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Abstract

The weaknesses of the Internet led to the creation of a new network paradigm – network virtualization. Virtualization is
a very successful technique for sharing and reusing resources, which results in higher efficiency. Despite its advantages,
including flexibility in network architecture, virtualization imposes many challenges, such as physical resource allocation
to virtual devices. An efficient allocation strategy for these resources can ensure good Quality of Service (QoS) in virtual
networks, whether in node or link failure events. This paper presents a conflict-free rerouting scheme with efficient
additional capacity usage for link and node failure resilience in a virtual network using switches. Combining an IP Fast
Rerouting approach and flow-splitting strategy, this scheme provides short reaction time, stable performance and low
complexity because the rerouting calculation and configuration are performed in advance. We show that rerouting by
traffic splitting based on the entering arc and destination is sufficient to address all link-failure situations in the network,
assuming that the network is two-link connected. After modelling the dimensioning problem as an Integer
Linear Programme, we demonstrate through practical implementation of our rerouting scheme on different
networks that the scheme can substantially minimize the additional capacity draw on the substrate network.
A solution using multiple virtual planes is also provided to solve several conflict problems in the case of
simultaneous multiple link failures.
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1 Introduction
Since its creation, the Internet has brought innovations
and success to industry, economic and research fields;
however, deployment of any new, radically different tech-
nology and architecture is becoming highly difficult, a
situation that cloud computing can mitigate. That effect is
what we call Internet ossification [1]. To fend off ossifica-
tion, studies have proposed rethinking the architecture of
the actual Internet [1]. However, network virtualization is
the most promising approach to addressing current limi-
tations of the Internet and supporting new requirements
[2–5]. Its principle is to implement multiple virtual
routers on each physical machine and to interconnect
them through substrate network architecture. This imple-
mentation allows virtual networks to have different logical

topologies from that substrate network, and each of them
behaves as a true network in which it is possible to imple-
ment different routing protocols and services. As in the
substrate network, failures could occur in virtual net-
works; in this case, rerouting mechanisms can be imple-
mented to forward traffic by using available resources in
the virtual network or additional ones taken from the
physical network. This additional resource could cause
dysfunctional risks inside another virtual plane.

1.1 Previous work
The link and node failure problem has been investigated
for a long time in the framework of physical networks
but not in virtualized networks because of the new
requirements brought by this technology [6] (e.g., archi-
tecture flexibility, mobility, and isolation). Our restor-
ation scheme is pre-calculated. Therefore, the rerouting
paths for all link failure cases are determined and re-
corded inside the controller in advance. When a failure
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occurs, the nodes apply the pre-calculated rerouting
paths directly. Multiple methods based on the IPFRR (IP
Fast Reroute) strategy have been proposed for transient
failures. However, they have the following limitations:

� For rerouting schemes using a single path and
additional capacity [7, 8], the limits of the physical
resources are quickly reached, which paralyses the
network.

� For loop-free alternative mechanism-based
methods [9], we are not certain of rerouting traffic
to all destinations; doing so only helps to reduce
the number of lost packets in an IP network.

� Not-via addressing [10] and tunnelling [11]
mechanisms require encapsulation and
de-encapsulation of packets, whereas in a multiple
routing configuration mechanism [12], the packets
must carry configuration information. With the
appearance of optic networks, methods that
modify the packets are not recommended but can
instead be used to optimize the usage of resources
in network virtualization.

� Multipath rerouting [13] using spare capacity in the
network can induce a capacity saving of up to 11%
in randomly generated networks, but lack of spare
capacity due to the existence of multiple virtual
planes on a substrate network can undermine this
result in network virtualization.

Additionally, [14–16] propose methods to find back-
up paths that permit rerouting traffic in the case of link
failure but not in the context of network virtualization.
Proposed schemes also based on IPFRR use two port
types: primary and back-up ports. The traffic will change
from the primary port to a back-up port only when there
is a failure on the primary port or the traffic comes from
the primary port. This packet forwarding strategy uses a
bridge to reconnect sub-graphs coming from a failure
but does not consider conflicts, which can disturb traffic.
In contrast to these works, our rerouting scheme uses
not just one but multiple bridges, and it avoids conflict
on rerouting paths. Our strategy extends the results in
[7] and can minimize the dimensioning cost of the net-
work. Recently, a restoration scheme was proposed in
[7, 8] to handle both node and link failure problems by
replacing all or parts of a network with switches man-
aged by an external controller. The authors summa-
rized the previous works [17–20] and noted their
drawbacks. They derived a rerouting scheme negating
these drawbacks. Their rerouting model uses only one
path to reroute traffic and to minimize the additional
capacity used by a virtual network; it cannot solve the
multiple-link-failure problem. Moreover, their work in
[7, 8] has drawbacks:

� Network modelling using only one rerouting path
cannot significantly minimize additional capacity,
which means that physical resource limits are
quickly reached and the network is paralysed for a
moment. Because the physical resource limits are
quickly reached in [7, 8], the number of failures
handled is also reduced.

� Based on their rerouting model, the authors in [7, 8]
claim that a conflict-free rerouting scheme for the
multiple-link-failure situation cannot be constructed
even when the network remains connected.

The work in [21] presents a virtual network embed-
ding model that allows a virtual link to map multiple
substrate paths. This model can help to build a rerouting
strategy using multiple planes.

1.2 Our contribution
We initially propose a new scheme to solve the link and
node failure problems in a network of switches that
avoids conflict on rerouting paths in contrast to proto-
cols in [6, 7]. The new rerouting scheme we present here
clearly uses not just one but multiple bridges, and it
avoids conflict on rerouting paths. Our strategy uses a
flow-splitting technique [22–25], extends the results in
[7, 8] and can minimize the dimensioning cost of the
network. Flow splitting is a method for restoring traffic
from a failed link using multiple rerouting paths in the
case of insufficient residual capacity. In this first contri-
bution, we consider only one virtual plane. We propose
a rerouting scheme that ensures that for any link or
node failure, the traffic will be rerouted until it reaches
the destination through an alternative path.
Given that there generally are no rerouting solutions that

avoid conflicts in all network configurations, our second
contribution is to avoid these situations. To reach this goal
we use multiple planes to provide a rerouting strategy that
avoids conflicts that could not be solved by using only one
plane. Therefore, we introduce here a new scheme to solve
the link and node failure problems in a network of
switches. This new scheme negates the drawbacks of [7, 8]
by showing that a conflict-free rerouting scheme for a
multiple-link-failure situation can be constructed even
when the network remains connected. The rerouting
scheme described in this paper uses filters in switches to
determine the next hop for the incoming flow. We provide
each virtual network a specific filter. Then, the controller
sets the flow path by programming the switches in the
form of quadruplets (S, N, O, F) in which S is the source
port (node), N the current node, O the output ports
because flow can be split and forwarded through dif-
ferent paths to the same destination depending upon
the spare capacity needed, and F the filter, which indi-
cates the destination.
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More precisely, for an incoming flow from a neighbour
and a given destination, the scheme will assign the po-
tential output ports. In the case of failure, only the up-
stream node must react by directing the disturbed traffic
to one or many of its neighbours. The traffic is routed
according to the filter programmed in each node of the
network. Traffic can be split anytime at the level of each
node if needed. Hence, the proposed scheme needs only
a local reaction, making its implementation particularly
easy in distributed environments. This local reaction
helps the network operate normally and can solve the
problem of transient failures. A transient failure is a fail-
ure whose duration is short, less than 10 min, whereas
the duration of a persistent failure is longer [7]. When
the failure is determined to be persistent, the controller
can recalculate the routing table for all nodes in the net-
work. To avoid the rerouted traffic of a failure causing
disturbances to another part of network, additional cap-
acity is added to all arcs. Because this additional capacity
is added in the physical network and is exploited by sev-
eral virtual layers, it is necessary to minimize it. The
mathematical model that we propose in this paper can
calculate the rerouting paths and optimize the total add-
itional capacity injected into the network.
To the best of our knowledge, presently our work is

the only one that shows how to effectively solve simul-
taneous multilink failures using flow splitting methods,
thus providing an improvement in QoS of computer
networks.
The rest of this paper is organized as follows. The

next section presents motivations for traffic splitting.
Section 3 provides a full description of our restoration
scheme for a link failure configuration. Our mathem-
atical model is described in Section 4. Section 5 pre-
sents numerical results of implementations. Section 6
studies the application of our rerouting scheme to the
single-node-failure problem. Section 7 extends our
work to simultaneous multiple-link-failure situations
by providing a solution for some conflict problems.
Finally, Section 8 ends the paper.

2 Motivation for traffic splitting
2.1 Improvements of computer networks Qos
Virtual networks use physical network resources to
achieve their needs. In the case of link or node failure,
spare capacity available in safe links is commonly used
to restore traffic. However, this spare capacity might not
be sufficient to carry the entering traffic; this situation
represents a lack of spare capacity and is the main mo-
tivation for using flow splitting in the network. The idea
is to split an original flow into multiple parts such that
they can be forwarded easily through the network. This
method induces numerous potential advantages as:

– Reduction of transit delay and packet loss rate,
because the flows are more able to reach their
destination nodes, thus improving the network QoS;

– improvement of the packets routing delays: since the
original flow is split into several lighter-sized
streams, they can be transported more quickly to
the destination;

– improvement of load balancing distribution [26],
leading to prevent or decrease congestion risk across
the network. This is a well-known benefit of flow
splitting in computer networks.

– extension of the lifetime of a network by allowing
more flexible and efficient resources allocation;

– better economy of the substrate network resources
supporting virtual networks. Since virtual networks
are built on a physical network infrastructure, it is
necessary to avoid an abuse of these resources with
the risk of causing the hosted virtual networks
malfunctions.

We illustrate this last point by an example. Figure 1
shows a network with 6 nodes and 8 links. The numbers
carried by each arc represent spare capacity available on
the links. There is only one path (of traffic) 6–5–2-1 go-
ing through link (5, 2). Other paths are not shown for
clarity. Let the traffic of this path be 8 units, and let all
links be of equal length. In link restoration, a faulty link
is replaced by one alternative path.
Assume that faulty link (5, 2) is replaced by path 5–3-1.

Because links (5, 3) and (3, 1) have only 5 and 7 spare
capacity each, both links need, respectively, 3 and 1 more
spare capacity to make the restoration possible. This
example proves that the use of traffic splitting in the link
restoration scheme can result in lower spare capacity
requirements but in the context of a virtual network, it
could be very important to reduce additional capacities
added to the links to avoid disturbances due to the
rerouting scheme.

Fig. 1 Example network
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Now, let us consider the traffic-splitting version of
link restoration (Fig. 2). There are two alternative
paths, 6–5–3-1 and 6–3-1, for link (5–2), and each
alternative carries 4 units of traffic. (As in the model
[22], the general design principles presented in this
paper are valid for any unit of bandwidth capacity for
virtual networks.) With this second method, there is
no need for more spare capacity.

2.2 The packets re-ordering problem
Beyond its advantages, flow splitting also brings some
difficulties, the best known of which are the following:

– Avoiding the packet re-ordering. When a stream is
subdivided into the network, the different parts must
be reassembled without losing no part (a potential
TCP performance problem [27, 28]), making the use
of flow splitting strategy very delicate. So, we should
try to make reordering rare. Therefore avoiding this
reordering until the packets reached the destination is
crucial. However to overcome this problems some
approaches were elaborated. Some strategies separate
traffic at the level of flows. This approach removes the
problem of reordering but at the cost of a restriction
in the granularity with which we can split traffic [29].
Another one operates on bursts of packets (flowlets)
carefully chosen to avoid reordering, but allowing a
finer granularity of load balancing [30]. Some other
algorithms [31, 32] minimize or eliminate reordering
in some situations. But, some reordering problem
should occur, and probably often enough to affect
performance of IP networks;

– the problem of reassembling packet segments inside
the destination node. Due to various reasons, such
as multipath routing, route fluttering, and
retransmissions, packets belonging to the same flow

may arrive out of order at a destination. The
problem is how to know which packet comes before
or after another one when we want to rebuild the
original flow packets [27–29]. Some algorithms
based on packet numbering in [29] can be used to at
least minimize reordering.

In this work, flow splitting is implemented by building
little flow of packets from an original one. To face reor-
dering challenge, we use the numbering packets each
time the flows are split, because this method does not
modify significantly the packets headers.

3 New multipath link failure restoration scheme
In this section, we present our rerouting scheme that
addresses the case of a link failure. As presented in
Section 2, traffic splitting occurs because spare cap-
acity is lacking in the network, but implementation of
that approach in our rerouting scheme helps to solve
many other problems:

� Safeguarding of network resources by minimizing
spare and additional capacity usage to manage more
traffic

� Possible rerouting, however, is impossible to do with
only one path, as shown in [7].

A routing tree called a nominal routing tree is associ-
ated with a given destination; this tree is constructed using
the shortest path tree criterion. We assume that the rout-
ing is provided. In the case of a failure of an arc or edge
(both arcs are then concerned) and a lack of spare cap-
acity in links, we reroute the traffic through one or more
alternative paths. When there is only one path used, our
rerouting scheme is similar to [7]. According to the rout-
ing scheme, for two independent failures, if two rerouting
paths to a given destination have a common arc, they
must merge after this arc. This requirement holds for both
nominal and rerouting paths. If two paths do not satisfy
this requirement, we say that they are in conflict. Any
routing scheme satisfying this requirement is said to be
without conflict. In this strategy, only the extremity failed
link nodes will know about the failure. The upstream
nodes initiate the traffic diversion, whereas all other nodes
in the network apply the filter for each incoming flow
without any difference between disturbed and non-
disturbed flows. Because the disturbed traffic is rerouted
on multiple alternative paths and should satisfy the non-
conflict requirement, the cost in terms of resources and of
computational time is expected to be higher compared
with conventional schemes using single path rerouting.
We illustrate this rerouting scheme in Figs. 3 and 4.
These figures represent a network with 6 nodes and

8 links.
Fig. 2 Illustration of traffic splitting
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The original graph with thespare capacity of each link
is shown in Fig. 3.
Assume that the source node is node 6 and that the

destination node is node 1. We also suppose that the
failure link 4–1 generates a flow weight of 15 units to
reroute. Figure 4 represents each link’s weight and the
additional capacity required on each arc if rerouting
paths use this arc. If we reroute using only one alterna-
tive path, similar to [7], the path 4–6–3-1 will be se-
lected as the rerouting path (see Fig. 5), which consumes
T = 13 + 9 + 8 = 30 units of additional capacity.
When applying our rerouting scheme (Fig. 6), part 4–6

of the previous rerouting path will be preserved. From
node 2, traffic can be split into two parts because there
are two arcs leaving node 6 to node 1. Our splitting cri-
terion is the amount of spare capacity available on links.
Thus, a node will send some flow on the link that offers
the greatest spare capacity, and the remaining flow will
be sent on the other link. Therefore, 6 units of traffic

will be sent on arc (6→ 3) (which is a bridge), offering a
spare capacity of 6, and 9 will be sent on arc (6→ 5)
(another bridge), which offers a spare capacity of 4. In
this example, we use an additional capacity of 5 on arc
(6→ 5) in addition to its existing spare capacity. The
rerouting paths are 4–6–3-1 using 13 + 0 + 0 = 13 add-
itional capacity, and 4–6–5-2-1 using 13 + 5 + 1 + 6 = 25
additional capacity. Arc (4→ 6) belongs to the two
rerouting paths and involves a total additional capacity
usage of 13. Therefore, the total additional capacity
needed for these two paths is 25, i.e., a total additional
capacity savings of 17% relative to [7]. This analysis
shows that our rerouting scheme can substantially
minimize the additional capacity needed on links to re-
route the traffic of a failed link. Because of the config-
uration of filters, traffic will be rerouted until it reaches
the destination without any conflict.

4 Mathematical formulation
4.1 Description of our model
This section provides a rerouting mathematical model
based on the following assumptions:

Fig. 3 Network with spare capacities on links

Fig. 4 Network with spare and additional capacities on links

Fig. 5 Pham’s single path rerouting scheme

Fig. 6 Our rerouting scheme
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� The graph is assumed oriented and symmetric.
� There are at least two disjoint arc paths between

any two nodes of the graph.
� There is only one link failure at a time.

To resolve the question of the existence of a rerouting
solution without conflict, we have the following
theorem:
Theorem 1. For any destination d, there is a rerouting

plan without conflict using one or many alternative
paths.
The formal mathematical proof can be found in the

Appendix.
As in [7], a similar mathematical formulation can be

provided for our case, but we add in the equations the
number of rerouting paths. Consider the following
notation:

� Rtd: set of arcs of the routing tree to destination d
� Acab: additional capacity assigned to arc (a, b)
� Trdn : total traffic for d that passes through node n. n

is the node that detects the failure. In fact, the
failure is characterized by a source n and a
destination d because we use the routing tree for
nominal routing. For a destination d, the failed arc is
the one routing the traffic going to d and coming
from n by nominal routing.

� Fi: indicates fictive nodes used to divert traffic in the
case of failure. We introduce the fictive nodes Fi that
will be used for all failures. For a given failure (n, d),
the traffic to d will be rerouted by i paths from Fi to
d starting with arc (Fi, n), i = 1, 2...

� SReddn: SRed
d
n sub-tree of sink n. Recall that in the

case of failure, the tree is divided into two parts, the
isolated part, that is the Red part, and the Blue part.
Alternative paths will reroute traffic from the Red
part to the Blue part.

� SBluedn: sub-tree of sink d, with
Rtd−SRedd

nSRed
d
nSRed

d
n

� ydnefghy
dn
efgh: this binary variable indicates whether the

eth alternative path to destination d for a given
failure contains arcs (f, g) and (g, h); node n is the
node that detects the failure.

� xdefgh: x
d
efgh this binary variable indicates the rerouting

scheme to destination d. It takes value 1 if there is a
failure in which the eth alternative path to
destination d contains arcs (f, g) and (g, h).
Therefore, the variable takes value 1 if there are n
and e where ydnefghy

dn
efgh is equal to 1.

� αdneab: α
dn
eab this binary coefficient equals 1 if arc (a, b)

belongs to one of the paths in the nominal routing
from n to d except the failed arc.

� Quadruplet: All quadruplets (e, f, g, h) where e is the
number of an alternative path in a rerouting

scheme, f, g, h are nodes of the graph; f can be the
fictive node, and (f, g) and (g, h) are two adjacent
arcs, with. f ≠ h.

� Arc: All arcs of the graph
� L: Set of links
� N: Set of nodes

The objective is to minimize the sum of additional
capacity allocated to each arc; our objective function is
provided by (1):

min
X

a;bð Þ∈Arc
Acab ð1Þ

Xh¼hs

n;hsð Þ∉Rtd ;h neighbor of n; h¼h1

ydneF0nhs ¼ 1; n∈N ; d∈N ; s ¼ 1; 2;…;
e ¼ 1; 2;…

ð2Þ

Xh¼hs

hs∈neighbor of g; h¼h1

xdefgh≤1; f ; gð Þ∈Arc; d∈N ; s ¼ 1; 2;…;

e ¼ 1; 2;…

ð3Þ

ydnefgh ¼ 0;d∈N ; n∈N ; j∈SRedd
n; f ; gð Þ∈Rtd; e; f ; g; hð Þ∈Quadruplet;

e ¼ 1; 2;…

ð4Þ

Xh¼hs

f ∈N j e; f ;gs;hsð Þ∈Quadruplet
ydnef gshs ≤1; d∈N ; n∈N ; gs; hs

� �
∈Arc; gs∈SRed

d
n;

hs∈SRedd
n; e ¼ 1; 2;…

ð5Þ

Xh¼hs

f s∈neighbor of f

ydne f sfg ¼
Xh¼hs

hs∈neighbor of g

ydnefghs ; d∈N ; f ; gð Þ∈Arc; f ≠ f s; f ≠n;

g∈N−d; s ¼ 1; 2;…; e ¼ 1; 2;…

ð6Þ

Xe¼k

e¼1

Xs¼k

s¼1

ydnenghs ¼ ydneFing ; d∈N ; n∈N ; n; gð Þ∈Arc; k ¼ 1; 2;…;

e ¼ 1; 2;…

ð7Þ

ydneghh1−y
dn
efgh≥0; h∈SBlue

d
n−d; h1; hð Þ∈Rtd; g; hð Þ∈Rtd; ∀d∈N ;

∀ e; f ; g; hð Þ∈Quadruplet; e ¼ 1; 2;…

ð8Þ

X

n∈N

Xe¼k

e¼1

ydnengh≥x
dn
efgh≥

P
n∈Ny

dn
engh

cardinal Nð Þ ; e; f ; g; hð Þ∈Quadruplet; n∈N ;

k ¼ 1; 2;…; e ¼ 1; 2;…

ð9Þ
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X

d∈N j n;mð Þ∈Rtd

X

f ∈neighbor of g; f ≠h

Xe¼k

e¼1

ydnefgh:Tr
d
n

þ
X

d∈N j m;nð Þ∈Rtd

X

f ∈neighbor of g; f ≠h

Xe¼k

e¼1

ydnefgh:Tr
d
m≤Acgh

þ
X

d∈N j n;mð Þ∈Rtd
αdnegh:Tr

d
n þ

X

d∈N j m;nð Þ∈Rtd
αdmegh:Tr

d
n;

g; hð Þ∈Arc; g≠n; g≠m; n;mð Þ∈L; k ¼ 2; 3;…; e ¼ 1; 2;…

ð10Þ
X

d∈N j n;mð Þ∈Rtd

Xi¼k

i¼1

ydneFinh:Tr
d
n ≤Acnh

þ
X

d∈N j n;mð Þ∈Rtd
αdnnh:Tr

d
n; m; hð Þ∈Arc; h≠n; m; nð Þ∈L; e ¼ 1; 2;…

ð11Þ
X

d∈N j m;nð Þ∈Rtd

Xi¼k

i¼1

ydneFimh:Tr
d
m≤Acnh

þ
X

d∈N j n;mð Þ∈Rtd
αdmmh:Tr

d
n; m; hð Þ∈Arc; h≠n; m; nð Þ∈L; e ¼ 1; 2;…

ð12Þ
xdefgh∈ 0; 1f g;∀ e; f ; g; hð Þ∈Quadruplet;∀d∈N ; e ¼ 1; 2;…

ð13Þ
ydefgh∈ 0; 1f g; ∀ e; f ; g; hð Þ∈Quadruplet; ∀d∈N ; ∀n∈N ; e ¼ 1; 2;…

ð14Þ
The objective function will allow us to evaluate the

ratio between the additional capacity and the installed
capacity.
Equation (2) is a constraint implying that there exist

multiple paths resulting from flow splitting, which go
from n to d for disturbed traffic.
Equation (3) ensures that there is no conflict in the

rerouting, i.e., the incoming flows to node n to destin-
ation d must follow the same rerouting paths. If we use
arcs (i, k1), (i, k2), (i, k3), ... for rerouting to destination d,
there is at most one output (ks, js) for each.
To avoid loops and conflict problems, the alterna-

tive paths should not contain any arc of nominal
routing in the red part of the network. Equation (4)
ensures that condition.
Constraint (5) ensures that there will be no loop in

the network. For a given destination and a given fail-
ure, an alternative path could contain a loop if the
flows go from a node with a larger index number to
another one with a smaller index. This constraint
prohibits this type of problem.
Equations (6), (7), and (8) are the flow constraints for

the continuity of the alternatives paths. Equation (6) is

the constraint of flow conservation. Referring to (7), the
total amount of entering traffic in n is equal to the total
outgoing traffic of g; because of flow splitting being used
for a given failure and a destination, we could have
multiple incoming streams and possibly multiple out-
going streams.
Equation (8) ensures that in the blue part, if a path

uses an arc of the nominal routing tree, it must continue
until destination d.
Equation (9) is a constraint for the relationship be-

tween two rerouting paths that avoids a conflict (see
the definitions of variables x and y). Because x and y
are binary variables, with the same quadruplet (e, f, g,
h) and same destination d, we can deduce from (9) that
(x) will take the maximum value of (y). We use the sum
of failures divided by the cardinal to reduce the number
of constraints.
Equations (10), (11), and (12) are the capacity con-

straints. For each failure of edge (n, m), the constraint in
(10) assumes rerouted paths for arcs (n, m) and (m, n),
and only trees that contain the arc failure are involved.
They also consider the released bandwidth on the initial
routing paths. Equations (11) and (12) are special cases
of (9) for the nodes that detect the failure, node n and
node m. Finally, (13) and (14) indicate that the variables
take binary values.

4.2 Convexity of our model
The objective function of our model has the general
form:

min
s:t: x∈C

f xð Þ ð15Þ

where C is the set Arc and f is a function over C giving
the additional capacity needed for a chosen arc. The
problem described by Eq. (15) is convex in the set C and
the function f is convex.
Under the existence assumption of at least two paths

between any pair of nodes of the graph and considering
each arc of the set Arc as a segment, then the set C is con-
vex as an intersection of convex subsets. According to
[33], if the function f is affine, it is convex and the prob-
lems described by general Eq. (15) are usually stated con-
vex problems with an implicit convexity. This implicit
convexity is because there are more explicit formulations

Table 1 Restoration rate without conflicts

Networks Number
of nodes

Number
of links

Number
of failures

Restoration

Network1 5 7 7 7

Network2 10 18 18 14

Network3 20 31 28 23

Network4 60 81 70 61

Tchendji et al. Journal of Internet Services and Applications  (2018) 9:13 Page 7 of 15



of convex problems such as convex optimization
problems in functional form, which are convex prob-
lems of the form:

min
s:t:gi xð Þ≤0;i¼1;2;…m;h j xð Þ¼0; j¼1;2;…;p

f xð Þ ð16Þ

Where f, g1,…., gm: ℝ
n→ℝ are convex functions and

h1,…., hp.: ℝn→ ℝ are affine functions. Each constraint
of our model can be written under any of the forms of
constraints of Eq. (16). This proves that our model is
implicitly convex.

5 Implementation and simulation results
Based on the comparative study in [34], the OMNet++
network simulator has many advantages: Unlike NS-2
and NS-3, OMNet++ has extensive graphical user inter-
face (GUI) and intelligence support, provide good com-
putation times. The flexibility of the NED language used
for describing the network architecture is appropriate to
meet the great topology flexibility requirements of net-
work virtualization. OMNet++ is also able to carry out
large scale network, which is an important feature for
our simulations. That is why the experiments have been
conducted in the simulation environment OMNet++
running on a computer with the following configuration:
Core i5 2.40 GHz, 4.00 GB RAM, 12 MB cache. We

applied our model to 4 networks: network1 (5 nodes
and 7 links), network2 (10 nodes and 18 links), network3
(20 nodes and 31 links), and network4 (60 nodes and 81
links). These four networks satisfy the assumptions cited
above. They contain a set of nodes with high degree for
the estimation of the impact of multilink failures adja-
cent to the same node on those networks. It therefore
shows the robustness of our strategy. The restoration
rate of our rerouting scheme without conflict between
rerouting paths is shown in Table 1. The simulations
have been done on non-simultaneous multiple link fail-
ures for each tested network.
The data provided in Table 1 show that our rerouting

scheme supplies rerouting solutions for almost all link
failure situations considered. If the conflict constraint is
neglected, we can find solutions for more failure config-
urations (see Table 2), but the variation is small (ap-
proximately 2%). In other words, conflict constraint does
not significantly affect the number of failures handled.
Figure 7 graphically compares our rerouting scheme

with that of [7]. This figure shows that the restoration rate
gap between both methods increases with network size.
This phenomenon is observed because the potential con-
flicts in a small network are not numerous, which means
that cases of unsolvable conflicts are also not numerous.
We also perform an additional capacity consumption

test for the previous four networks; the results are
shown in Table 3. This table consists of five columns.
Descriptions of the rightmost three columns are as
follows: “Unused CA” represents the additional capacity
available in the network; “Our used CA” represents the
total of additional capacity used by our strategy for link-
failure handling; and “Used by X” represents additional
capacity used in the network by method [7]. The result
units are expressed in seconds.

Table 2 Restoration rate neglecting conflicts

Networks Number
of nodes

Number
of links

Failures Restoration

Network1 5 7 7 7

Network2 10 18 18 14

Network3 20 31 28 25

Network4 60 81 70 65

Fig. 7 Comparative graph of two versions of our rerouting scheme: with conflict constraint and without
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The results in Table 3 show that our rerouting scheme
based on a traffic-splitting strategy uses less additional
capacity than does the method presented in [7]. This dif-
ference is very important when the network size in-
creases. Figure 8 provides us a better illustration of this
difference. This figure shows that the additional capacity
used for flow restoration increases with network size
and network connectivity.

6 Node failure problem
We speak of node failure when some flow can no
longer go through a given node in the network. This
situation can be caused by overflow traffic in this
node or a physical failure of the given node. Because
of the two-link connectivity included in our hypoth-
esis, a node failure leads directly to the outage of at
least two or several links; in other words, node failure
can be treated as a simultaneous multiple link failure.
In this case, failure will be detected by all nodes con-
nected to the failed node. Figure 9 presents the fail-
ure of node number 4.
When node 4 fails, flows coming from nodes 1 and 7

must be rerouted. The failure of node 4 implies a simul-
taneous failure of links (1–4), (7–4) and (4–6). There-
fore, we must reroute the two flows (1–4) and (7–4) to

destination 6 without conflict. To solve this type of fail-
ure, two solutions are possible:

6.1 First solution resort to the controller
In the case of node failure, each switch that detects the
failure sends a specific message called packet-in mes-
sage to the controller that sets the rerouting order for
the link failures related to these nodes. The idea of this
rerouting approach is to solve these link failures as cas-
cading failures. This order can be built on a node’s label
criteria. The nodes are labelled in a decreasing order as
we approach the destination node. We could handle
the failure detected by the node of a smaller label be-
fore another one with a larger label. Once the reso-
lution order is fixed, the controller updates the routing
tables of involved nodes as described in [7] by using
another specific message called packet-out message.
After this update, our rerouting scheme can be used to
solve each link failure. The reaction time of this solu-
tion is too long, due to pro-activity; therefore, the prin-
ciples of IPFRR are not satisfied with this solution.

Table 3 Comparison of our rerouting scheme with [7] concerning
additional capacity used

Netwowrks Number
of nodes

Number
of links

Unused
CA

Our used
CA

Used by
X

Network1 5 7 3342 1012 1624

Network2 10 18 7216 2433 2741

Network3 20 31 14,000 3802 4524

Network4 60 81 12,052 4110 5021

Fig. 8 Additional capacity used by different strategy

Fig. 9 Failure of node number 4
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6.2 Second solution: No resort to the controller
Each link failure because of a node failure is handled
locally and instantly by each node that identifies a link
failure. The incurred risk in this strategy is the looping
problem during flow rerouting; however, assuming our
constraint imposing traffic from nodes with a lower label
on another one with a higher label, cycles can be avoid.
Our rerouting scheme for a simple link failure can be
used to fix simple node failure situations. Recall that we
speak about simple node failure when only one node
fails at a time. Our rerouting strategy for simple node
failure problems uses this approach. The following illus-
trates our rerouting scheme for a simple node failure
with an example. Fig. 10 shows the nominal routing tree
of an example network, and Fig. 11 presents link failures
(dotted links) resulting from node 3’s failure. Fig. 12 pre-
sents a cyclic problem resulting from a node failure, and
Fig. 13 illustrates the efficiency of our solution to solve
this cycle problem.
For each destination, we determine the nominal rout-

ing tree from each node towards this destination (see
Fig. 10). The failure of node 3 generates simultaneous
failures of links (5–3), (6–3) and (3–1) (dotted links).
Nodes 5 and 6 will detect the breakdowns of links (5–3)
and (6–3), i.e., we have two flows to reroute. These fail-
ures split the graph into two parts: the blue part and the
red part (see Fig. 11).
Using our rerouting scheme, the flow coming from link

(5–3) could be rerouted through arcs (5→ 2), (5→ 6) and
(5→ 8). The flow of link (6–3) could follow arcs (6→ 8),
(6→ 4) and (6→ 5). However, arc (5→ 6) can lead to
node 3 through arc (6→ 3) or keep the rerouted flow in
cycle 5–6–8-5 (see Fig. 12). Thus, arc (6→ 3) will be ex-
cluded from the list of potential paths for rerouting the
flow coming from link (5–3) or node 3. If we consider the
criteria related to management of the cycles, arc (5→ 6)
will be considered in rerouting the paths of link (5–3),
which will not be true of arc (6→ 5) (see Fig. 13).

Similarly, for rerouting link (6–3), arc (5→ 6) could also
be used rather than (6→ 5).
Consequently, the possible rerouting paths will be 5–2-1,

5–8–9-7-4-1 and 5–6–4-1 for flow from the failure of link
(5–3); concerning the flow from the failure of link (6–3), the
possible rerouting paths could be 6–8–9-7-4-1 and 6–4-1.
We can conclude that local reaction required by IPFRR
strategy can also be preserved when addressing simple node
failure situations through our rerouting scheme.
To achieve the local connectivity recovery, there is a

filter similar to an agent, running inside each switch (ex-
ample of OpenFlow switches) used in network architec-
ture like ours. This agent detects the port states and acts
as needed. For classical switches, there are control
mechanisms provided to check that ports status.
Multiple link failures studied in the case of simple

node failure involve links adjacent to that node, but we
also have cases of simultaneous multiple link failures not
adjacent to the same node.

7 Simultaneous multilink failures
We speak about simultaneous multiple link failures
when several links fail at the same time. The case

Fig. 10 Shortest path from each node to destination 1

Fig. 11 Node 3’s failure

Fig. 12 Cycle example in two flows rerouting

Tchendji et al. Journal of Internet Services and Applications  (2018) 9:13 Page 10 of 15



considered in this section concerns non-adjacent links
to the same single node. In this case, there are mul-
tiple nodes, each of which detects a link failure as in
the simple node failure case. This type of failure can
also be handled using either of two methods:

7.1 First method: Treat only one link failure at a time
In this approach, despite many link failures occurring at
the same time, they are handled as non-simultaneous
link failures; therefore, failures are treated sequentially.
This method is used in [7], in which a rerouting scheme
is proposed to solve the problem for the case of two
links failing simultaneously. As stated in Section 7 about
the node failure problem, the limit of this strategy is its
slowness in rerouting.

7.2 Second method: Treat all link failures at the same
time
This approach is similar to the second one presented
in Section 7 for the node failure problem, and it
enables all nodes that detect a failure to initiate the
rerouting process. Our rerouting scheme for node fail-
ure can also be used here. When several link failures
occur simultaneously during the rerouting process, we
can use flow splitting each time to find spare capacity
lacking in the network.

Fig. 13 Our rerouting strategy solving the cycle problem

Fig. 14 An example network of simultaneous and non-adjacent two
link failures

Fig. 15 Two simultaneous and non-adjacent link failure examples

Fig. 16 Our rerouting scheme for two simultaneous and non-
adjacent link failures
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Consider the example network of Fig. 14 to illustrate
our rerouting strategy for the case of simultaneous and
non-adjacent two-link failures.
The nominal routing tree is shown, and the destin-

ation node is labelled 1.
Figure 15 shows two link failures named p1 and p2

occurring at the same time.
The failures p1 and p2 create the red parts R1 and R2.

p1 is detected by the node labelled 4, and p2 is detected
by the node labelled 9. The rerouting scheme of p1 can
be through bridges (8–3) and (11–7) leading to the paths
4–5–8-3-1 and 4–5–8-11-7-2-1 (see Fig. 16). Flows can
be split at node numbers 8, 11, 2 and 3. Concerning
rerouting of p2, link (12–13) can be considered a bridge
that connects the red part R1 to R2 in addition to (8–3)
and (11–7). After the link failure pair (p1, p2), if another
occurs (pair (p3, p4) for example), the rerouting will be
done based on the previous one to avoid conflict.
However, concerning this simultaneous multiple link

failure, there are several conflict configurations that
require particular attention as shown in Fig. 17. For the
configuration example shown in Fig. 17, [7] affirms that
the conflict problem illustrated is insoluble. Indeed, the
rerouting scheme provided in [7] uses only one path for

rerouting, with management of conflict between the
paths similar to our strategy. We prove that this poten-
tial unsolvable conflict claimed by [7] can be solved by
using multiple planes. The principle is to cross from one
plane to another when there is a risk of unsolvable con-
flict when using a single plane.
Consider the configuration example given by [7] in

Fig. 17, in which the authors claim that there is no
rerouting solution. Two simultaneous link failures situa-
tions are considered: first, we have simultaneous link
failures (A-D) and (C-D). Second, we have simultaneous
link failures (E-C) and (I-D).
According to [7], when (A-D) fails, the only available

rerouting path is A-B-H-G-F-E-C-D because if we
choose path H-G-K, there would be a conflict at node
G. When (C-D) fails, the traffic that comes from failure
(A-D) will be rerouted by C. To reroute the traffic of
failure (C-D), node C must transfer the traffic back to
G; then, there are two possibilities: use G-H-B-A-D as
the rerouting path, or transfer the traffic through link
(G-K). We cannot use G-H-B-A because the traffic
would be transferred indefinitely between A and C.
Therefore, we must use F-G-K as the rerouting path in
this situation.

Fig. 17 Unsolvable conflict when using only one plane

Fig. 18 Solution through multiple planes
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Concerning the second situation in which the two
links (E-C) and (I-D) fail at the same time, when (I-D)
fails, using the same reasoning as in the previous case,
the only available rerouting path is I-J-O-K-G-F-E-C-D,
according to [7]. Because we used F-G-K in the previous
case of link (E-C) ’s failure, we must also transfer the
traffic through F-G-K for this case to avoid conflict.
Because both failures occur at the same time, the traffic
will be transferred indeterminately between C and I;
therefore, the traffic cannot be rerouted in this situation.
That property is why [7] affirms that there is no rerout-
ing scheme without conflict for destination D in this
configuration.
Now, consider our rerouting scheme using multiple

planes. For the same configuration example above, our
rerouting solution is shown in Fig. 18. In this figure,
virtual nodes E and C are hosted by physical node EC;
virtual nodes O and G are lodged by physical node OG.
The network topology with unsolvable conflict is located
in a virtual plane.
Let us transpose the topology of Fig. 17 into the phys-

ical plane as illustrated by Fig. 18.
Assuming that the nodes which detect failures are

nodes E and I in the case of simultaneous link (E-C) ’s
and (I-D) ’s failures and considering the topology’s het-
erogeneity in the virtual networks, node E detects that a
traffic redirection through path F-G-K-O-J will be devi-
ated on node I and cause a cyclic problem. To solve that
problem, we use another plan for traffic coming from
both link failures. We will choose paths E-EC-D’-D and
I-I’-D’-D for link (E-C) ’s and (I-D)’s failure restoration.
Thus, our approach can solve unsolvable conflicts pre-
sented in [7] by making use of multiple planes.

8 Conclusion and future work
Our aim in this paper was to propose a rerouting ap-
proach to handle the single link node failure and simul-
taneous multiple link failure problems in a network of

switches in the context of network virtualization. We
proposed a conflict-free rerouting scheme that can
ensure that, whatever the case of link or node failure,
traffic will be rerouted to the destination. The proposed
method is based on local reaction of nodes placed at the
extremities of the failed link, whereas the other nodes
need not know about the failure or take any particular
action. Thus, the implementation is particularly easy.
The flow splitting strategy used when there is insuffi-
cient spare capacity on links helps to reduce additional
capacity added to the network. We proved that there
exists a restoration scheme without conflict in the net-
work and provide a mathematical model that permits
calculation of the rerouting scheme with optimization of
the sum of additional capacities needed for one virtual
plane. We also proposed a rerouting solution using
several planes to solve cases of potentially unsolvable
conflicts when we use only one plane. Further work will
address congestion management into the nodes implied
in the rerouting and routing table updates without
disturbing the network.

9 Appendix
The following is a formal proof of theorem 1. stated in
Section 5. This proof is similar to the one presented in
[7], with the difference that we are showing the existence
of multiple paths rather than one path as in [7].
Consider a routing tree Rt to a destination d as shown

in Fig. 19; then d is the sink of Rt. The dotted links rep-
resent the possible existence of nodes between nodes
connected through that link. Let (p1, q1) be an arc of Rt.
We assume that this arc fails and that we must find a
rerouting scheme without conflict. We note that (q1, p1)
does not belong to Rt, which means that, for a given

Fig. 19 Multipath existence proof

Fig. 20 Recurrence hypothesis
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destination, the link failure problem can be treated as an
arc failure. Without loss of generality in this proof, we
will consider the problem of arc failure (p1, q1). p1 is
the sink of a sub-tree Rt1 whose nodes are coloured in
red. The other vertices in the tree are coloured in blue.
We assume that all vertices are part of the tree Rt and
that this assumption is true for any destination d.
Based on [7], there exists a rerouting path connecting

both the red part and the blue part. Inside the red part
of sub-tree (p1, q1), under the assumption of two-link
connectivity, there are at least two paths going from any
node of that red part to an arc connecting both the red
and blue parts. Thus, if traffic splitting is performed on
any of those nodes, it will be possible to reroute the flow
through at least two different paths until it reaches des-
tination d. In other words, two paths μ and ν exist from
p1 that visit some vertices of Rt1 and connect a vertex
of Rt1, which is red, to a blue vertex. This connection
can be done through arcs (i, j) and (k, l) offering suffi-
cient spare or adequate additional capacity. These arcs
act as a bridge between the red and blue part. For a red
vertex of Rt1 affected by the failure, the descended traffic
will first follow paths μ and ν inside the red part to p1.
It will then follow the original routing tree from p1 to i
or k and use arc (i, j) or (k, l) as a bridge to reach destin-
ation d through blue vertices located in the blue part of
the routing tree. Due to dimensioning issues, traffic can
also be rerouted into the blue part over at least two al-
ternative paths until destination d. According to the
rerouting choices, the rerouting paths associated with
the link (p1, q1) failure in the red and the blue parts are
without conflict.
Consider the n–1 arc failures of the tree; we choose

different arcs (i, j) to connect the red part to the blue
part. First, we prove the existence of a bridge connect-
ing both parts; second, we demonstrate the absence of
conflict between different paths. The arcs of the tree
are numbered in decreasing order as we approach sink
d. We choose arcs (i, j) and (k, l) in successive order
of increasing numbers. Let (pr, qr) be an arc under
consideration. We assume that we have chosen arc
pairs ((i1, j1), (k1, l1)), ((i2, j2), (k1, l1)), ... ((ir − 1, jr − 1),
(kr − 1, lr − 1)) for rerouting. pr is the root of tree Rtr.
We consider two cases. The first case is with arc (ps,
qs) as the failure, and s < < r. In this case, arcs (is, js)
and (ks, ls) have their extremities is and ks inside tree
Rtr, and their extremities js and ls are out of trees Rts
and Rtr, which are included in Rts (see Fig. 16). Then,
we choose arc (is, js) as arc (i, j) and (ks, ls) as arc (k, l)
for tree Rtr. In the second case, there is no rerouting
arc with this property. We choose any arcs (ir, jr) and
(kr, lr) that connect Rtr to its complement. Each of
these cases offers at least two path possibilities in the
red part of the network.

Let us prove the absence of conflict in our rerouting
scheme. By recurrence of the number of rerouted arcs,
let us assume that we have already rerouted n − 1 arcs in
the tree. Each rerouted arc has generated at least two
rerouting paths. By the recurrence hypothesis, there is
no conflict for the first n–1 reroutings. We must verify
that the nth rerouting also has no conflict with the first
n–1 reroutings.
There is no conflict by construction concerning the

rerouting of the outside part of tree Rtr, which is the part
in common with the classical routing. Although this nth

rerouting uses the same arc as the previous ones do, in
this part, the rerouting will follow the same path until
destination d; therefore, there is no conflict. A conflict
could occur if the splitting strategy is located in the blue
part of the network. We verify no conflict exists for the
part in which it goes in the opposite direction of the
tree, which verifies that in the two cases cited above,
there is no conflict. In the first case, when we have
chosen arcs (is, js) and (ks, ls) in tree Rtr, there was no
conflict in that part of the tree because Rtr would use
the same arcs (is, js) and (ks, ls) as the passing bridges
between its red part and its blue part (see Fig. 20). In
the second case, the part climbing up the tree has
nothing in common with the other rerouting arcs. In
this case, there would exist (is, js) and (ks, ls). Therefore,
there is no conflict in this case. We can conclude that
the property remains true to the order n. The absence of
conflict in our rerouting scheme can be proved by
reoccurrence.
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