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Abstract

This paper describes EZ-AG, a structure-free protocol for duplicate insensitive data aggregation in MANETs. The key
idea in EZ-AG is to introduce a token that performs a self-repelling random walk in the network and aggregates
information from nodes when they are visited for the first time. A self-repelling random walk of a token on a graph is
one in which at each step, the token moves to a neighbor that has been visited least often. While self-repelling random
walks visit all nodes in the network much faster than plain random walks, they tend to slow down when most of the
nodes are already visited. In this paper, we show that a single step push phase at each node can significantly speed up the
aggregation and eliminate this slow down. By doing so, EZ-AG achieves aggregation in only O(N) time and messages.

In terms of overhead, EZ-AG outperforms existing structure-free data aggregation by a factor of at least log(N) and
achieves the lower bound for aggregation message overhead. We demonstrate the scalability and robustness of
EZ-AG using ns-3 simulations in networks ranging from 100 to 4000 nodes under different mobility models and node
speeds. We also describe a hierarchical extension for EZ-AG that can produce multi-resolution aggregates at each
node using only O(NlogN) messages, which is a poly-logarithmic factor improvement over existing techniques.
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1 Introduction

The focus of this paper is on computing order and dupli-
cate insensitive data aggregates (also referred to as ODI-
synopsis) and delivering them to every node in a mobile
ad-hoc network (MANET) [1-4]. We are specifically
motivated by data aggregation requirements in extremely
large scale mobile sensor networks [5] such as networks
of UAVs, military networks, network of mobile robots and
dense vehicular networks, where the number of nodes are
often several thousands.

In an order and duplicate insensitive (ODI) synopsis, the
same data can be aggregated multiple times but the result
is unaffected. MAX, MIN and BOOLEAN OR are natural
examples of such duplicate insensitive data aggregation.
These queries by themselves are quite common in many
applications and some examples are provided below.
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As one specific example, consider the application
domain of intelligent transportation systems using dense
vehicular ad-hoc networks (VANETS) [6]. VANETs are
mobile networks supported by both vehicle to vehicle
(V2V) and vehicle to road-side infrastructure (V2I) com-
munication, which are in turn enabled by Dedicated Short
Range Communication units (DSRC) on board each vehi-
cle [7]. VANETs can be used for improving vehicular
safety as well as efficiency by dynamically updating traf-
fic maps and providing efficient re-routes [8]. For such
applications, EZ-AG can be used to generate duplicate
insensitive aggregates such as the maximum speed or
minimum speed in a given area (that are indicative of con-
gestion). It can be used to answer queries such as is there
any vehicle that exceeded a certain speed?. It can be also
used to answer V2I network management queries such
as is there at least one active infrastructure unit within a
given area?. VANETSs are also often augmented with envi-
ronmental sensors for tasks such as pollution monitoring
[9]. In such applications, aggregation queries related to the
sensors can be answered using EZ-AG.
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EZ-AG can also be used for data aggregation in net-
works of drones, UAVs [10] and underwater robotic
swarms [11]. For instance, EZ-AG can be used to answer
queries such as which is the drone with minimum or maxi-
mum battery level? or which robotic fish detects maximum
pollution? Aggregation queries resolved by EZ-AG can
also be used for consensus driven control applications. For
example, EZ-AG can be used to dynamically navigate net-
works of aerial vehicles towards the area with minimum
turbulence [12] or to dynamically navigate a swarm of
robotic fish [13] towards regions of higher vegetation.

Other duplicate sensitive statistical aggregates such as
COUNT and AVERAGE can also be implemented with
ODI synopsis using probabilistic techniques [4, 14]. Using
these extensions, EZ-AG can be used to generate dupli-
cate sensitive aggregates such as the number of vehicles
in a road segment or average speed of vehicles in a road
segment.

In static sensor networks and networks with stable links,
data aggregation can be performed by routing along fixed
structures such as trees or network backbones [15-18].
However, in MANETSs, routing has proven to be quite
challenging beyond scales of a few hundred nodes primar-
ily because topology driven structures are unstable and are
likely to incur a high communication overhead for main-
tenance in the presence of node mobility [19]. Therefore,
structure-free techniques are more appropriate for data
aggregation in MANETs. However, a simple technique like
all to all flooding which involves dissemination of data
from each node to every other node in the network is not
scalable as it incurs an overall cost of O (Nz), where N is
the number of nodes in the network. Therefore, in this
paper we explore the use of self-repelling random walks as
a structure free method for data aggregation.

1.1 Overview of approach

Random walks are appropriate for data aggregation in
mobile networks because they are inherently unaffected
by node mobility. The idea is to introduce a token in the
network that successively visits all nodes in the network
using a random walk traversal and computes the overall
aggregate. We say that a node is visited by a token when
the node gets exclusive access to the token; the visitation
period can be used by the node to add node-specific infor-
mation into the token, resulting in data aggregation. Note
that the concept of visiting all nodes individually differs
from that of token dissemination [20, 21] over the entire
network where it suffices for every node to simply hear at
least one token, as opposed to getting exclusive access to
a token.

Note, however that traditional random walks may be too
slow in visiting all nodes in the network because they may
get stuck in regions of already visited nodes. Hence, in
this paper we consider self-repelling random walks [22].
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A self-repelling random walk is one in which at each step
the walk moves towards one of the neighbors that has
been least visited [22] (with ties broken randomly). Self-
repelling random walks were introduced in the 1980s and
have been studied extensively in the physics literature.
One of the striking properties of self-repelling random
walks is the remarkable uniformity with which they visit
nodes in a graph, i.e., without getting stuck in already
visited regions.

Indeed, our results in this paper confirm that until about
85% coverage, duplicate visits are very rare with self-
repelling random walks highlighting the efficiency with
which a majority of nodes in the network can be visited
without extra overhead. However, we observe a slow down
when going towards 100% coverage because when most
of the nodes are already visited, the token executing self-
repelling random walk has to explore the graph to find
the next unvisited node. To correct this shortcoming, we
introduce a complementary push phase that speeds up the
convergence of the random walk. The push phase consists
of just one message from each node: before the random
walk is started, each node announces its own state to all
its neighbors. Note that the push consists of only a single
hop broadcast from a node to its neighbors as opposed to
a flood which consists of disseminating a node’s state to
all the nodes in the entire network. Thus, after the push
phase, each node now carries information about all its
neighbors. As a result, when the random walk executes, it
does not have to visit all nodes to finish the aggregation.
In fact, we show that the aggregation can finish before the
slow down starts for the self-repelling random walk. As a
result both the aggregation time and number of messages
are now bounded by O(N), as shown in our analysis.

1.2 Summary of contributions

- We introduce a novel structure-free technique for
data aggregation in MANETS that exploits properties
of self-repelling random walks and complements it
with a push phase. We find that a little push goes a
long way in speeding up aggregation and reducing
message overhead. In fact, the push phase consists of
just a single message from each node to its neighbors.
By adding this push phase, we show that both the
aggregation time and number of messages are
bounded in EZ-AG by O(N). In fact, we show that
aggregation is completed in significantly less than N
token transfers. The protocol is thus extremely
simple, requires very little state maintenance (each
nodes only remembers the number of times it has
been visited), requires no network structures or
clustering.

- We compare our results with structure-free
techniques for ODI data aggregation such as
gossiping and show a log(N) factor improvement in
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messages compared to existing gossip based
techniques. We evaluate our protocol using
simulations in ns-3 on networks ranging from 100 to
4000 nodes under various mobility models and node
speeds. We also evaluate and compare our protocol
with a prototype tree-based technique for data
aggregation (i.e., structure based) and show that our
protocol is better suited for MANETSs and remains
scalable under high mobility. In fact, the performance
of EZ-AG improves as node mobility increases.

- Finally, we also provide an extension to EZ-AG which
supplies multi-resolution aggregates to each node. In
networks that are quite large, providing each node
with only a single aggregate may not be sufficient. On
the other hand, providing each node with
information about every other node is not scalable.
Hierarchical EZ-AG addresses this issue by providing
each node with multiple aggregates of neighborhoods
of increasing size around itself. Each node can thus
have information from all parts of the network, but
with a resolution that decays exponentially with
distance. This idea is motivated by the fact that in
many systems information about nearby regions is
more relevant and important than far away regions
with progressively increasing importance as distance
decreases. Moreover, we also show that aggregates of
nearby regions can be obtained at a progressively
faster rate than farther regions. Hierarchical EZ-AG
uses only O(NlogN) messages and outperforms
existing techniques for multi-resolution data
aggregation by a factor of log**N.

1.3 Outline of the paper

In Section 2, we describe related work and specifi-
cally compare our contributions with existing work in
structured protocols, structure free protocols and ran-
dom walks. In Section 3, we state the system model. In
Section 4, we describe the EZ-AG protocol. In Section 5,
we analytically characterize the bound on messages and
time for EZ-AG. In Section 6, we describe a hierarchical
extension for EZ-AG. In Section 7, we describe the results
of our evaluation using ns-3 and compare EZ-AG with
a prototype tree-based protocol for data aggregation. We
conclude in Section 8.

2 Related work

2.1 Structure-based protocols

The problem of data aggregation and one-shot query-
ing has been well studied in the context of static sensor
networks. It has been shown that in-network aggrega-
tion techniques using spanning trees and network back-
bones are efficient and reliable solutions for the problem
[15-18]. However, in the context of a mobile network,
such fixed routing structures are likely to be unstable and
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could potentially incur a high communication overhead
for maintenance [19]. In this paper, we have systematically
compared EZ-AG with a prototype tree-based technique
for data aggregation and have shown that it outperforms
the tree-based idea in mobile networks. We notice that the
improvement gets progressively more significant as the
average node speed increases.

2.2 Structure-free protocols

Flooding, neighborhood gossip and spatial gossip are
three structure-free techniques that can be used for data
aggregation. Note that flooding data from all nodes to
every other node has a messaging cost of O (N 2). Alter-
natively, one could use multiple rounds of neighborhood
gossip where in each round a node averages the current
state of all its neighbors and this procedure is repeated
until convergence [23, 24]. However, this method requires
several iterations and has also been shown to have a
communication cost and completion time of O (N?) for
convergence in grids or random geometric graphs, where
connectivity is based on locality [25].

In [1, 2], a spatial gossip technique is described where
each node chooses another node in the network (not just
neighbors) at random and gossips its state. When this is
repeated O(log' ™€ N) times, all nodes in the network learn
about the aggregate state. Note that this scheme requires
O(N .polylog(N)) messages. Our random walk based pro-
tocol, EZ-AG, requires only O(N) messages. Note also
that while all this prior work is on static networks, we
demonstrate our results on mobile ad-hoc networks.

2.3 Random walks

Random walks and their cover times (time taken to visit
all nodes) have been studied extensively for different types
of static graphs [26, 27]. In this paper, we are specifically
interested in time varying graphs that are relevant in the
context of mobile networks.

Self-avoiding and self-repelling random walks are
variants of random walks which bias the walk towards
unvisited nodes [22]. The unformity in coverage of such
random walks in 2-d lattices has been pointed out in [28].
Our paper extends the analysis of self-repelling random
walks presented in [28] for application in mobile ad-hoc
networks that are modeled as time varying random geo-
metric graphs. Further, we show that by complementing
self-repelling random walks with a push phase, we can
complete aggergation in O(N) time and messages. The
idea of locally biasing random walks and its impact in
speeding up coverage has been pointed out in [29] for
static networks. Self-repelling random walks are different
than the local bias technique presented in [29]. Moreover,
we show how to improve the convergence of self-repelling
random walks using a complementary push-phase and
demonstrate our results on mobile networks.
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In a recent paper [30], we have addressed the prob-
lem of duplicate-sensitive aggregation using self-repelling
random walks and in that solution we have used a gra-
dient technique to speed up self-repelling random walks.
The short temporary gradients introduced in [30] are
used to pull the token towards unvisited nodes so that
each node is visited at least once. The solution in [30]
requires O(N.log(N)) messages. In this paper, we address
duplicate insensitive aggregation and show that it can be
achieved using self-repelling random walks with just O(N)
messages.

3 Model

3.1 Network model

We consider a mobile network of N nodes modeled as
a geometric Markovian evolving graph [31]. Each node
has a communication range R. We assume that the N
nodes are independently and uniformly deployed over a
square region of sides /A resulting in a network density
p = N/A of the deployed nodes. Consider the region to
be divided into square cells of sides R/ /2. Thus the diag-
onal of each such cell is the communication range R. Let
R? > 2clog(N)/p. It has been shown that there exists a
constant ¢ > 1 such that each such cell has 6 (logN) nodes
whp, i.e., the degree of each node is 6(logN) whp. Such
graphs are referred to as geo-dense geometric graphs [29].
Denote d = 0(logN) as the degree of connectivity.

The objective of the protocol is to compute a duplicate
insensitive aggregate of the state of nodes in a MANET.
The aggregate could be initiated by any of the nodes in the
MANET or by a special static node such as a base station
that is connected to the rest of the nodes. The aggre-
gate needs to be disseminated to all nodes in the network.
The protocol could be invoked in a one-shot or periodic
aggregation mode.

3.2 Mobility model
We consider 3 different mobility models for our evalua-
tions.

- The first is a random direction mobility model (with
reflection) [32, 33] for the nodes. This is a special case
of the random walk mobility model [34]. In this
mobility model, at each interval a node picks a
random direction uniformly in the range [0, 2] and
moves with a constant speed that is randomly chosen
in the range [ vy, v;,]. At the end of each interval, a
new direction and speed are calculated. If the node
hits a boundary, the direction is reversed. Motion of
the nodes is independent of each other. An important
characteristic of this mobility model is that it
preserves the uniformity of node distribution: given
that at time ¢ = 0 the position and orientation of
users are independent and uniform, they remain
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uniformly distributed for all times ¢ > 0 provided the
users move independently of each other [31, 33].

- The second is random waypoint mobility model.
Here, each mobile node randomly selects one location
in the simulation area and then travels towards this
destination with constant velocity chosen randomly
from [ vy, vy] [34]. Upon reaching the destination, the
node stops for a duration defined by the pause time.
After this duration, it again chooses another random
destination and the process is repeated. We set the
pause time to 2 s between successive changes.

- The third is Gauss Markov mobility model. In this
model, the velocity of mobile node is assumed to be
correlated over time and modeled as a Gauss-Markov
stochastic process [34]. We set the temporal
dependence parameter o = 0.75. Velocity and
direction are changed every 1 s in the Gauss Markov
Model.

We consider node speeds in the range of 3 to 21 m/s.
For the deployment density that we have chosen, a map-
ping between node speed and the average link changes per
node per second is listed in Table 1. This table quantifies
the link instability caused by node mobility at different
node speeds. As seen in Table 1, because of high network
density, the network structure is rapidly changing at the
speeds chosen for evaluation.

While we have chosen the above mobility models for
evaluation, we expect the results to hold even under other
models such as motion on a Manhattan grid (suitable for
vehicular networks). The crucial aspect of mobility that
we capture in our evaluations is the high rate at which
links change per second which is quantified in Table 1.
Our results highlight that performance of EZ-AG actually
improves with higher mobility speeds.

3.3 Metrics

A key metric that we are interested in is the number of
times the token is transferred to already visited nodes. We
present this in the form of exploration overhead which

Table 1 Mapping between speed and link changes per node per
second (rounded off to integer)

Size 3m/s 9m/s 15m/s 21 m/s
100 1 5 7 9

200 2 6 9 12
300 2 7 10 14
500 3 8 12 16
1000 3 9 14 18
2000 4 10 16 20
4000 4 12 18 23
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is defined as the ratio of the number of token trans-
fers to the number of unique nodes whose data has been
aggregated into the token. We compute exploration over-
head at different stages of coverage as the random walk
progresses.

Typically, random walks are evaluated in terms of their
cover times, which is defined as the time required to
visit all nodes. For a standard random walk, the notion
of physical time, messages and the number of steps
are all equivalent. However, for the push assisted self-
repelling random walks these are somewhat different. The
total number of messages required to complete the data
aggregation includes the push messages, the messages
involved in the self-repelling random walk and the mes-
sages involved in disseminating the result to all the nodes
using a flood. Moreover, each token transfer step itself
consists of announcement, token request and token trans-
fer messages. Thus, although proportional, the number
of messages is different than the number of token trans-
fer steps. Hence we separately characterize the number of
messages during empirical evaluation.

Finally we note that since we study random walks on
mobile networks, the notion of time is also related to node
speed. Moreover, when dealing with wireless networks,
time also involves messaging delays. Therefore, during
empirical evaluation we separately characterize the actual
convergence time (in seconds) along with the number of
steps (i.e., number of token transfers).

4 Protocol

EZ-AG consists of 4 phases as shown in Fig. 1a. These
phases are described below. The steps involved in the self-
repelling random walk phase are shown in Fig. 1b. The
communication cost in each of these phases is analyzed in
Section 5.

Aggregation request phase: The node requesting the
aggregate first initiates a flood in the network to notify all
nodes about the interest in the aggregate. Note that each
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node broadcasts this flood message exactly once. This
results in N messages.

Push phase: Once a node receives this request, it pushes
its state to its neighbors. Each node uses the data received
from its neighbors to compute an aggregate of the state
of all its neighbors. Note that the push consists of only a
single hop broadcast from a node to all its neighbors. In
contrast, a flood consists of disseminating a node’s data
to the entire network. Thus, the push phase also requires
exactly N messages because each node broadcasts its data
once.

Self-repelling random walk phase: Soon after the ini-
tiator sends out an aggregate request, it also initiates a
token to perform a self-repelling random walk. A node
that has the token broadcasts an amnnounce message.
Nodes that receive the announce message reply back with
a token request message and include the number of times
they have been visited by the token in this request. The
node that holds the token selects the requesting node
which has been visited least number of times (with ties
broken randomly) and transfers the token to that node.
This token transfer is repeated successively. Note that
nodes which hear a token announcement schedule a token
request at a random time ¢, within a bounded interval,
where ¢, is proportional to the number of times that they
have been visited. Thus nodes that have not been vis-
ited or visited fewer times send a request message earlier.
When a node hears a request from a node that has been
visited fewer or same number of times, it suppresses its
request. Thus, the number of requests received for a token
announcement remains fairly constant and irrespective of
network density.

We note specifically that tokens do not grow in size
when they visit successive nodes because they only carry
the aggregated state. Determination of the next node to
visit is done with the help of individual nodes which
maintain a count of the number of times they have been

a Aggregation request: Interested node disseminates request to all nodes

Communication cost: O(N)

Push phase: Single hop broadcast of node’s state to all its neighbors

Communication cost: O(N)

Self-repelling random walk phase: Token passed N times

Communication cost: O(N)

Result dissemination phase: Aggregated result flooded to all nodes
Communication cost: O(N)

Phases involved in EZ-AG

Fig. 1 Summary of EZ-AG protocol: EZ-AG consists of 4 phases as shown in part (@). The steps involved in the random walk phase are shown in part (b)

op

Token announce: Token holder announces intent to pass token

v

Token request: Neighbors send request to annnouncer
Each request contains number of times the node has been visited

v

Token pass: Token holder passes token to node visited least times
Ties broken randomly

Steps involved in random walk phase
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visited so far. This information is conveyed to the token
holder after the announce message, which is then used
to determine the next node to be visited. Thus, even at
individual nodes, the state maintenance is minimal (each
node only remembers the number of times it has been
visited).

In the following section, we prove analytically that the
aggregate can be computed from all nodes in the network
whp in O(N) token transfers. In the empirical evaluation,
we show that the median number of token transfers is
actually only kn, where 0 < k < 1, and k is unaffected
by network size. Thus, the median exploration overhead
is less than 1. One can use this observation to terminate
the self-repelling random walk after exactly N steps and
whp one can expect that data from all the nodes has been
aggregated.

Result dissemination phase: Once the aggregate has
been computed, the result can simply be flooded back
to all the nodes by the node that holds the result.
This requires O(N) messages. Another potential solu-
tion (when aggregate is only required at a base station)
is to transmit the aggregated tokens using a long dis-
tance transmission link (such as cellular or satellite links)
in hybrid MANETs where the long links are used for
infrequent, high priority data.

The protocol is thus extremely simple, requires very lit-
tle state maintenance, and requires no network structures
or clustering.

4.1 Reliability of token transfer

The reliable transfer of tokens from one node to another
is important for successful operation of EZ-AG. If a token
is released by a node, but the intended recipient did
not receive the token reply message, the token is lost.
Reliability of token transfer can be imposed by requir-
ing an acknowledgement from the node receiving the
token and re-sending the token if an acknowledgement
was not received. However, it is possible that the token
was transferred correctly to a neighbor but the acknowl-
edgement was lost or the recipient of the token moved
away from the communication range of a sender. In this
case, a duplicate token may be created by this process.
But, since EZ-AG computes duplicate insensitive aggre-
gates, the addition of a duplicate token will not impact the
accuracy.

5 Analysis

In this section, we first show that the aggregation time and
message overhead for push assisted self-repelling random
walks is O(N). We consider a static network for our anal-
ysis. In Section 7, we evaluate the protocol under different
mobility models and verify that the results hold even in
the presence of mobility.
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First, we state the following claim regarding the uni-
formity in the distribution of visited nodes during the
progression of a self-repelling random walk.

Proposition 1 The distribution of visited nodes (and
unvisited nodes) remains spatially uniform during the pro-
gression of a self-repelling random walk.

Argument: Our claim is based on the analysis of uni-
formity in coverage of self-repelling random walks in [28]
and in [35]. In [28], the variance in the number of vis-
its per node of self-repelling random walks is shown to be
tightly bounded, resulting in a uniform distribution of vis-
ited nodes across the network. More precisely, let #;(¢, x)
be the number of times a node i has been visited, starting
from a node x. The quantity studied in [28] is the variance
(1/N) (3 (mi(t, %) — w)?), where . = (1/N) (3, ni(t, %)).
It is seen that this variance is bounded by values less than
1 even in lattices of dimensions 2048 x 2048. A detailed
extension of this analysis for mobile networks is presented
in Section 7.1 which shows the uniformity with which
nodes are visited during a self-repelling random walk. We
use this to infer that even after the walk started, the dis-
tribution of visited nodes (and by that token, unvisited
nodes) remains uniform. The result shows that the self-
repelling random walk is not stuck in regions of already
visited nodes - instead, it spreads towards unvisited areas.

Theorem 1 The required number of messages for data
aggregation by EZ-AG in a connected, static network of N
nodes with uniform distribution of node locations is O(N).

Proof We note that the aggregation request flood and
the result dissemination flood require O(N) messages.
During the push phase, each node broadcasts its state
once and this also requires only N messages. Now, we
analyze the self-repelling random walk phase.

Consider the region to be divided into square cells of
sides R/+/2 (see Fig. 2). Thus the diagonal of each such
cell is the communication range R. Recall from our sys-
tem model that each such cell has 6(logN) nodes whp at
all times and there are O(N/log(N)) such cells. Therefore,
at the end of the push phase, each node has aggregated
information about its 0(logN) cell neighbors. Also note
that the network can be divided into 6(N/log(N)) sets
of nodes that each contain information about 8 (log(N))
nodes within their cell. Therefore, the self-repelling ran-
dom walk has to visit at least one node in each cell to finish
aggregating information from all nodes.

To analyze the number of token transfers required to
visit at least one node in each cell, we use the analo-
gous coupon collector problem (also known as the double
dixie cup problem) which studies the expected number of
coupons to be drawn from B categories so that at least
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Fig. 2 Proof synopsis: Consider the region divided into square cells
with diagonal size R. At the end of single step push phase, each node
has information about all nodes in its cell. So it is sufficient for the
token (performing a self-repelling random walk) to visit one node in
each cell to finish aggregation

1 coupon is drawn from each category [36]. To ensure
that at least 1 coupon is drawn from each category whp,
the required number of draws is O(B.log(B)). Using this
result and the fact that a self-repelling random walk tra-
verses a network uniformly, we infer that O((N/logN) *
log(N /logN)) token transfers are needed to visit at least 1
node in each of the 6 (N /logN) cells.

Note that log(N) > log(N/log(N)). Hence, the required
number of messages for the push assisted self-repelling
random walk based aggregation protocol is O(N /log(N) *
log(N)), i.e., ON). O

Note that in the presence of mobility, the node locations
with respect to cells may not be preserved during the push
phase. Therefore the generation of 8(N/log(N)) identical
partitions of network state as described in the above anal-
ysis may not exactly hold. However, in Section 7 we empir-
ically ascertain that kN token transfers (where k < 1)
are still sufficient to aggregate data from all nodes even
in the presence of mobility. In fact, we observe that the
required token transfers actually decrease with increasing
speed, indicating that data aggregation using self-repelling
random walks is actually helped by mobility.

It follows from the above result that the total time for
aggregation is also O(N). The impact of network effects
such as collisions on the message overhead and aggrega-
tion time (if any) will be evaluated in Section 7.
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In terms of communication, for data aggregation to
complete, we note that each node has to at least transmit
its own data once. Thus, O(N) is an absolute lower bound
in terms of communication messages for data aggrega-
tion. We have thus shown that EZ-AG achieves this lower
bound of O(N) for data aggregation and therefore is
indeed quite efficient in terms of communication. More-
over, we also show that the random walk phase terminates
in exactly N token passes. Also during each transfer of the
token, the number of requests for the token remain fairly
constant and low (See Fig. 12). Thus, it is not the case that
the constants of proportionality are high either.

By way of contrast, in a pure flooding based approach,
each node will have to flood the data to every other node
resulting in O (NZ) cost. Instead, EZ-AG first aggregates
the data using O(N) cost and then floods the result in
O(N) cost, thus resulting in a total of only O(N) commu-
nication cost. The impact of this order efficiency becomes
increasingly significant as network size increases.

6 Extension for hierarchical aggregation

When a network is quite large, providing each node with
only a single aggregate for the entire network may not be
sufficient. On the other hand, providing each node with
information about every other node is not scalable. We
therefore pursue an extension to EZ-AG where each node
can receive multi-resolution aggregates of neighborhoods
with exponentially increasing sizes around itself. This way,
each node can have information from all parts of the
network but with a resolution that decays exponentially
with distance. This idea is motivated by the fact that in
many systems information about nearby regions is more
relevant and important than far away regions with pro-
gressively increasing importance as distance decreases. In
this section, we describe how EZ-AG can be extended
to provide such multi-resolution synopsis of nodes in a
network with only O(NlogN) messages.

Existing techniques for such hierarchical aggregation
require O (Nlog“N ) messages [1]. Thus, EZ-AG offers a
poly-logarithmic factor improvement in terms of number
of messages for hierarchical aggregation. Moreover, EZ-
AG can also be used to generate hierarchical aggregates
that are distance-sensitive in refresh rate, where aggre-
gates of nearby regions are supplied at a faster rate than
farther neighborhoods.

6.1 Description

We divide the network into square cells at different lev-
els (0, 1, .. P) of exponentially increasing sizes (shown in
Fig. 3). At the lowest level (level 0), each cell is of sides
R/~/2. Recall from our system model that each such cell
has 0(log(N)) nodes whp. For simplicity, let us denote
0 (log(N) by the symbol 8. Thus, there are N/§ cells at level
0. Note that 4 adjoining cells of level i constitute a cell of
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Fig. 3 Extension of EZ-AG to deliver multi-resolution aggregates: The
network is partitioned into cells of increasing hierarchy where the cell
at smallest level is of diagonal R. The node y shown in the figure
would receive an aggregate corresponding to one cell at each level
that it belongs to. In this case, it would receive aggregates for cells A,
B, Cand D. The largest cell D consists of the entire network

level i + 1. Thus, each cell at level j has 84/ nodes whp.
At the highest level P, there is only one cell with all the N
nodes. Note that P = logs(N/3). At any given time, a node
belongs to one cell at each level.

To deliver multi-resolution aggregates, we introduce a
token and execute EZ-AG at each cell at every level. A
token for a given cell is only transferred to nodes within
that cell and floods its aggregate to nodes within that cell.
Thus, there are N/§ instances of EZ-AG at level 0 and each
instance computes aggregates for § nodes, i.e., 0(logN)
nodes.

The computation and dissemination of aggregates by
different instances of EZ-AG are not synchronized. Thus,
a node may receive aggregates of different levels at differ-
ent times. Also, since the nodes are mobile, an aggregate
at level [ received by a node at any given time corresponds
to the cell of the same level / in which it resides at that
instant.

6.2 Analysis
Theorem 2 An ODI aggregate at level j can be computed
using hierarchical EZ-AG in O (#§) time and messages.

Proof Note that each cell at level j contains 0 (4j §) nodes
whp. Therefore, using Theorem 1, EZ-AG only requires
o (4j 8) time and messages to compute aggregate within
the cell. O
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We note from the above theorem that aggregates at level
0 can be published every O(§) time, aggregates at level
1 can be published every O(44) time and so on. Thus,
aggregates for cells at smaller levels can be published
exponentially faster than those for larger cells. Thus, if the
tokens repeatedly compute an aggregate and disseminate
within their respective cells, EZ-AG can generate hier-
archical aggregates that are distance-sensitive in refresh
rate, where aggregates of nearby regions are supplied at a
faster rate than farther neighborhoods.

Theorem 3 Hierarchical EZ-AG can compute an ODI
aggregate for all cells at all levels using O(NlogN) mes-
sages.

Proof Note that a cell at level 0 contains § nodes and
there are N/§ such cells. The aggregate for cells at level 0
can be computed using O(8) messages.

In general, there are N/4/§ cells at level j and aggregates
for these cells can be computed using O (418) messages.
Summing up from levels O to P, the total aggregation mes-
sage cost (M) for hierarchical EZ-AG can be computed as
follows.

P
>N
j=0
= O(NlogN)

Thus, hierarchical EZ-AG can compute an ODI aggre-
gate for all cells at all levels using O(NlogN) messages. [

6.3 Comparison of hierarchical EZ-AG with gossip
techniques

In [1, 2], a spatial gossip technique is described where
each node chooses another node in the network (not just
neighbors) at random and gossips its state. When this is
repeated O(log'™¢(N)) times (where ¢ > 1), all nodes
in the network learn about the aggregate state. Note that
this scheme requires O(N.polylog(N)) messages. EZ-AG
requires only O(N) messages.

In [1], an extension to the spatial gossip technique is
described which provides a multi-resolution synopsis of
the network state at each node. The technique described
in [1] requires O (Nlog>*(N)) messages. The hierarchical
extension of EZ-AG only requires O(NlogN) messages.

7 Performance evaluation

In this section, we systematically evaluate the perfor-
mance of EZ-AG using simulations in ns-3. We set up
MANETSs ranging from 100 to 4000 nodes using the net-
work model described in Section 3. Nodes are deployed
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uniformly in the network with a deployment area and
communication range such that R? = 4log(N)/p. Thus,
the network is geo-dense with ¢ = 2, i.e,, each node
has on average 2/og(N) neighbors whp and the network
is connected whp. We test such networks in our simu-
lations with the following mobility models: 2-d random
walk, random waypoint and Gauss-Markov (described in
Section 3). The average node speeds range from 3 to
21 m/s. We also consider static networks as a special case.

First, we analyze the convergence characteristics of the
push-assisted self-repelling random walk phase in EZ-AG
and compare that with self-repelling random walks and
plain random walks. Next, we analyze the total messages
and time taken by EZ-AG. Finally, we compare EZ-AG
with a prototype tree based protocol and with gossip
based techniques.

7.1 Coverage uniformity

First, in Fig. 4a, b and ¢, we show the number of times
each node is visited when the self-repelling random walk
has finished visiting 50% of the nodes, 75% of the nodes
and 85% of the nodes. We observe that most of the nodes
are just visited once and this result holds even at 1000
nodes. These graphs highlight the uniformity with which
nodes are visited as self-repelling random walks progress.
The self-repelling random walk is not stuck in regions of
already visited nodes - instead, it spreads towards unvis-
ited areas. Otherwise, one would have observed more
duplicate visits to the previously visited nodes.In Fig. 4d,
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we analyze the distribution of number of visits at each
node when 100% coverage is attained. Here, we see that
most nodes are visited 2 or 3 times and the distribution
falls off rapidly after that.

We then compare the uniformity in coverage with that
of pure random walks. In Fig. 5, we plot the number of
visits to each node until all nodes are visited at least once
for a 500 node network. In comparison with self-repelling
random walks (Fig. 5b), we observe that the tail of the
distribution is much longer and the number of duplicate
visits is much higher for pure random walks.

7.2 Convergence characteristics

Next, in Fig. 6, we show the exploration overhead of self-
repelling random walk during different stages of coverage.
As seen in Fig. 6, until about 85% coverage, self-repelling
random walks have an exploration overhead of around
1 (irrespective of network size) but then the overhead
starts to rise sharply. This is because, until this point self-
repelling enables a token to find an unvisited node directly
and there are very few wasted explorations. A slowdown
for self-repelling random walk is noticed after this point.
As a result, the exploration overhead at 100% coverage is
close to 2 and moreover it increases with network size.
This is what we aim to address using EZ-AG.

The exploration overhead at 100% coverage is shown
in Fig. 7 for self-repelling random walks and EZ-AG (i.e.,
push-assisted self-repelling random walks). As seen in the
figure, the exploration overhead for self-repelling random
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Fig. 4 Distribution of number of visits at each node at different stages of exploration of a self-repelling random walk (network size 100,400 and 1000
nodes). a 50% coverage, b 75% coverage, € 85% coverage, d 100% coverage
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walks grows with a logarithmic trend due to the wasted
explorations towards the tail end of the random walk
phase when most of the nodes are already visited. The
push assisted self-repelling random walks remove these
wasted explorations and as a result the median exploration
overhead stays constant at all network sizes and is actually
less than 1 (approximately 0.75 as seen in Fig. 7).

7.3 Impact of mobility and speed

In Fig. 8a and b, we evaluate the impact of mobility model
and network speed on the exploration overhead of push
assisted self-repelling random walks. We observe that
even though random waypoint and Gauss Markov models
do not preserve the uniform distribution of node loca-
tions, the exploration overhead exhibits a similar trend.
As seen in Table 1, the network structure is rapidly chang-
ing at the speeds chosen for evaluation. Despite this, in

O Node Size 100
. v Node Size 1500

<1 Node Size 3000
| © Node Size 4000

-
u
a

Exploration overhead
(&)

1.25

Fig. 8b, we observe that the exploration overhead actu-
ally starts decreasing with node speed (this is shown more
clearly in Fig. 9 for networks with different sizes).

7.4 Variance and terminating condition

In Fig. 10, we show the variation in exploration overhead
for EZ-AG over 50 different trials at different network
sizes. We observe that irrespective of network size, for
97.5% of the trials, the exploration overhead is smaller
than 1. We can use this to design a terminating condition
for the random walk phase of the protocol. For example,
we could terminate the random walk phase after exactly N
steps, and then start the dissemination of the aggregate.

7.5 Messages and time

In Fig. 11a and b, we show the total number of mes-
sages and the total aggregation time as a function of
network size for the aggregation protocol based on push-
assisted self-repelling random walks. The total number
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Fig. 6 Exploration overhead as a function of percentage of nodes
visits for self-repelling random walks
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Fig. 7 Exploration overhead at 100% coverage as a function of
network size
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of messages required to complete the data aggregation
includes the push messages, the messages involved in
the self-repelling random walk phase and the messages
involved in disseminating the result to all the nodes using
a flood. Note that, each token transfer step itself consists
of announcement, token request and token transfer mes-
sages. These are all included in Fig. 11a which shows that
the messages grow linearly with network size.

An interesting aspect of the token transfer procedure
is the number of requests generated for a token during
each iteration. Note that the average number of neighbors
increases as 6(logN) when the network size increases.
However, from Fig. 12, the number of token requests per
transfer is seen to be independent of the number of neigh-
bors. From the box plot of Fig. 12, we observe that the
average number of token requests in each trial is in the
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Fig. 9 Exploration overhead as a function of node speed (network
size = 500 nodes)

range of 1 — 3. This is because nodes that are visited less
often send a request earlier than those that are visited
more times. And, if a node hears a request from a node
that has been visited less often than itself, it suppresses its
request. Thus, irrespective of the neighborhood density,
the number of token requests per node stay constant.

As seen in Fig. 11b, the total aggregation time also
exhibits a linear trend. Note that the measurement of time
is quite implementation specific and incorporates mes-
saging latency in the wireless network. For instance, in
our implementation each transaction (i.e., each iteration
of token announcement, token requests and token pass-
ing) took on average 25 ms. But this number could be
much smaller using methods such as [37] that use collab-
orative communication for estimating neighborhood sizes
that satisfy given predicates.

7.6 Comparison with structured tree based protocol
In this section, we compare the performance of our pro-
tocol with a structured approach for one-shot duplicate
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Fig. 11 Analysis of time and messages for EZ-AG. a Total messages, b Aggregation time

insensitive data aggregation that involves maintaining net-
work structures such as spanning trees. For our com-
parison, we use a prototype tree-based protocol that we
describe briefly. The idea is very similar to other tree-
based aggregation protocols developed for static sensor
networks [16, 17], but the key difference is that the tree
is periodically refreshed to handle mobility as described
below.

The initiating node maintains a tree structure rooted at
itself by flooding a request message in the network. Each
node maintains a parent variable. When a node hears a
flood message for the first time, it marks the sending node
as its parent. It then schedules a data transmission for its
parent at a random time chosen within the next 25 ms.
The message is successively forwarded through the tree
structure until it reaches the root. During this process,
a node also opportunistically aggregates multiple mes-
sages in its transmission queue before forwarding data
to its parent. A message could be lost because a node’s
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Fig. 12 Number of token requests generated per token transfer

parent has moved away or due to collisions. To handle
message losses, a node repeats its data transmission to
its parent until an acknowledgement is received from its
parent. While this basic protocol is sufficient for a static
network, the network structure is constantly evolving in
a mobile network. Hence, the initiating node periodically
refreshes the tree by broadcasting a new request every
2 s (with a monotonically increasing sequence number to
allow nodes to reset their parents). The refreshing of the
tree is stopped when data from all nodes has been received
at the initiating node.

In Fig. 13a, we compare the total messages required
for the tree-based protocol and the random walk based
protocol at different node speeds. As seen in this figure,
for static networks the tree based protocol is more effi-
cient. However as the mobility increases, the random walk
based protocol starts increasing in efficiency. In Fig. 13b
we compare the total aggregation time which also exhibits
a similar trend.

In Fig. 14 we compare the total number messages as a
function of network size at an average speed of 9 m/s. Here
we observe that the self-repelling random walk based pro-
tocol exhibits a linear trend while the tree based protocol
exhibits a super-linear trend. This is due to the poten-
tially large number of re-transmissions experienced by the
tree-based protocol in a mobile network. This graph also
shows that EZ-AG is far more scalable with network size
under mobility than structure-based techniques for data
aggregation.

8 Conclusions

In this paper, we have presented a scalable, robust and
lightweight protocol for duplicate insensitive data aggre-
gation in MANETs that exploits the simplicity and effi-
ciency of self-repelling random walks. We showed that
by complementing self-repelling random walks with a
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single step push phase, our protocol can achieve data
aggregation in O(N) time and messages. In terms of mes-
sage overhead, our protocol outperforms existing struc-
ture free gossip protocols by a factor of log(N). We
quantified the performance of our protocol using ns-3
simulations under different network sizes and mobility
models. We also showed that our protocol outperforms
structure based protocols in mobile networks and the
improvement gets increasingly significant as average node
speed increases.

We have shown that EZ-AG meets the lower bound of
O(N) in terms of communication requirements for aggre-
gation. Also, each node only needs to store the number of
times it has been visited. Thus, EZ-AG is lightweight in
terms of both communication requirements and memory
utilization. It also makes rather minimal assumptions of
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Fig. 14 Total messages as a function of network size for EZ-AG and
tree based protocol (node speed =9 m/s)

the underlying network. In particular, it does not assume
knowledge of node addresses or locations, require a neigh-
borhood discovery service or network topology informa-
tion, or depend upon any particular routing or transport
protocols such as TCP/IP.

We also described a hierarchical extension to EZ-AG
that provides multi-resolution aggregates of the network
state to each node. It outperforms existing technique by a
factor of O (log“N ) in terms of number of messages.

Note that EZ-AG uses only a single step push phase,
i.e. a one hop broadcast from every node to its neigh-
bors. Extending the push phase beyond a single hop may
improve the speed of convergence, but at increased com-
plexity. Requiring each neighbor to further push the data
(i.e., a 2 hop push) essentially increases the communica-
tion cost by a factor equal to the degree of connectivity d.
Pushing across the network diameter is essentially flood-
ing with a cost of O (N 2). A single step push, on the other
hand, maintains the communication cost at O(N), while
significantly speeding up the aggregation.
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