
Journal of Internet Services
and Applications

Silva et al. Journal of Internet Services and Applications (2018) 9:6
https://doi.org/10.1186/s13174-018-0078-3

RESEARCH Open Access

Security and privacy aware data
aggregation on cloud computing
Leandro V. Silva*, Pedro Barbosa, Rodolfo Marinho and Andrey Brito

Abstract

The use of cloud computing has become common due to advantages such as low cost and sizing of computing
resources according to demand. However, it also raises security and privacy concerns, because critical data – for
example, in IoT applications – are stored and processed in the cloud. This paper proposes a software architecture that
supports multiple approaches to secure data aggregation. For validation purposes, this software architecture was
used in the development of applications for smart grids, computing instantaneous consumption of a region and the
monthly bill of an individual consumer. The consumption data can be collected by smart meters, enabling consumers
to reduce electricity costs through close monitoring. However, such data may reveal sensitive information if no
privacy techniques are applied. Therefore, the proposed software architecture proved to be viable from experiments
with techniques such as homomorphic encryption and hardware security extensions (Intel SGX).

Keywords: Software architecture, Security, Privacy, Cloud computing, Homomorphic encryption, Smart grids

1 Introduction
Cloud computing is a term meaning online hosted ser-
vices. These services are accessible through the Internet,
metaphorically called the “cloud” [1]. From a business
point of view, this computing model is very attractive.
Software, hardware, and physical infrastructure expenses
are drastically reduced as contracting of computational
resources is done in smaller grains and the expansion or
reduction of these resources can be done in an automated
way, according to the demand. Moreover, the operation of
the infrastructure is delegated to a provider that, due to its
scale, tends to be much more efficient.
Despite all the advantages cited, the use of cloud com-

puting brings security and privacy concerns. In a poll of
the Cloud Industry Forum [2] for the United Kingdom,
the two main inhibitors for cloud computing adoption are
concerns about data security and privacy, mentioned by
70% and 61% of the respondents, respectively. In most
cases, cloud services are provided on a shared infras-
tructure and, thus, additional attacks – both external and
internal – can occur [3], such as stealing passwords for
accessing the cloud service or exploits in the provided
application programming interface (API) [4].

*Correspondence: leandro@ufcg.edu.br
Universidade Federal de Campina Grande, 58429-140 Campina Grande, Brazil

In certain use cases – such as smart grids – confiden-
tiality requirements tend to be greater due to its large
volume of sensitive data. In this context, sensitive data,
such as the fine grained energy consumption of each con-
sumer, should be handled safely, since they can reveal a lot
of information about consumers, e.g., excerpts from the
day that there are no individuals in the household, arrival
and departure times, or rest periods, which reveal their
behavior patterns.
This paper proposes a software architecture to enable

the use of cloud computing in applications with strict
security and privacy requirements. This architecture con-
siders how the components of an application can be
integrated so that the privacy and security of user data
are guaranteed. The sensitive part of the processing is
therefore isolated and the architecture considers different
strategies for aggregating sensitive data in environments
where there are no guarantees of full confidentiality.
This software architecture can be applied in many situa-

tions where sensitive data is collected and must be aggre-
gated in order to anonymize and produce meaningful
information. For example, in elections, electronic devices
could be used to periodically send partial results to aggre-
gators in the cloud in order to calculate the final voting
result. Voters’ identities and partial results would not leak

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-018-0078-3&domain=pdf
mailto: leandro@ufcg.edu.br
http://creativecommons.org/licenses/by/4.0/

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 2 of 13

because safe aggregators would handle this information in
an isolated environment.
In our work, we consider two implementations of the

secure aggregation module, one based on homomorphic
encryption, which is completely programmed in software,
but imposes high additional processing costs, and another
based on Intel SGX (Software Guard eXtensions) [5] tech-
nology, which does not impose high computational costs,
but requires processors that support the software guard
instruction set1. The first enables computations to be per-
formed on ciphertext without compromising encryption.
For example, a homomorphic search system allows locat-
ing terms in encrypted databases without disclosing any
information about the database or about the term being
searched. The second allows processes to be run in a
protected mode, where memory and execution are pro-
tected against access, even from users or processes with
higher levels of privilege, avoiding the need to perform
computations in ciphertext.
In our experiments, two use cases were addressed: the

calculation of instant energy consumption in a region
and the calculation of consumers’ monthly bill. The
aggregation strategy with Intel SGX proved to be much
more efficient than homomorphic encryption. However,
since homomorphic encryption does not have specific
hardware requirements, this strategy may be feasible
for applications where the focus is not on the volume
of data.
Finally, certain limitations were identified during the

development of the work: (i) to be feasible, the set of
computations for the fully homomorphic encryption is
limited, which makes it much more difficult to develop
arbitrary data processing modules; (ii) the use of Intel
SGX prevents certain operations from being performed,
such as system calls (syscalls), which has implications for
the type of code that will run in a protected manner;
and (iii) Intel SGX also has memory usage limitations,
128 MB per host in the current implementation, but with
the ability to paginate memory.
The contributions of this research are: (i) a software

architecture for data aggregation on the cloud composed
by two secure approaches; (ii) a practical use of the
proposed architecture in smart grids; (iii) a comparison
and discussion about advantages, disadvantages and lim-
itations of homomorphic encryption and Intel SGX for
aggregation; and (iv) a performance analysis of Intel SGX
in different environments – bare metal, virtual machines
and Docker containers.
The rest of the paper is organized as follows. The related

work is discussed in Section 2. Section 3 depicts the soft-
ware architecture designed to ensure secure data aggre-
gation. The evaluation method is explained in Section 4,
the results are presented in Section 5 and are dis-
cussed in Section 6. A threat analysis of this solution is

discussed in Section 7. Finally, Section 8 highlights the
main conclusions of the paper and its limitations.

2 Related work
In this section, several related works on cloud architec-
tures, privacy techniques and cryptography are discussed.

2.1 Cloud architectures and platforms
Reinhold et al. [6] describe a hybrid architecture, where
part of the components are hosted in a private cloud and
part in a public cloud. The storage of encrypted data is
hosted in a public cloud. The application, with the logic
and data processing, is hosted in a private cloud, where
there are minor concerns with security and privacy. Only
clients have access to private keys, so, data is only treated
in its pure form when the client is authenticated. Finally,
whenever data needs to be stored, it goes through an
encryption server, which stays in the private cloud, and
then is sent to the storage server in the public cloud.
Bohli et al. [7] study different architecture patterns for

resource distribution across multiple cloud computing
service providers: application replication, which allows
operations to be sent across different clouds and com-
pare if the results are the same; layers partitioning of an
application into distinct clouds, to separate, for example,
the logic of the application in one cloud and the database
in another; partitioning the application logic into differ-
ent clouds and partitioning the data into distinct clouds.
The authors conclude that there is no optimal strategy
for all cases, since the implementation of the suggested
standards is not trivial and all have security breaches.

2.2 Privacy techniques
Possible uses of Intel SGX were discussed by Hoekstra
et al. [8]. They present examples of applications that make
use of the Intel SGX capabilities, as well as an application
architecture considering an application partition between
parts that demand security and should be executed within
enclaves, and parts that do not require security, which can
be run out of enclaves.
A toolkit for building protocols is presented by Barbosa

et al. [9]. It extends the warranties of isolated execution
environments, such as Intel SGX, by using its ability to
perform remote attestation. So, it is possible to establish
key exchange protocols between a remote participant and
an isolated execution environment, in a secure way. These
protocols are defined by the combination of a passively
secure key exchange protocol and the use of an arbitrary
attestation protocol.

2.3 Cryptography
On secure computing, Rivest, Adleman and Dertouzous
[10] created the concept of homomorphic encryption.
This is due to the fact that RSA, a cryptographic

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 3 of 13

system developed by Rivest, Shamir and Adleman [11],
has a partial homomorphism, called multiplicative homo-
morphism. Using unpadded RSA, it is possible to multi-
ply two encrypted values and the result will still be the
encrypted multiplication.
Fully homomorphic models are characterized by allow-

ing operations of addition andmultiplication in encrypted
blocks, so that the value returned is an encryption of
the result of the operations applied on the original data.
Although the concept is not recent, these models were
considered purely theoretical until Gentry [12] proposed
a valid system, using ideal lattices. However, efficiency
issues are still a barrier. Currently, all types of fully homo-
morphic encryption schemes proposed still have a long
evolutionary path before being used in practice [13].

3 The software architecture
The proposed solution can be applied in a way that devel-
opers will not have to worry about every aspect of the
architecture, only the aggregation part. It has four types
of components: message bus, producers, aggregators and
consumers. A message bus is responsible for communica-
tion between producers, aggregators and data consumers.
After being produced, the data will be published on the
message bus and, at some point, will be consumed and
treated by aggregators, who may perform arbitrary oper-
ations, capable of perform them safely. Subsequently, the
aggregate data will be consumed by applications. An illus-
trative schema of the architecture can be seen in Fig. 1.
All the illustrated components follow well defined inter-

faces, therefore, it is possible to use different types of
producers, message buses, aggregators or consumers, as

long as they correctly implement the specification. The
following sections detail the major components of this
architecture.

3.1 Message buses
A message bus is responsible for the exchange of infor-
mation between members – producers, aggregators or
consumers – in a transparent way, consequently, a pro-
ducer can, for example, create messages without knowing
more details, such as physical location or IP address, about
the aggregators. This reduces the coupling and ensures
scalability.
Each component of the architecture must subscribe to

a message topic. All aggregators or consumers of a topic
will receive the messages sent by the producers. In addi-
tion, exclusive consumption of new messages or of all
messages retained from a certain topic is allowed. It is
worth mentioning also that any party can send messages
in a topic in order to request data, to perform intermedi-
ate steps on data. Finally, the amount of messages stored
for a topic may be configurable.
This component allows the secure exchange of every

message. Each party can have a certificate issued by a
certification unit as a form of authentication, preventing
intruders from sending or receiving messages. In addi-
tion, messages with sensitive content must be encrypted.
It is the role of the aggregator, described in Section 3.3,
to transform sensitive and encrypted information, such
as individual consumptions measured by smart meters of
households, into puretext aggregate information, such as
consumption over a longer period of time or consumption
of a region.

Fig. 1 Simplified schema of proposed software architecture

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 4 of 13

The basic operations supported by a message bus are:

• operationMode: the operation mode can be
common or secure. If it’s secure, the message bus
will require valid certificates for every member. A
certificate is valid if it is registered in the message bus;

• register: allows a certificate to be registered in the
message bus to be used as an authentication form;

• connect: first operation called by members before
subscribing to a topic. If the operation mode is
secure, a valid certificate is needed;

• subscribe: a member can subscribe a message topic
to publish and consumemessages.

• publish: publishes a message in a subscribed topic.
• consume: consumes messages from a subscribed

topic.

3.2 Producers and consumers
As stated before, producers are responsible for generating
data, which will be published in topics on themessage bus.
When necessary, these data will be processed by aggre-
gators and eventually will be received by consumers –
applications, for example.
Sensitive data produced can not be used to threaten the

security and privacy of their owners, so each type of pro-
ducer must provide strategies to ensure this. The strategy
will depend on the type of aggregator being used.
Both producers and consumers support similar opera-

tions. The list is shown below:

• getCertificate: returns its public certificate to be
used for authentication purposes;

• connectToBus: performs the connection to the
message bus before sending or receiving any data;

• subscribeToTopic: contacts the message bus in order
to subscribe to a topic.

• publishIntoBus: publishes a message in a subscribed
topic. This operation is used by producers.

• consumeFromBus: consumes messages from a
subscribed topic. Operation used by producers –
when intermediary steps are needed for aggregation
– and by consumers.

3.3 Aggregators
After consuming the producer’s data of message topics
on the message bus, it is often necessary to perform
operations on them. These operations, such as sum, mul-
tiplication or grouping are performed by aggregators.
The purpose of this component is to transform sen-

sitive data in order to prevent critical information from
being discovered while ensuring that it is still relevant to
consumers.
Any aggregation must be safe, so these components

work in tandem with the producers because the data
sent must be computable by the respective aggregator.

For example, if a producer sends ciphertext generated by
an encryption algorithm, the responsible aggregator must
have means to process that.
The operations supported by this component are:
• All the operations from producers and consumers;
• aggregate: aggregates data sent by producers. All the

data is collected using the
consumeFromBus operation.

4 Evaluation
Two use cases were chosen for implementation as proofs
of concept to evaluate the proposed solution. Both are
part of the context of smart grids and have requirements
regarding data confidentiality. The use cases are discussed
in Sections 4.1 and 4.2, the technical aspects are explained
in Section 4.3 and the developed aggregators are shown in
Sections 4.4 and 4.5.

4.1 Calculation of regional energy consumption
The growing need of electric energy resources motivated
both by the government and the industry, seek for alter-
native ways to provide energy and, especially, to improve
the management of the electricity grid. On the other
hand, increasing efficiency and balancing the energy grid
is not a trivial task. For this, one option is to use smart
meters, which can periodically measure and report energy
consumption [14].
As stated earlier, periodic measurement of energy con-

sumption causes concerns about consumer privacy, since
it is possible to infer personal information from what is
collected, such as appliance usages in the residence, as well
as the presence and number of inhabitants [15]. In more
extreme cases, it is even possible to identify the television
channel being watched [16].
An alternative to provide relevant information for

energy balancing, while maintaining consumer privacy, is
to aggregate consumption data into groups of households,
or regions.

4.2 Calculation of the monthly consumption bill
The second use case is to calculate, in a secure and private
manner, the monthly consumption bill for each consumer.
This approach allows the utility provider to issue invoices
considering the aggregate consumptions and allows the
consumers or the providers tomake use of certain benefits
of detailed measurement – calculation of instantaneous
consumption of the region or local visualization of instant
consumption by the consumer – without privacy threats,
guaranteeing that detailed data will not be used by the
utility or partners to infer consumer habits.

4.3 Technical aspects
For the experiments’ execution, the proofs of concept
were implemented following the architecture explained

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 5 of 13

in Section 3. Figure 2 illustrates an instantiation of the
proposed software architecture for the considered use
cases.
Among the above components, smart meters (produc-

ers) and aggregators were developed during the research.
For the communication between producers and aggrega-
tors/consumers, the Apache Kafka2 solution was chosen,
since it provides all the services required for the message
bus, including the secure exchange of messages, allowing
the authentication of those involved and the use of secure
communication channels.
Each smart meter is simulated by a thread in Java that

generates random consumption values and publishes on
the message bus. All meters in a region r are subscribed to
the same topic of the message bus. The region aggregator
r is a running process that is also subscribed to the topic
and is responsible for grouping themeasurements for each
time instant t, and, when the whole set of consumption
data of the region’s meter is collected for an instant t, it is
possible to calculate the sum of these values.
For the calculation of the monthly consumption bill

using the homomorphic aggregator, also developed in
Java, each meter makes use of k public and private key
pairs, one pair for eachmeasurement, with a circular reuse
according to the module of the measurement identifier.
Finally, at each end of the cycle, the aggregation process is
executed for that time interval.
For the Intel SGX aggregator, a fixed symmetric key,

previously shared with the aggregator via the remote
attestation process, is used by each meter. In addition,
a nonce is generated randomly for each measurement.
The secure exchange of keys between smart meters

and the aggregator is explained in a detailed way in
Section 4.5.
Finally, the two approaches are robust against situa-

tions where the aggregator publishes aggregated results
but allows the inference of instantaneous values. In the
homomorphic approach, the producer participates in
the aggregation process and can identify situations where
the aggregations use little data or have overlapping inter-
vals. In the Intel SGX approach, the producer validated the
attester’s code initially and it can not be updated without
a new attestation.

4.4 Homomorphic aggregator
This aggregator uses homomorphic encryption to per-
form operations in the data in a secure and private man-
ner. Many asymmetric algorithms have homomorphic
properties, such as unpadded RSA [10] and Paillier [17],
described in Appendix. To be more precise, unpadded
RSA is a multiplicative homomorphic cryptosystem, while
Paillier is an additive homomorphic cryptosystem.
Although unpadded RSA and Paillier present interest-

ing homomorphic properties, the presented case study
here considers an approach based on the ElGamal
cryptosystem – aggregations using other homomorphic
encryptions could be performed, however. For example,
Garcia et al. [18] and Erkin et al. [19] present approaches
for aggregating energy consumption measurements using
variations of the Paillier cryptosystem.
The approach used in our case study is based on the

scheme proposed by Busom et al. [20], which applies
the ElGamal cryptography system [21]. By default, it has
the multiplicative homomorphic property but a small

Fig. 2 Schema of the application for calculating aggregate values of energy consumption

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 6 of 13

modification enables addition, as seen in [22]. In addition,
it is possible to combine it with a threshold encryption
scheme [23], where all involved parties need to collaborate
to decrypt the ciphertext.
The ElGamal cryptosystem proceeds as follows:

• Set up: a large prime q is chosen. Next, a generator g
of the cyclic group Z

∗
q is selected.• Key generation: a secret key x is generated by setting

its value as a random number x ∈R Z
∗
q. The

corresponding public key is computed as y = gx.
• Encryption: a messagem ∈ G is encrypted under

public key y by taking a random number r ∈R Z
∗
q and

computing c = gr and d = m · yr . The ElGamal
encryption of m under public key y,Ey(m), is the
tuple (c, d).

• Decryption: a ciphertext Ey(m) is decrypted using the
private key x by computingm = d · c−x.

Given messages m1 and m2, we can obtain an encryption
ofm1 · m2 by computing:

Ey(m1) · Ey(m2) = (c1 · c2, d1 · d2)
= (

gr1+r2 ,m1 · m2 · yr1+r2)

= Ey(m1 · m2).

Hence, ElGamal is a multiplicative homomorphic cryp-
tosystem.
To calculate the total consumption in a region, Busom

et al. [20] propose a protocol which uses an additive
ElGamal cryptosystem. Given Ey

(
gm1

)
and Ey

(
gm2

)
, then,

Ey
(
gm1

) · Ey
(
gm2

) = Ey
(
gm1 · gm2

) = Ey
(
gm1+m2

)
.

For this type of aggregation, each producer p ∈[1, n],
where n is the number of producers in a common topic,
must have the following items:

• A large prime number q (2048 bits minimum) and a
generator g of order q from the multiplicative group
G of Z∗

q;• A private key xp;
• A public key yp = gxp ;
• A certificate certp, to be validated by a certification

unit;

A configuration phase is mandatory whenever new pro-
ducers subscribe to a message thread. The procedure is
described below:

1. The aggregator sends a configuration request
message;

2. Each producer sends yp and certp to the topic;
3. The aggregator checks the validity of each certp and

inserts a message with {y1, ..., yn} and
{cert1, ..., certn} on the topic;

4. Each producer checks the validity of each certp and

calculates a global public key y =
n∏

p=1
yp.

The following steps will be performed whenever a data
collection is needed for aggregation:

1. The aggregator sends a data request message or,
alternatively, the producers can initiate a
transmission periodically;

2. Each producer p generates a random number
zp ∈ Z

∗
q and calculates Cp = Ey

(
gvp+zp

) = (cp, dp),
where vp represents the value collected by p and the
Ey represents the ElGamal encryption function;

3. All values Cp are published in the message bus topic
associated with that producer (for example, the
region where the meter is installed);

4. The aggregator performs its computation:

C =
(

n∏

p=1
cp,

n∏

p=1
dp

)

and inserts C in the topic;

5. Each producer calculates Tp = cxp .gzp and publishes
it in the topic;

6. The aggregator is able to compute

D = d.
(

n∏

p=1
Tp

)−1

, where d =
n∏

p=1
dp;

7. Finally, it is possible to obtain V =
n∑

p=1
vp by

calculating logg D;
8. The aggregator publishes the result obtained in the

same or another topic of the message bus, so that it is
available to potential consumers.

Since it’s a secure multiparty process with multiple
steps, the raw data generated by every producer would
leak only if all the other participants were compromised.
This security is increased when more participants exist.

4.5 Intel SGX aggregator
The Intel SGX aggregator uses the technology of same
name to provide security and privacy of the sensitive data
by aggregating it in protected areas of memory (enclaves),
inaccessible even by users with high privileges. In our
implementation, we used the AES Galois/Counter Mode
(AES-GCM) symmetric encryption algorithm described
in [24] – key size of 128-bit – for the exchange of
confidential messages between the producers and the
aggregator.
In order to agree on the 128-bit key to be used for

secure communication, each producer p ∈[1, n] of a topic
communicates with and attests the aggregator, i.e., veri-
fies that the correct aggregator has been established in
an SGX enclave, by performing the Remote Attestation
process described in [25]. In a nutshell, the Remote Attes-
tation process leverages SGX capabilities to produce a

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 7 of 13

criptographic signature of the contents of SGX enclaves
and to digitally sign it using a key that is only accessible
by the platform processor, and uses an external attestation
service – currently, only an attestation service provided
by Intel (IAS) can be used – to verify that the produced
information indeed came from the expected SGX enclave.
The Remote Attestation process also has an underlying
key exchange scheme based on the elliptic curve Diffie-
Hellman (ECDH) key exchange protocol. As a result of
this process, each producer will have both (i) successfully
verified the integrity of the aggregator and (ii) derived the
128-bit key kp used for secure communication – which is
also derived by the aggregator inside the enclave.
When receiving encrypted confidential data, the aggre-

gator can decrypt the message using the same AES-
GCM algorithm, and then perform aggregation on the
decrypted sensitive data. The security and privacy of the
encrypted data is achieved through the guarantees pro-
vided by the SGX enclaves [5].
The following steps are performed to aggregate col-

lected data at each time instant:

1. The aggregator sends a data request message or,
alternatively, the producers can initiate a
transmission periodically;

2. Each producer p creates a random value (nonce) np,
and calculates Cp,Mp = Ge

(
vp, np, kp

)
where Cp is

the value collected by p after the AES-GCM
encryption,Mp is the message authentication code of
vp, which is the value measured by p, and the function
Ge is the AES-GCM function in encryption mode.

3. Each producer publishes Cp,Mp and np to the topic;

4. The aggregator calculates V =
n∑

p=1
vp by computing

n∑

p=1
Gd

(
Cp, np, kp,Mp

)
, where the function Gd is the

AES-GCM function in the decryption mode, that
also verifies the integrity of each of the messages
received in the topic;

5. The aggregator publishes the result obtained on the
same or another topic of the message bus, so that it
becomes available to potential consumers.

The sensitive data processed by this aggregator is free
of information leakage because the memory inside an
SGX enclave is encrypted. Also, all the data is exchanged
using a secure connection, established by the Remote
Attestation process. This process also ensures that the
running code inside an SGX enclave was not modified.

5 Results
After the proofs of concept were developed, experiments
were executed in order to evaluate the feasability of every
aggregator. The chosenmetric to compare the aggregators

was response time, because many cloud providers charge
for the time their resources were used. Tests were
made to measure response times for approaches using
the homomorphic and the Intel SGX aggregator, and
also using an aggregator without security or privacy
guarantees – important to measure the overhead imposed
by the secure aggregators.
The tests were executed using a machine with Intel

Kaby Lake Processor (7th generation) i7 7700HQ and 16
GB of RAM. The chosen operating system was Ubuntu
16.04 and, depending of the aggregator, the experiments
were ran using the host, using Docker Containers and also
using Virtual Machines (VMs).
For the Intel SGX aggregator, the KVM SGX 3 and

QEMU SGX 4 were installed to allow virtual machines to
use SGX instructions.
Table 1 contains the description, input parameters

and the environment for every test conducted. For the
unencrypted and the Intel SGX Aggregator, the num-
ber of households varied from 50 to 1500 to show how
these aggregators perform in small, medium and big
regions. In preliminar experiments, we verified that these
intervals covered a sufficient range to determine if the
response time grows linearly or exponentially depend-
ing of the number of households. For the Homomorphic
Aggregator, the upper bound was 250 because values
higher than that would lead to very long duration tests.
The purpose of the first experiment, shown in Fig. 3, was

to evaluate the time required for using Intel SGX in differ-
ent environments. The response time overhead imposed
by the Intel SGX technology is notable, specially when
used in virtual machines, as shown in Fig. 4. On the other
hand, the cost imposed by Docker Containers is barely
noticeable.
The Homomorphic Aggregator results can be seen in

Fig. 5. We decided to use two measurements’ interval to
show that, for smaller periods, this aggregator may not be
a good choice. It’s better to use this approach when data is
collected in longer periods of time.
To sum up, Table 2 shows a comparison between the two

developed secure aggregators. Despite the high overhead
of Homomorphic Aggregator, it may be a good option
when a cloud provider doesn’t support the Intel SGX
technology. A detailed discussion is in the next section.

6 Discussion
As it can be seen in the graphs and the table presented in
the previous section, the data aggregation approach using
Intel SGX yields much lower response times than the
homomorphic encryption approach. Nevertheless, each
aggregation approach has advantages and disadvantages
which are discussed below.
Despite being slower, homomorphic encryption has

advantages that make it viable in certain applications. No

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 8 of 13

Table 1 The test case, environment, aggregator and input parameters used for every test

Aggregator Test case Environment Number of households Total simulated time Measurements’ interval

Unencrypted Region Host, VM, 50, 100, 200, 250, 500, 1 day 60 s
consumption Container 750, 1000, 1250, 1500

Unencrypted Monthly bill Host, VM, 50, 100, 200, 250, 500, 30 days 60 s
Container 750, 1000, 1250, 1500

Intel SGX Region Host, VM, 50, 100, 200, 250, 500, 1 day 60 s
consumption Container 750, 1000, 1250, 1500

Intel SGX Monthly bill Host, VM, 50, 100, 200, 250, 500, 30 days 60 s
Container 750, 1000, 1250, 1500

Homomorphic Region Host 10, 50, 100, 200, 250 1 day 60, 900 s
consumption

Homomorphic Monthly bill Host 10, 50, 100, 200, 250 30 days 60, 900 s

specific hardware is demanded for its execution, making it
easily deployable in various environments. Besides that, it
can be implemented in different programming languages,
since it is purely based in mathematics. Depending on the
amount of data to be computed, its cost in terms of time
can be negligible compared to the benefits of privacy and
security enabled by this approach, once all computation is
done over ciphertext, making all contents unknown to the
service provider and any potential attackers.
Another clear advantage of the approach used for

homomorphic aggregation is that the data consumer is
unable to infer the individual measurements of a spe-
cific consumer, because it would be necessary that all
other consumers were rogue ones. This is characteristic of
threshold encryption.
On the other hand, the homomorphic approach has a

limitation related to the operations that can be done over
ciphertext, given that most cryptography algorithms are
partially homomorphic, and the ones that allow arbitrary
computations over ciphertext, like the one presented in
[12], still demand very high processing times.
Another negative factor observed in homomorphic

aggregation is that an additional message exchange is

needed in order to compute the regional energy con-
sumption. This is not trivially deployable because sending
messages from the utility provider to the meters requires
the meter to have an accessible address or to use a polling
strategy to periodically verify if there are newmessages, as
in the second phase of the algorithm.
Intel SGX, in turn, has high performance and a low

additional cost, if compared to the use of homomorphic
encryption, because it does not need to perform any
computation over ciphertext, whilst providing security
and privacy guarantees to users’ data, without demand-
ing great efforts to implement applications that use the
technology, given that Intel SGX has libraries that support
creating, attesting and using enclaves. In that way, its use
is interesting when needed hardware is available and there
is a need for execution speed and privacy and security of
the data involved.
Nevertheless, there are still some open questions

regarding the complete integration between the Intel
SGX solution and the cloud computing environment
philosophy. While cloud computing solutions are based
on the complete decoupling between physical hard-
ware and applications, for instance through hardware

Fig. 3 Comparison between unencrypted and Intel SGX aggregators for region consumption and monthly bill calculation using host, virtual
machines and docker containers

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 9 of 13

Fig. 4 Cost of using Intel SGX in docker containers and virtual machines

virtualization, Intel SGX directly binds the security
of an application to the attestation process, which in
turn demands Intel’s participation with its attestation
service.
Another negative point concerning the use of Intel SGX

is its limited API support, which requires the develop-
ment of applications in C/C++ and the impossibility, due
to security reasons, of executing system calls from code
executed within enclaves, which in turn may difficult the
portability of applications to be used with the technology.
Lastly, another point that must be taken into account by
any application that uses Intel SGX is that there is cur-
rently a hard limit of only 128 MB of memory that can be
used for creating and executing enclaves per host hard-
ware. Swapping can be used to encrypt memory before
exporting it outside the processor, but this imposes addi-
tional loads.

7 Threat analysis
The adversary model of the proposed software architec-
ture considers the possibility of an attacker in obtaining

individual and sensitive values from the aggregators. In
this section, we discuss possible weaknesses in both com-
ponents: Intel SGX and homomorphic aggregators.

7.1 Vulnerabilities in Intel SGX
With the Intel SGX aggregator, to be able to obtain
individual values, the adversary needs to extract such
data from the enclave. Possibilities for this are described
below.

• Side channel attacks: SGX protects against many
types of attacks, even from privileged users and
softwares. However, a side-channel adversary is able
to gather statistics from the CPU regarding execution
and may be able to use them to deduce characteristics
of the software being executed and the data being
processed (side-channel analysis). Examples of
analyses are power statistics, performance statistics
including platform cache misses, branch statistics via
timing, and information on pages accessed via page
tables. It is well documented that SGX does not

Fig. 5 Homomorphic aggregation for region consumption and monthly bill using host environment

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 10 of 13

Table 2 Comparison of Intel SGX and homomorphic aggregators. The response times are in seconds

Test case Households Intel SGX Homomorphic

Total time One measurement Total time One measurement Overhead

Region consumption 50 0.584 ± 0.008 <0.001 1523 ± 12.601 1.058 2608

Region consumption 100 1.186 ± 0.009 <0.001 3018.6 ± 13.675 2.096 2545

Region consumption 200 2.428 ± 0.062 0.002 6060 ± 45.299 4.208 2496

Monthly bill 50 17.6 ± 1.110 <0.001 46510.6 ± 319.974 1.077 2643

Monthly bill 100 36.2 ± 1.360 <0.001 93412.8 ± 940.763 2.162 2580

Monthly bill 200 75.2 ± 2.964 0.002 187803.8 ± 564.790 4.347 2497

defend against side-channel adversaries [26, 27].
• Software vulnerabilities: SGX components are

complex and unlikely to be bug-free, like any other
software. There are drivers, libraries, dependencies,
and complex instructions available for developers.
Moreover, enclave developers may make mistakes
and even the so called protected areas may contain
common vulnerabilities like stack based buffer
overflows, dangling pointers and uncontrolled format
strings. This problem is boosted by the limited
portion of memory of of the enclave because it affects
the effectiveness of the Address Space Layout
Randomization (ASLR).
ASLR is a security technique involved in protection
from many types of attacks. In order to prevent an
attacker from reliably jumping to, for example, a
particular exploited function in memory, ASLR
randomly arranges the address space positions of key
data areas of a process, including the base of the
executable and the positions of the stack, heap and
libraries. With SGX, because the memory space for
an enclave is quite small, a simple brute forcing
mechanism can easily identify the correct address.
We made experiments and observed that for different
executions, an element has its addresses changed by
only two bytes, meaning that the randomization is for
approximately only 65536 possibilities. This is very
small, considering that an attacker can, for example,
increase the attack success probability through the
injection of NOP slides before a malicious code [28].

• Decrypting: To obtain individual and sensitive data,
attackers may try to break the secure communication
channel established through the remote attestation
process. The exchange of an ephemeral symmetric
key during the remote attestation process is
performed through the execution of an elliptic curve
Diffie–Hellman (ECDH) handshake. Therefore,
vulnerabilities rely on the possibility to solve the
elliptic curve discrete logarithm problem.
Man-in-the-middle attacks are mitigated through the
usage of certificates authenticated by Intel during the
remote attestation process.

Symmetric encryption is used in the secure
communication (AES GCM or CTR) and also by the
Memory Encryption Engine to encrypt the enclave
using AES CTR. Attackers can try to decrypt them by
brute forcing and them obtain individual and
sensitive data. However, at present, such attack is not
computationally feasible and there is no known
practical attack that would allow someone without
knowledge of the key to read encrypted data when
such algorithms are correctly implemented. AES has
proven to be a reliable cipher, and the only practical
successful attacks against AES have leveraged side
channel attacks on weaknesses found in the
implementation or key management of specific
AES-based encryption products.

7.2 Vulnerabilities in homomorphic encryption
With the homomorphic aggregator, the adversary needs to
decrypt the data. Possibilities for this are described below.

• Solving a computationally intractable problem:
Asymmetric encryption algorithms which
homomorphic properties rely on the difficulty in
solving a problem in polynomial time. For example,
unpadded RSA and ElGamal provide multiplicative
homomorphic properties. RSA is based on the
difficulty in factoring an integer [11] and ElGamal is
based on the difficulty in computing a discrete
logarithm in polynomial time [21]. Paillier is another
asymmetric encryption algorithm based on the
difficulty in factoring an integer, but its
homomorphic property is additive [17].
There are many algorithms to compute the discrete
logarithm (but none of them run in polynomial time).
One is the Pollard’s rho algorithm for logarithms
[29]. For factoring integers, the most efficient known
is the general number field sieve (GNFS) [30].

• Exploiting implementation pitfalls: Since their
publications, the asymmetric encryption systems
have been analyzed for vulnerability by many
researchers. They mostly illustrate the dangers of
improper use of the algorithms. Indeed, securely
implementing them is a nontrivial task. Dan Boneh

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 11 of 13

[31] presents some of these attacks on RSA and
describes the underlying mathematical tools they use.
For example, when using RSA, Wiener [32] shows
that a small private exponent d results in a total
break of the cryptosystem. A consequence of small
private exponent d is that the public exponent e is
large (recall that e · d mod N = 1). On the other
hand, when the public exponent e is too small, the
encryption may be susceptible to attacks based on the
Coppersmith theorem [33].
There are many other RSA attacks, such as Hastad’s
Broadcast attack [34], Franklin-Reiter Related
Message attack [35], and Partial Key Exposure attack
[36]. Other cryptosystems with homomorphic
properties such as ElGamal and Paillier, when
implemented improperly, also suffer from similar
vulnerabilities.

8 Conclusion
Software requirements like security and privacy should
not be ignored by applications that handle sensitive data
and use cloud computing. In this paper, we describe
a software architecture to address such requirements.
This architecture allows the use of different strategies
for private data aggregation. These strategies include
the use of homomorphic encryption or technologies like
Intel SGX.
For our evaluation, we identified two use cases involv-

ing concerns with the mentioned requirements. Given
the use cases, proof of concept applications were devel-
oped in order to identify the advantages and disadvantages
of each aggregation method. For homomorphic encryp-
tion, the main advantage identified was the viability to
implement in any environment, although it is much less
efficient. Intel SGX, on the other hand, used for the first
time in a cloud computing orchestrator, yields much lower
response times and allows performing various forms of
computation on the sensitive data, but it demands a spe-
cific infrastructure from the service provider.
Because of the compromises that need to be made, nat-

ural future work include how to guide developers into
the selection of the best approach for their application.
Another direction is to combine different technologies
could work together to strengthen privacy and security.
One approach would be to combine different strategies
with secure multi-party computation [37], to avoid that a
compromised technology (e.g., SGX) would not impact on
the overall application.

Endnotes
1 Some examples of processors that support Intel SGX

are the sixth and seventh generation processors of the
Intel Core family and some recent Intel Xeon processors,
such as the E3-1200 v5 family.

2 http://kafka.apache.org
3 https://github.com/01org/kvm-sgx/wiki
4 https://github.com/01org/qemu-sgx/wiki

Appendix
The homomorphic aggregator presented in Section 4.4
uses a scheme proposed by Busom et al. [20], but other
approaches are presented next.

Unpadded RSA cryptosystem
• Set up: two large primes q and p are chosen. Next,

compute N = p · q.
• Key generation: compute φ(N) = (p − 1) · (q − 1).

Next, select a prime number as a public exponent e
such that e ∈[3,φ(N)) and gcd(e,φ(N)) = 1, where
gcd means the greatest common divisor. Also,
compute the private exponent d such that e · d ≡ 1.
The public key is composed by (e,N) and the
corresponding private key is composed by (d,N).

• Encryption: a messagem < N is encrypted under the
public key by computing the ciphertext
E(m) = c = me mod N .

• Decryption: a ciphertext E(m) is decrypted using the
private key, computingm = cd mod N .

Given messages m1 and m2, we can obtain an encryp-
tion ofm1 · m2 by computing:

E(m1) · E(m2) = me
1 · me

2 mod N
= (m1 · m2)

e mod N
= E(m1 · m2).

Hence, unpadded RSA is a multiplicative homomorphic
cryptosystem.

Paillier cryptosystem
Another asymmetric encryption algorithm is Paillier [17].
It works as follows:

• Set up: two large primes p and q are chosen,
N = p · q, and λ = lcm(p − 1, q − 1), where lcm is
the lower common multiple. A random number
g ∈R Z

∗
N2 is chosen in such a way that gcd(b,N) = 1,

where b = L
(
gλ mod N2) and L(u) = (u−1)

N .
• Key generation: let μ be the modular multiplicative

inverse of b modulo N, i.e., μ = b−1 mod N . Thus,
the public key is Pk = (N , g) and the private key is
Sk = (N , λ,μ).

• Encryption: a message m is encrypted under public
key Pk by taking a random number r ∈R Z

∗
N−1 and

computing EPk (m) = gm · rN mod N2.
• Decryption: a ciphertext c = EPk (m) is decrypted

using the private key Sk by computing
m = L

(
cλ modN2) · μ modN .

http://kafka.apache.org
https://github.com/01org/kvm-sgx/wiki
https://github.com/01org/qemu-sgx/wiki

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 12 of 13

Given messages m1 and m2, we can obtain an encryp-
tion ofm1 + m2 by computing:

EPk (m1) · EPk (m2) = gm1 · rN1 · gm2 · rN2 mod N2

= gm1+m2 · (r1 · r2)N mod N2

= EPk (m1 + m2).

Hence, Paillier is an additive homomorphic cryptosystem.

Abbreviations
Intel SGX: Intel software guard eXtensions; VM: Virtual machine

Acknowledgements
We thank Amanda Souza and Gabriel Flores for providing an Intel SGX capable
Docker container. A previous version of this paper was presented at SBSEG
2016 [38].

Funding
This research was partially funded by EU-BRA SecureCloud project (MCTI/RNP
3rd Coordinated Call) and by CNPq, Brazil.

Authors’ contributions
LVS designed the software architecture, aided by AB. PB provided a code
implementation for the chosen homomorphic encryption approach and
discussed possible attacks to the proposed solution. LVS and RM developed
the applications used in the experiments. RM also programmed the Intel SGX
Remote Attestation process. All authors read and approved the final
manuscript.

Ethics approval and consent to participate
No need. All data used was randomly generated, since it would not affect the
experiments.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 15 August 2017 Accepted: 22 January 2018

References
1. Markovic DS, Zivkovic D, Branovic I, Popovic R, Cvetkovic D. Smart

power grid and cloud computing. Renew Sust Energ Rev. 2013;24:566–77.
2. Cloud Industry Forum. UK cloud adoption snapshot & trends for 2016:

The business case for cloud. 2015. https://www.outsourcery.co.uk/media/
1180/cloud-industry-forum-paper-15.pdf. Accessed 17 Aug 2017.

3. Pasupuleti SK, Ramalingam S, Buyya R. An efficient and secure
privacy-preserving approach for outsourced data of resource constrained
mobile devices in cloud computing. J Netw Comput Appl. 2016;64:12–22.

4. Younis YA, Merabti M, Kifayat K. Secure Cloud Computing for Critical
Infrastructure : A Survey. In: The 14th Annual PostGraduate Symposium
on The Convergence of Telecommunications, Networking and
Broadcasting. United Kingdom: Liverpool John Moores University; 2013.

5. McKeen F, Alexandrovich I, Berenzon A, Rozas CV, Shafi H,
Shanbhogue V, Savagaonkar UR. Innovative instructions and software
model for isolated execution. In: HASP ’13 The Second Workshop on
Hardware and Architectural Support for Security and Privacy. New York:
ACM; 2013. p. 10.

6. Reinhold P, Benn W, Krause B, Goetz F, Labudde D. Hybrid cloud
architecture for software-as-a-service provider to achieve higher privacy
and decrease security concerns about cloud computing. In: Conf. Cloud
Computing, GRIDs, and Virtualization (IEEE, 2014). Venice: The Fifth
International Conference on Cloud Computing, GRIDs, and Virtualization
CLOUD COMPUTING; 2014. p. 94–9.

7. Bohli JM, Gruschka N, Jensen M, Iacono LL, Marnau N. Security and
privacy-enhancing multicloud architectures. IEEE Trans Dependable
Secure Comput. 2013;10(4):212–24.

8. Hoekstra M, Lal R, Pappachan P, Phegade V, Del Cuvillo J. Using
innovative instructions to create trustworthy software solutions. In: HASP
’13 The Second Workshop on Hardware and Architectural Support for
Security and Privacy. New York: ACM; 2013. p. 11.

9. Barbosa M, Portela B, Scerri G, Warinschi B. Foundations of
hardware-based attested computation and application to sgx. In: 2016
IEEE European Symposium on Security and Privacy (EuroS&P). Congress
Center Saar, Saarbrücken: IEEE; 2016. p. 245–60.

10. Rivest RL, Adleman L, Dertouzos ML. On data banks and privacy
homomorphisms. Found Secure Comput. 1978;4(11):169–80.

11. Rivest RL, Shamir A, Adleman L. A method for obtaining digital signatures
and public-key cryptosystems. Commun ACM. 1978;21(2):120–6.

12. Gentry C. A fully homomorphic encryption scheme: PhD thesis, Stanford
University; 2009.

13. Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption
be practical? In: Proceedings of the 3rd ACMWorkshop on Cloud
Computing Security Workshop. New York: ACM; 2011. p. 113–24. CCS’11
the ACM Conference on Computer and Communications Security.

14. Erkin Z, Tsudik G. Private computation of spatial and temporal power
consumption with smart meters. In: Proceedings of the 10th international
conference on Applied Cryptography and Network Security. Singapore:
Springer; 2012. p. 561–577.

15. Anderson R, Fuloria S. On the security economics of electricity metering.
In: The Eighth Workshop on the Economics of Information Security (WEIS
2009). London: Citeseer; 2010.

16. Greveler U, Glösekötterz P, Justusy B, Loehr D. Multimedia content
identification through smart meter power usage profiles. In: Proceedings
of the International Conference on Information and Knowledge
Engineering (IKE). Las Vegas: WorldComp; 2012. p. 1. The Steering
Committee of The World Congress in Computer Science, Computer
Engineering and Applied Computing (WorldComp).

17. Paillier P. Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes. Berlin: Springer; 1999, pp. 223–38.

18. Garcia FD, Jacobs B. Privacy-Friendly Energy-Metering Via Homomorphic
Encryption. In: Security and Trust Management 6th International
Workshop, STM 2010. Athens: Springer; 2010. p. 226–38.

19. Erkin Z, Tsudik G. Private Computation of Spatial and Temporal Power
Consumption with Smart Meters. In: Proc. of the 10th Int. Conf. on
Applied Cryptography and Network Security (ACNS). Singapore: ACNS
2012; 2012. p. 561–77.

20. Busom N, Petrlic R, Sebé F, Sorge C, Valls M. Efficient smart metering
based on homomorphic encryption. Comput Commun. 2016;82:95–101.

21. ElGamal T. A public key cryptosystem and a signature scheme based on
discrete logarithms. In: Proceedings of EUROCRYPT 84. A Workshop on
the Theory and Application of Cryptographic Techniques. Paris: Springer;
1984. p. 10–18.

22. Cramer R, Gennaro R, Schoenmakers B. A secure and optimally efficient
multi-authority election scheme. Eur Trans Telecommun. 1997;8(5):
481–90.

23. Saroj SK, Chauhan SK, Sharma AK, Vats S. Threshold cryptography based
data security in cloud computing. In: Computational Intelligence &
Communication Technology (CICT), 2015 IEEE International Conference
On. India: IEEE; 2015. p. 202–7.

24. Dworkin MJ. Sp 800-38d. recommendation for block cipher modes of
operation: Galois/counter mode (gcm) and gmac. Technical report,
Gaithersburg, MD, United States; 2007.

25. Anati I, Gueron S, Johnson S, Scarlata V. Innovative technology for cpu
based attestation and sealing. In: Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and
Privacy, vol. 13. Tel-Aviv, Israel: HASP ’13 The Second Workshop on
Hardware and Architectural Support for Security and Privacy; 2013.

26. Xu Y, Cui W, Peinado M. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In: Proceedings of the 2015
IEEE Symposium on Security and Privacy. Fairmont San Jose: IEEE; 2015.
p. 640–56.

27. Brasser F, Müller U, Dmitrienko A, Kostiainen K, Capkun S, Sadeghi A.
Software grand exposure: SGX cache attacks are practical. CoRR
abs/1702.07521. 2017:2–6.

28. Boneh D. Basic Control Hijacking Attacks. Accessed 14 Aug 2017.
crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf.

29. Pollard JM. Monte Carlo methods for index computation mod p. Math
Comput. 1978;32:918–24.

https://www.outsourcery.co.uk/media/1180/cloud-industry-forum-paper-15.pdf
https://www.outsourcery.co.uk/media/1180/cloud-industry-forum-paper-15.pdf
https://crypto.stanford.edu/cs155/lectures/02-ctrl-hijacking.pdf

Silva et al. Journal of Internet Services and Applications (2018) 9:6 Page 13 of 13

30. Pomerance C. A tale of two sieves. Notices Amer Math Soc. 1996;43:
1473–85.

31. Boneh D. Twenty years of attacks on the rsa cryptosystem. Not of the
AMS. 1999;46:203–13.

32. Wiener MJ. Cryptanalysis of short rsa secret exponents. IEEE Trans Inf
Theor. 2006;36(3):553–8.

33. Coppersmith D. Small solutions to polynomial equations, and low
exponent rsa vulnerabilities. J Cryptol. 1997;10(4):233–60.

34. Hastad J. Solving simultaneous modular equations of low degree. SIAM J
Comput. 1988;17(2):336–41.

35. Coppersmith D, Franklin M, Patarin J, Reiter M. Low-exponent rsa with
related messages. In: Proceedings of the 15th Annual International
Conference on Theory and Application of Cryptographic Techniques.
EUROCRYPT’96. Berlin: Springer; 1996. p. 1–9.

36. Boneh D, Durfee G, Frankel Y. An attack on rsa given a small fraction of
the private key bits. In: Proceedings of the International Conference on
the Theory and Applications of Cryptology and Information Security:
Advances in Cryptology. ASIACRYPT ’98. London: Springer; 1998. p. 25–34.

37. Cramer R, Damgård I, Maurer U. General secure multi-party computation
from any linear secret-sharing scheme. In: International Conference on
the Theory and Applications of Cryptographic Techniques. Bruges:
Springer; 2000. p. 316–34.

38. Silva L, Silva R, Brito A, Barbosa P. Agregação de dados na nuvem com
garantias de segurança e privacidade. In: Anais do XVI Simpósio Brasileiro
em Segurança da Informação e de Sistemas Computacionais. Niterói, Rio
de Janeiro: Sociedade Brasileira de Computação; 2016. p. 240–53.

	Abstract
	Keywords

	Introduction
	Related work
	Cloud architectures and platforms
	Privacy techniques
	Cryptography

	The software architecture
	Message buses
	Producers and consumers
	Aggregators

	Evaluation
	Calculation of regional energy consumption
	Calculation of the monthly consumption bill
	Technical aspects
	Homomorphic aggregator
	Intel SGX aggregator

	Results
	Discussion
	Threat analysis
	Vulnerabilities in Intel SGX
	Vulnerabilities in homomorphic encryption

	Conclusion
	Appendix
	Unpadded RSA cryptosystem
	Paillier cryptosystem

	Abbreviations
	Acknowledgements
	Funding
	Authors' contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher's Note
	References

