. 4. Additionally, the statistics (mean and standard

deviation) of the estimated coefficients are presented
in Table 2.

Regarding to the coefficients of G(z), Fig. 4 shows that
the difference between the mean and the actual values of
g1, £2, g3 and gy tends to raise with the increase of sam-
ple loss. It is also possible to note that the accuracy of
the coefficients of Cj(z) is better than the accuracy of the
coefficients of G(z), for all rates of sample loss. The means
of ¢1,1 and ¢y are closer to their actual values, with a
smaller CI. In fact, the optimization process is more effec-
tive when computing the coefficients of C;(z) due to its
smaller search space (which that has only two dimensions
instead of the four dimensions of the G(z) problem). In
Fig. 4, it is possible to verify that, in all cases, the Cls
tend to grow with the increase of the sample loss. The
same thing occurs with the standard deviations shown in
Table 2.

Despite the relative loss of accuracy of the Passive Sys-
tem Identification attack due to the increase of sample
loss, such inaccuracy is not expressive even in the worst
case (i.e. when [ = 20%). This behavior indicates the
robustness of the Passive System Identification attack in
the face of the loss of samples.

After estimating the models of the attacked plant and
its respective control function, the next step is to design
the data injection attack. In this sense, the authors of [12]
designed an SD-Controlled Data Injection attack aiming
to cause an overshoot of 50% in the rotational speed of the
motor. As shown in Fig. 3, this SD-Controlled Data Injec-
tion attack is performed by a MitM in the forward stream.
The attack was simulated in MATLAB, aiming to eval-
uate its accuracy when supported by the Passive System
Identification attack.

The attack function executed by the MitM is M(z) =
Ko. Performing a root locus analysis considering the
obtained models, the attacker adjusts X, to make the
system underdamped, with a peak of rotational speed
50% higher than its steady state speed. The values of
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K, were adjusted considering the mean estimated coef-
ficients shown in Table 2. Table 3 shows the values
of Ko, estimated considering different rates of sample
loss during the Passive System Identification attack, as
well as the overshoots obtained with the respective C,

in the real model. In Fig.

5 it is possible to com-

pare the response of the system without attack, with the
response of the system with an attack aiming the over-
shoot of 50%. The curves referred as estimated attack,

represent the results predicted by the attacker when the
designed attack function M(z) is applied to the esti-
mated model — i.e. the model discovered by the attacker
through to the Passive System Identification attack. On
the other hand, the curves referred as actual attack rep-
resent the response of the actual system in the face
of the same attack function M(z). In other words, the
curve estimated attack is the result achieved in a first
moment, during the design stage of the attack, and the

Table 2 Statistics of the results obtained with different rates of sample loss [12]

Loss of Mean Standard deviation

samples g 92 93 94 a1 1 g1 92 g3 94 a1 1

0% 032793 029652  -1.54121 055983  0.16991 -0.16712 0.03097  0.04288 0.00986 0.00944  0.00167 0.00178
5% 031835 029689  -1.54251 0.56085 0.16997  -0.16719 007572 0.11523 003322 003194 0.00287  0.00287
10% 030473 030461 -1.54110 055925 0.16999  -0.16724 0.08781  0.13483 004076  0.03922  0.00397  0.00399
20% 026963 033352 -1.53119 054916 016989  -0.16716 0.14120 022378 008596 008313 0.00596  0.00598
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Table 3 Values of IC, and overshoots obtained with the attacks [12]

Sample loss in the passive system
identification attack

0% 5% 10% 20%
Co 40451 40745 4.0828 3.796
Overshoot in
the real model 48.90% 49.43% 49.57% 45.94%

curve actual attack is the result obtained in a second
moment, when the designed attack is launched over
the actual system. It is noteworthy that the attack to
the actual model — represented by the actual attack
curve — presents, in the time domain, a response quite
similar to the attack estimated with the model obtained by
the Passive System Identification attack — represented by
the estimated attack curve. This can be verified not only
in the case where the system is identified with 0% of sam-
ple loss, but also in the worst considered case, i.e. with 20%
of sample loss. It is worth mentioning that all responses
presented in Fig. 5 converge to the setpoint (1 rad/s).
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Fig. 5 Response of the plant to SD-Controlled Data Injection attacks
designed to cause an overshoot of 50% in the rotational speed of the
motor [12]. a Attack based on the data obtained without sample loss.
b Attack based on the data obtained with 20% of sample loss
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According to Table 3, it is possible to state that the
SD-Controlled Data Injection attack, when supported by
the Passive System Identification attack, is capable to
accurately modify the physical response of the system,
considering all evaluated rates of sample loss. In the worst
case, i.e. with 20% of sample loss, it caused an over-
shoot of 45.94% (quite close to the desired 50%). Such
accuracy allows the attacker to keep his offensive under
control, leading the system to a behavior that is predefined
as physically covert and capable to degrade the service
performed by the plant under attack. These simulations
provide conclusive data regarding the effectiveness of the
Passive System Identification attack when it is used as a
tool to support the design of a covert/model-dependent
attack.

It is noteworthy that the manipulation of the rotational
speed of a DC motor is used only to exemplify a physically
covert interference in an NCS. This example is chosen due
to the human difficulties to accurately estimate the rota-
tion speed of objects under certain conditions. It is known,
for instance, that under some conditions the apparent
rotation speed is affected by the stimulus configuration
(defined by the shape, size, and other characteristics of
the rotating object) [28, 29]. Intuitively, it can be consid-
ered that, under those conditions, the perception of 50%
of overshoot in the rotation speed may also be difficult
to be perceived, especially because of its short duration.
Although the authors of [12] use this example in their
paper, it is worth mentioning that the concept of a physi-
cally covert attack can be extended to other interferences
where, as defined in [12], the physical effects cannot be
easily noticed or identified by a human observer, or can
eventually be understood as a consequence of another
cause, other than an attack.

4 Mitigation using switching controllers

As discussed in Section 1, one possible strategy to mit-
igate the Passive System Identification attack is to build
the NCS with specific transfer functions that are harder
to be identified. Therefore, it is necessary to analyze the
two transfer functions C(z) and G(z), shown in Fig. 1, to
verify what can be done to hinder the identification of the
NCS. Regarding the plant, it is not desired or even feasible
to modify its transfer function G(z) just to make it harder
to be identified. This follows from the simple fact that the
plant’s transfer function is a consequence of the physical
structure of the controlled system. In other words, modify
G(z) means to modify the physical process being con-
trolled, which is not convenient. However, it is reasonable
to think about the design of controllers that are capable to
meet, simultaneously, two objectives:

Objective I - Comply with the control requirements of
the plant. In general, the primary
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requirement is to preserve the stability of
the system. However, additional
requirements — such as low settling time,
low overshoot, etc. — may be considered
depending on the process being controlled.
Hinder the identification of the controller,
so that the model obtained by the attacker
is imprecise or ambiguous, in such a way
that the attacker hesitates to launch covert
or model-dependent attacks against the
NCS.

Objective II -

Considering these two objectives, this work proposes
the use of randomly switching controllers to mitigate Pas-
sive System Identification Attacks and, thus, prevent the
design of covert/model-dependent attacks. Note that, the
use of a switching controller does not avoid the identi-
fication of the plant’s transfer function G(z) by the Pas-
sive System Identification attack described in Section 3.1.
Regardless of the controller switchings, the plant’s trans-
fer function is still an LTT system that can be identified by
the mentioned System Identification attack, based on the
analysis of the plant’s input and output signals.

A Switching Controller, shown in Fig. 6, is composed by
a set of N control functions C;(z),i € Z = {1,...,N}, that
are switched by a switching rule S, to perform the con-
trol of a plant G(z). If all control functions C;(z) and the
plant’s transfer function G(z) are linear, as the NCS herein
discussed, then the system is referred as a switched linear
system (SLS). For the sake of clarity, but without loss of
generality, in the present work, the switching controller is
represented and discussed with only two control functions
Ci(z) and Cy(z) —i.e. N = 2.

In a conventional switching controller [30-33], whose
sole objective is to control the plant, the switching rule S,
in general, orchestrates the switching events based on the
plant and/or network behaviors. However, in the solution
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proposed in this work, the switching rule is not driven by
the plant and/or network behaviors.

To achieve both Objectives I and II, the switching rule
herein proposed operates as the Markov chain shown in
Fig. 7. In this scheme, the control functions are switched
at random intervals, in accordance with the probabilities
p11(D), p12()). p21(l) and p12(J), wherein [ is the number
of sampling intervals occurred since the last switch. The
probabilities, p12(/) and p1(!) are taken from the prob-
ability density function (PDF) shown in Fig. 8, wherein
a is the minimum number of sampling intervals that the
system have to remain in the same state and b is the max-
imum number of sampling intervals that the system can
remain in the same state. Note that p1; (/) = 1 —p12()) and
pud) =1-pu.

The reason to switch at random intervals is that, accord-
ing to [34], if the switching times are known, the iden-
tification of the SLS is straightforward. However, when
the switching times are not available, the identification
of the SLS turns into a nontrivial task. Moreover, even
if the attacker obtain the plant’s transfer function G(z)
and — somehow — discovers the control functions C;(z),
the random switching rule still hinders the covert/model-
dependent attack described in Section 3.2. This follows
from the simple fact that it is more difficult to synchronize
the interference caused by the covert/model-dependent
attacks with the controller states, which are switched at
random intervals.

However, despite the benefits that the switchings can
bring from the point of view of a countermeasure, it can
affect the stability of the NCS. Even if all subsystems of an
SLS are stable, there are situations in which the switching
events can make the SLS unstable. According to [7, 35], to
be stable under arbitrary and unrestricted switchings, the
SLS must meet two conditions:

1. All its subsystems must be asymptotically stable; and

Controller

Cy(z) l/ﬂ

forward stream

CQ(Z)

"""""" > Plant
/{>\ g Physical Z
2| process | Z[
2| o «
Network (2
y'(k) y(k)

Fig. 6 NCS with a switching controller
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Fig. 7 Markov chain switching rule
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Pa(1)

Pa(l)

2. There must exist a common Lyapunov function for
all of its subsystems.

Note that, in the case of the NCS shown in Fig. 6, each
subsystem is constituted by the plant transfer function
G(z) arranged in a closed loop with one control func-
tion Cj(z). So, to make the NCS stable under arbitrary
and unrestricted switching, all control functions C;(z),
i € 7 = {1,2}, have to be designed in order to meet the
two aforementioned conditions.

Another valid strategy to obtain stability in an SLS with
stable subsystems is by restricting the switching events.
This can be done, for example, by establishing a mini-
mum dwell time — i.e. the time between two consecutive
switches. In an SLS, the instability generated when switch-
ing among two — or more — stable subsystems is caused
by the failure to absorb the energy increase, caused by
the switchings [35]. Intuitively, it is reasonable to think
that if the SLS stays at stable subsystems long enough —
using a slow switching rule — it becomes able to avoid the
energy increase caused by the switchings, maintaining the
desired stability. As proved in [36], it is always possible to
preserve the stability of an SLS when all the subsystems
are stable and the dwell time is sufficiently large. Actually,
it is not critical if the SLS occasionally have a smaller

dwell time, provided this does not occur too frequently.
As demonstrated in [37], if all the subsystems are expo-
nentially stable, then the SLS remains exponentially stable
provided that the average dwell time is sufficiently large.
In [38], this concept of average dwell-time is extended to
the discrete-time switched systems — which is the case of
an NCS endowed with the proposed countermeasure.

In the present work, instead of designing Cj(z) and
Ca(z) to make the SLS stable under arbitrary and unre-
stricted switchings — i.e. meeting both conditions 1 and 2
— the restricted switching strategy is used. Thus, Cj (z) and
C(z) are firstly designed based on the root-locus analysis,
in order to make each subsystem stable. Then, the overall
stability of the SLS is obtained by adjusting the parame-
ters a and b of the PDF shown in Fig. 8, aiming an average
dwell-time that makes the NCS stable.

Besides being adjusted for stability, parameters a and b
also have to be adjusted to hinder the system identifica-
tion attack. So, concerning Objective I, specifically for the
sake of stability,  and b are increased as much as possi-
ble to ensure the minimum average dwell-time required
for stability. On the other hand, concerning Objective
II, a and b are adjusted to make the Passive System
Identification Attack as much imprecise/ambiguous as
possible, which not necessarily occur with high dwell

p(l)

A

1/(b-a) }-----------

Fig. 8 PDF of p1; and py;

v
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times. In this sense, in this work, @ and b are empirically
adjusted in order to satisfy the two potentially conflicting
objectives.

5 Results

As mentioned in Section 4, the design of the switch-
ing controller must meet simultaneously two objectives:
hinder the identification process; and comply with the
plant’s control requirements. The results concerning these
two objectives are presented in Sections 5.1 and 5.2,
respectively, in order to demonstrate the feasibility of the
solution from both perspectives. Additionally, Section 5.3
demonstrates the impact caused in the SD-Controlled
Data Injection attack, described in Section 3.2, when the
Passive System Identification Attack is mitigated by the
proposed countermeasure.

In Sections 5.1 and 5.2, the results obtained with the
proposed countermeasure are compared with the results
obtained in an NCS without the proposed countermea-
sure — i.e. endowed with a non-switching controller. For
this comparison, the NCS specified in Section 3.3 (with a
non-switching controller) is used as reference.

The NCS with the proposed countermeasure has the
same architecture shown in Fig. 6 and controls a DC
motor whose transfer function is also defined by (6) — i.e.
it controls the same plant that is controlled by the NCS
with a non-switching controller described in Section 3.3.
The sample rate of this system is also 50 samples/s and
the set point r(k) is a unitary step function. The switch-
ing controller has two control functions: C;(z), that is the
same control function (5) of the non-switching controller;
and Cy(z) defined by (7),

€1,2Z + €22
-1

wherein c¢;2 = 0.001 and ¢z = 0.0002. So, the NCS
with the switching controller is an SLS with two subsys-
tems. The control functions C (z) and C,(z) are designed
to make each subsystem stable — when separately analyzed
— and are randomly switched based on the switching rule
defined by the Markov chain and the PDF shown in Figs. 7
and 8, respectively. The parameters a and b of the PDF
were empirically adjusted to a = 40 and b = 60, in order
to meet Objectives I and II defined in Section 4. Regard-
ing Objective I, it is worth mentioning that 4 and b were
empirically adjusted aiming, primarily, the global stability
of the SLS. However, the settling time and the overshoot
of the plant are also evaluated in Section 5.2.

Ca(z) = 7)

5.1 Mitigating the passive system identification attack

This section presents the results obtained by the Passive
System Identification attack, when attacking both switch-
ing and non-switching controllers. For each controller,
100 attack simulations were performed. The parameters
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of the BSA are the same as those defined in Section 3.3,
and the forward and feedback streams are also captured
by the attacker during a period T = 2s (100 samples).
To evaluate the proposed countermeasure, we consid-
ered the scenario where the attacker obtained the best
performance in Section 3.3 — i.e. without packet loss.

The coefficients estimated by all attack simulations
(100 for each controller) are presented in Fig. 9. Recall
that the non-switching controller just have one control
function Cj(z), while the switching controller has two
control functions Cj(z) and Cy(z). Note that the actual
values of the coefficients [c1,1,¢2,1] and [c¢1,2,¢c22] of the
two control functions C;(z) and Cy(z), respectively, are
also depicted in Fig. 9. By observing Fig. 9a and b, it
is possible to state that the estimated coefficients of the
non-switching controller are precise and accurate. In this
case, the estimated coefficients are concentrated close
to the actual values of ¢;,; and cy;. This concentration
indicates that, with the non-switching controller, the
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Fig. 9 Coefficients estimated by the passive system identification
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Passive System Identification attack provides the infor-
mation and the confidence that the attacker needs to
design a covert/model-dependent attack — such as the
SD-Controlled Data Injection attack demonstrated in
Section 3.3. On the other hand, Fig. 9 shows that the
use of the switching controller causes the dispersion of
the estimated coefficients, reducing the precision and the
accuracy of the Passive System Identification attack. With
the switchings, the set of estimated values are spread and
does not accurately indicate any of the coefficients of
Ci(z) and Cy(2). It is worth mentioning that this spreading
has a dissuasive effect. It increases the uncertainty of the
attacker regarding the model of the attacked controller, in
such way that the attacker may hesitate to proceed with
his intention of a covert/model-dependent attack.

The impact of the switching controller in the attack
performance can also be verified through the analysis
of the global minimum values obtained for the fitness
function (3). With the switching controller, the global
minimum values of all attack simulations are between
264 x 107% and 853 x 107 (the mean is 7.42 x
10~%, and the standard deviation is 1.70 x 10~%). On
the other hand, with the non-switching controller, all
global minimum values are between 1.70 x 10~% and
1.44 x 107% (the mean is 1.84 x 10~%, and the stan-
dard deviation is 2.70 x 107%7). Recall that, as discussed in
Section 3.1.1, without sample loss, the minimum value of
(3) is min f; = 0 when the attacked device is perfectly iden-
tified. So, the higher order of the global minimum values
obtained with the switching controller also demonstrates
the effectiveness of the proposed countermeasure. From
the attacker point of view, these higher global minimum
values may indicate that the Passive System Identifica-
tion attack was not effective in obtaining the model of the
attacked device. In this sense, the attacker must hesitate
to launch covert/model-dependent attacks based on the
information gathered by the Passive System Identification
attack.

Another way to evaluate the impact of the proposed
countermeasure in the Passive System Identification
attack is through the zero-pole maps shown in Fig. 10.
Figure 10a shows the zeros estimated by the simulations
using the non-switching controller. Figure 10b, in turn,
shows the zeros estimated by the simulations using the
switching controller. Note that, in the simulations with the
non-switching controller, the estimated zeros accurately
meet the actual zero of C;(z). On the other hand, Fig. 10b
shows that when the proposed countermeasure is used,
the estimated zeros are spread and do not concur for the
actual zeros of C;(z) and Cy(z) — i.e. the control functions
of the switching controller.

It must be considered the possibility that the attacker,
after some time, detects that the controller is changing
its behavior over the time like a switching controller.
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In this case, it is reasonable to think that the attacker
would try to estimate the control functions based on
smaller monitoring periods 7, to avoid measurements
containing switching events. Considering this hypothesis,
the performance of the Passive System Identification
attack is evaluated using the following monitoring periods
T: 0.2s, 0.4s, 0.6s, 0.8s, 1.0s and 1.2s. Note that the maxi-
mum 7 in which the attacker can measure a signal without
switchings is T, = 0.02b = 1.2s. Therefore, to evaluate
this tactic (of reducing T'), the Passive System Identifica-
tion attack is performed firstly during the execution of
Ci(2) and, after that, during the execution of Cy(z). For
the identification of Cj(z) all monitoring periods start at
t = 0s. For the identification of Cy(z) all monitoring peri-
ods start at the first switching event (when Cy(2) starts to
be executed).

For each control function and each monitoring period,
33 attack simulations were executed. Figure 11 shows the



de Sa et al. Journal of Internet Services and Applications (2018) 9:2

Page 14 of 19

Pole-Zero Map

—'m
T 1 T T T T T T T T T
Q
3
1
3
L o0 0000 CufED O O X
< O Estimated zeros
2 | x Actual pole of G2
% 1 O Actual zerg of C2| i
g 4 85 3 25 2 45 -4 05 0 05 1
- Real Axis (seconds™)
d —.; Pole-Zero Map
S 1 T T T T T T T
2
o
3
1
2
2 ofo o
< O Estimated zeros
2 X Actual pole of C2
£ . O Agtual zerg of C2
g -30 -20 -10 0 10 20 30 40 50
- Real Axis (seconds ™)
f *’; Pole-Zero Map
T 1
2
<]
3
o
KA
g oto o ABDOE AD® O o
< O Estimated zeros
% x Actual pole of C2
£ [ O Actual zerp of G2 , ; ,
-1
g -15 -10 5 0 5 10

Real Axis (seconds")

Pole-Zero Map

E

S 1

s

8

Q

2

.g ok o o O O UENTED ¢
< | O Estimated zeros

2 | x Actual pole of G2

£ [0 Actualzeroofca] |, . . ;

g 25 20 15 10 5 0 5

Real Axis (seconds")

J ': Pole-Zero Map

B 1 . . . . . . .

2
S
3
8
2
g oo 0O @ CONENID O QDD o
< O Esfimated zeros
% X Actual pole of C2
£ . . . i O Actual zerg of C2
E 8 -6 -4 2 0 2 4 6 8

Real Axis (seconds™")

Pole-Zero Map

—'ln

e

s

8

3

2

Lot o 00 0O @ENED OO 4
< [0 Estimated zeros

%‘ x Actual pole of C2

£, O Actual zero of C2) :

g 20 -15 -10 5 0 5 10

Real Axis (seconds")

Fig. 11 Zeros and poles estimated by the Passive System Identification attack for smaller monitoring periods T (without a switching event during 7).
a ldentifying C; with T = 0.2s starting at t = 0. b Identifying C2 with T = 0.2s starting at the first switching event. ¢ Identifying C; with T = 0.4s
starting at t = 0. d Identifying C; with T = 0.4s starting at the first switching event. e Identifying C; with T = 0.6s starting at t = 0. f Identifying C,
with T = 0.6s starting at the first switching event. g Identifying C; with T = 0.8s starting at t = 0. h Identifying C; with T = 0.8s starting at the first
switching event. i Identifying C; with T = 1.0s starting at t = 0. j Identifying C; with T = 1.0s starting at the first switching event. k Identifying C;

—; Pole-Zero Map
8 1 T T T T T T T T T
2
Q
8
3
2
2 o}
< | O Estimated zeros
2 | x Actual pole of C1
%, 1 O Actual zerg of C1
g o o1 02 03 04 05 06 07 08 09 1
- Real Axis (seconds™')
o Pole-Zero Map

C 8, ——
2
Q
8
3
2
2 ot
< O Estimated zeros
z X Actual pole of C1
£, O Actual zero of C1
g o o1 02 03 04 05 06 07 08 09 1
- Real Axis (seconds™")

e ’: Pole-Zero Map
8 1
2
s
3
@
2
2 oL
< O Estimated zeros
g x Actual pole of C1
£, O Actual zerp of C1 , , , , , ,
€ o o1 02 03 04 05 06 07 08 09 1
- Real Axis (seconds™)

g *: Pole-Zero Map
8 1
2
s
3
@
2
2 o}
< O Estimated zeros
2 | x Actual pole of C1
£ [0 Acalzerp of C1 . . . . . .
€ o o1 02 03 04 05 06 07 08 09 1
- Real Axis (seconds™")

1 ’: Pole-Zero Map
8 1 T T T T T T T T T
2
s
3
Q
2
2ot
< O Estimated zeros
z X Actual pole of C1
£, . . . . . . |0 Actual zero of C1
€ o o1 02 03 04 05 06 07 08 09 1
- Real Axis (seconds™")

k ': Pole-Zero Map
T 1
2
s
3
3
)
2o}
< O Estimated zeros
g x Actual pole of C1
S O Actual zerp of C1
g 0 0.1 0.2 03 04 05 06 07 08 09 1
- Real Axis (seconds™)

with T = 1.2s starting at t = 0.l ldentifying C; with T = 1.2s starting at the first switching event

estimated zeros of Cj(z) and Cy(z) considering each of
the mentioned monitoring periods T. It is possible to
verify that, for these monitoring periods, the estimated
zeros of Cj(z) are quite close to the actual zero. However,
although C;(z) was satisfactorily identified with small 7,
Fig. 11 shows that, for all 7, the estimated zeros of Cy(z)
are spread and do not accurately meet the actual zero
of Cy(z). These results indicate that small monitoring

periods T may not be enough to identify some control
functions, such as happened with Cy(z). In this case, the
switching controller arises as a good strategy to limit
the available monitoring period, which causes difficul-
ties for this metaheuristic-based Passive System Identi-
fication attack. Additionally, it is worth mentioning that
even if the attacker somehow identifies all control func-
tions C;(z), the random switching rule still mitigates the
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launch of a subsequent covert/model-dependent attack.
As discussed in Section 4, this follows from the fact that
it is more difficult to synchronize the interference caused
by a covert/model-dependent attack with the controller
states, which are switched at random intervals. Moreover,
it is not trivial to find a single M(z) capable to produce
the intended controlled behavior for all C;(z) — in case
the attacker choose this tactic to overcome the need to
synchronize the covert/model-based attack.

The spreading of the estimated zeros in Fig. 10b, the
inaccuracy of the estimated coefficients shown in Fig. 9,
and the higher global minimum values found by the
BSA demonstrate the effectiveness of the switching con-
trollers in mitigating the Passive System Identification
attack. With the proposed countermeasure, it is possi-
ble to state that the model obtained by the attacker is
imprecise/ambiguous in such a way that the attacker may
hesitate to launch a subsequent covert/model-dependent
attack. Therefore, Objective II defined in Section 4 is met.

If an attacker, aiming to cause an overshoot of 50% in
y(k) (for example), implements an attack function M(z) in
the forward stream of an NCS, as shown in Fig. 3, then
y(k) is defined by (8):

C(2)M(2)G(2)
1+ C(a)M(2)G(2)

yk) =271 [ R(z)} . (8)

Similarly, if the attacker implements M(z) in the feed-

back stream, then y(k) is defined by (9):

C(2)G(2)
1+ C(2)M(2)G(2)

yky =27 [ R(z)} : 9)
Note that in both cases, in the presence of an attack,
the dynamics of y(k) rely on C(z), G(z) and M(z), consid-
ering that R(z) = Z [u(k)] is a step function. Therefore,
if the attacker aims to cause an overshoot of 50% in y(k),
the design of M(z) will require the knowledge of C(z) and
G(2). The results shown in this section indicate that, with
the proposed countermeasure, the attacker cannot accu-
rately estimate the control functions of the NCS using the
Passive System Identification attack. Therefore, even if the
attacker is still able to identify the plant model (which is
not mitigated by this countermeasure), he/she will not be
able to design M(z) to cause the 50% overshoot based only
on the model of the plant, regardless of whether M(z) is
implemented in the forward or the feedback stream.

5.2 Complying the control requirements

In this section, the performance of the proposed coun-
termeasure is analyzed from the control perspective. The
aim of the simulations herein presented is to identify
the possible impacts that the countermeasure may pro-
duce in the behavior of the plant. This analysis encom-
passes the following control aspects: stability; overshoot;
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and settling time. Considering these aspects, the per-
formance of the switching controller is compared with
the performance of the non-switching controller. Given
the stochastic nature of the proposed countermeasure,
which randomly switches among two control functions,
the mentioned aspects are evaluated through a set of
100,000 simulations.

Figure 12 shows the responses of the plant, in the time
domain, with and without the proposed countermeasure.
The responses obtained with the proposed countermea-
sure — i.e. using the switching controller — are represented
by the highlighted area. The bounds of this area are drawn
based on the maximum and minimum values of the out-
put y(¢) of the plant, considering all 100,000 simulations.
In other words, when using the proposed countermea-
sure, all output signals y(t) provided by the simulations
are inside this area. The deterministic response of the
plant without this countermeasure — i.e. when using the
non-switching controller — is represented by the red line
depicted in Fig. 12. Note that, for 0 < ¢ < 0.8s the
responses using the switching controller are the same as
the response using the non-switching controller. This is
caused by the minimum number of sampling intervals that
the system has to remain in the same state, which is set to
a = 40 samples (or 0.8s, in the time domain).

Based on Fig. 12, considering all 100,000 simulations,
it is possible to verify that the NCS with the proposed
countermeasure is stable and the output of the plant does
not present a stationary error — it always converges to
the set point of 1 rad/s. In these aspects, from the con-
trol perspective, the proposed countermeasure presents
the same performance as the non-switching controller.
Also, the highlighted area indicates that the overshoots
obtained with the countermeasure are not expressive, not
exceeding 2.93% of the set point.
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Fig. 12 Response of the plant in the time domain
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However, due to the successive switchings, it is possible
to verify in Fig. 12 that the settling time obtained with the
proposed countermeasure is higher than the settling time
obtained with the non-switching controller. With the non-
switching controller, the deterministic settling time of the
plant is 2.4s. On the other hand, with the switching con-
troller, the settling time £, of the plant is stochastic and
depends on the random sequence of dwell times occurred
before achieving ¢;. The settling times of all 100,000 sim-
ulations using the switching controller are represented in
the histogram shown in Fig. 13. The minimum and max-
imum settling times are 2.88s and 6.42s, respectively, and
the mean is 4.2827s + 0.0146s, with a confidence inter-
val of 95%. It indicates that, regarding the settling time,
the proposed countermeasure is less efficient than the
non-switching controller.

It is worth mentioning that Fig. 12 exemplifies the
behavior of the proposed countermeasure and compare
its performance with the performance of an NCS with a
non-switching controller. From this figure, it is possible
to observe a behavioral profile that allows the evalua-
tion of characteristics such as overshoot, settling time
and stability. Regarding the latter, the stability of systems
based on the average dwell time technique can be veri-
fied by the theory proposed in [38], which demonstrates
the feasibility of the proposed countermeasure in terms of
stability.

Note in Fig. 12 that the random switching rule adds
to the system a variable (however, controlled and sta-
ble) behavior, which could reduce the ability of a human
observer to detect slight manipulations caused by a phys-
ically covert attack. However, it is noteworthy that when
an attacker designs a physically covert attack, as a premise,
he/she does not aim to explore or manipulate physical
behaviors that are easy to be noticed by a human observer.

300
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Fig. 13 Histogram of the settling time when using the proposed
countermeasure

Page 16 of 19

Instead of this, the attacker would manipulate physical
behaviors that are not accurately perceived by a human
observer. In this case, it is reasonable to consider that the
variations caused by the switching controller will not sig-
nificantly contribute for the poor perception of malicious
and covert interferences that would naturally not be per-
ceived by a human observer (even when a non-switching
controller is used).

From the control perspective, the performance of the
proposed countermeasure is satisfactory and, with the
results presented in Section 5.1, indicates the feasibility
of meeting both Objectives I and II, simultaneously. In
the simulations of this section, the control provided by
the switching controller presents a performance similar to
the performance of the non-switching controller. The pri-
mary requirement of Objective I — i.e. stability — is met
and the overshoots caused by the countermeasure, with
the specified configurations, are not expressive. However,
the simulations indicate an increase of the settling time of
the plant, which may not be an issue, but have to be ana-
lyzed in the face of the specific process being controlled.
In this sense, the results denote the existence of a tradeoff
between hindering the identification attack and increasing
the settling time of the system, which must be taken into
account when deciding for using this countermeasure.

5.3 Impactin the controlled data injection attack
Consider that the attacker was not dissuaded by the uncer-
tainties caused by the proposed countermeasure in the
identification of the controller. Doing so, the aim of this
section is to evaluate the impact of the proposed counter-
measure in the design of an SD-Controlled Data injection
attack.

The SD-Controlled Data Injection attack simulated in
this section also aims to cause an overshoot of 50% in
the rotational speed of the DC motor defined by (6),
such as the attack described in Section 3.3. According to
Section 3.2, to perform an SD-Controlled Data Injection
attack, the attack function M(z) must be designed based
on the models of the plant and its controller.

As discussed in Section 4, the identification of the
plant’s transfer function G(z) is not impacted by the use
of the switching controller. So, the same G(z) estimated
in Section 3.3 (with a non-switching controller) is used in
this section to design M(z). Specifically, the coefficients
used for G(z) are the mean estimated coefficients shown
in Table 2 for 0% of sample loss (which is the most accu-
rate estimated model of G(z)). Regarding the model of
the controller, as described in [12], M(z) is designed con-
sidering the mean of the coefficients estimated for the
switching controller. Then, performing a root locus anal-
ysis, the attacker designs the attack function (10), to make
the system underdamped with a peak of rotational speed
50% higher than its steady state speed.
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M(z) = 1.2815 (10)

In Fig. 14, it is possible to compare the response that the
attacker expects to obtain (referred as Expected response)
with the responses that (10) actually produces (referred
as Actual responses) when implemented in the real sys-
tem. The Expected response represents what the attacker
would obtain by simulating (10) in the forward stream
of an NCS built with the models provided by the Pas-
sive System Identification attack. The Actual responses are
represented by the highlighted area, whose bounds are
drawn based on the maximum and minimum values of
the output y(¢) of the plant, considering 100,000 simula-
tions with (10) in the forward stream of the actual NCS.
It means that, when (10) is implemented in the NCS all
output signals y(¢) provided by the actual plant are inside
this area.

It is worth mentioning that the aim of Fig. 14 is not
to evaluate the stability of the proposed system after
the execution of the SD-Controlled Data Injection attack
(although in these simulations this system remained stable
even after the execution of M(z)). The aim of Fig. 14 is to
demonstrate that, with the proposed countermeasure, the
interference produced by the attacker is not what he/she
intended with the mentioned Data Injection attack. Note
that, the actual responses of the plant are significantly
different from the response that the attacker expects
to obtain with the SD-Controlled Data Injection attack.
These results are in contrast to the results achieved in the
NCS with the non-switching controller, where the attack
was accurate and executed exactly what was planned by
the attacker, as shown in Section 3.3. With the proposed
countermeasure, the maximum overshoot achieved by the
plant was 10.12% (instead of the desired 50%). Notwith-
standing, the highlight of these simulations is the fact
that, with the proposed countermeasure, the information
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Fig. 14 Results of an SD-Controlled Data Injection attack in a system
with the proposed countermeasure
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provided by the Passive System Identification attack is
not useful to support the design covert/model-dependent
attacks. This inaccurate information may lead the attacker
to cause unpredictable results in the system, which may
either be ineffective (not causing the desired degradation
on the plant) or extreme (reducing the physical or cyber-
netic covertness of the attack). This analysis is consistent
with the reasoning provided in Section 5.1. It demon-
strates that when the NCS is endowed with the proposed
countermeasure, the attacker must hesitate to launch a
covert/model-dependent attack due to the inaccuracy of
the Passive System Identification attack.

Note that the countermeasure proposed in this paper
aims to mitigate the Passive System Identifications attacks
when the attacker is trying to obtain information about
the control functions of the NCS. Consequently, it pre-
vents the use of accurate information about these con-
trol functions in the design of a covert/model-dependent
attack (such as a data injection attack in the forward
stream of an NCS aiming to cause an overshoot or a
steady state error). For instance, in an SD-Controlled Data
Injection attack performed in the forward stream of the
NCS, the attacker cannot cause a steady state error by
just adding a step signal to u(k), because the PI con-
trol functions will adjust the control signal to bring y(k)
back to 1 rad/s. Adding a ramp signal to u#(k) can cause
a steady error in y(k) for a while. However, it may not
be a good strategy for the attacker, because at some time
the controller and u(k) will saturate, leading the plant to
extreme behaviors (which is not desired if the attacker
aims a physically covert attack). The alternative to cause
a steady state error through the manipulation of the for-
ward stream is to implement the attack function M(z)
exemplified in [12] which, to be designed, requires the
knowledge about the controller and plant. Without the
knowledge about the coefficients of the numerator of the
PI control function, for example, the gain of M(z) can-
not be adjusted to cause the exact steady deviation of y(k)
that the attacker intends to cause. This makes the attack
described in [12] model-dependent and, in this case, the
countermeasure herein proposed is useful to hinder the
attacker from obtaining the knowledge about the control
functions of the NCS. On the other hand, in a system with
an unitary feedback, it is possible to manipulate the steady
state error of the plant by injecting data in the feedback
stream, even when the attacker does not know the models
of the plant and the controller. In this case, the manipula-
tion of y(k) can be interpreted as the direct manipulation
of set point r(k), which determines the steady state of
the system. This attack, performed in the feedback stream
is an example of data injection attack that is not model-
dependent and, thus, should be mitigated by an additional
countermeasure (complementary to the countermeasure
proposed in this paper).
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6 Conclusion

In this work, a randomly switching controller is proposed
as a countermeasure for the Passive System Identification
attack [12], in case of failure of other conventional security
mechanisms — such as encryption, network segmenta-
tion and firewall policies. The simulations demonstrate
that this countermeasure is capable to mitigate the men-
tioned attack, making the model obtained by the attacker
imprecise and ambiguous. At the same time, the sim-
ulations demonstrate that the performance of the pro-
posed countermeasure is satisfactory from the control
perspective. Considering the control aspects, in general,
the proposed countermeasure presents a performance
similar to the performance of a non-switching controller,
with an increase in the system’s settling time. Therefore,
when deciding for using this countermeasure, it must be
considered the existence of a tradeoff between mitigate
the identification attack and increase the settling time
of the system — which, depending on the plant, is not
necessarily a drawback.

As future work, we plan to evaluate the performance
of this countermeasure when mitigating other system
identification attacks/algorithms. Also, we encourage the
development of a heuristic or an analytical method capa-
ble to provide control functions and switching rules that
maximize the performance of the countermeasure in both
mentioned objectives: comply with the plant’s control
requirements; and hinder the identification process.

Endnotes

lde Sa et al. [12] is an extended version of [13].

2 The Passive System Identification attack was originally
referred, in [12], as System Identification attack. However,
with the introduction of the Active System Identification
attack in [17], its designation was reviewed to Passive
System Identification attack, in order to evince the differ-
ences between the two attacks.
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