Roriz Junior et al. Journal of Internet Services and Applications (2019) 10:8

https://doi.org/10.1186/513174-019-0107-x Journal Of Internet Services

and Applications

DG2CEP: a near real-time on-line ")
algorithm for detecting spatial clusters large
data streams through complex event

processing

Marcos Roriz Junior Bruno Olivieri and Markus Endler?

Abstract

Spatial concentrations (or spatial clusters) of moving objects, such as vehicles and humans, is a mobility pattern that
is relevant to many applications. Fast detection of this pattern and its evolution, e.g., if the cluster is shrinking or
growing, is useful in numerous scenarios, such as detecting the formation of traffic jams or detecting a fast dispersion
of people in a music concert. On-Line detection of this pattern is a challenging task because it requires algorithms that

similarity to DBSCAN than batch-based approaches.

processing, Smart city

are capable of continuously and efficiently processing the high volume of position updates in a timely manner.
Currently, the majority of approaches for spatial cluster detection operate in batch mode, where moving objects
location updates are recorded during time periods of a certain length and then batch-processed by an external
routine, thus delaying the result of the cluster detection until the end of the time period. Further, they extensively use
spatial data structures and operators, which can be troublesome to maintain or parallelize in on-line scenarios. To
address these issues, in this paper we propose DG2CEP, a parallel algorithm that combines the well-known
density-based clustering algorithm DBSCAN with the data stream processing paradigm Complex Event Processing
(CEP) to achieve continuous and timely detection of spatial clusters. Our experiments with real-world data streams
indicate that DG2CEP is able to detect the formation and dispersion of clusters with small latency while having higher

Keywords: Spatial stream clustering, On-line clustering, Real-time clustering, Mobility patterns, Complex event

1 Introduction

This paper investigates the possibility and limitations of
an on-line and near real-time (few seconds) detection of
spatial clusters from large position data streams generated
by moving objects (e.g., humans, vehicles, drones). Spa-
tial clusters [1] are concentrations of moving objects in
some region, for example, a massive street protest, a music
concert, a traffic jam, etc. A fast detection of this pattern
and its evolution, e.g., if the cluster is shrinking or grow-
ing, is useful in numerous scenarios, such as detecting
the formation of traffic jams, detecting a fast dispersion

*Correspondence: marcosroriz@ufg.br

'Faculdade de Ciéncias e Tecnologia, Universidade Federal de Goiés, Rua
Mucuri S/N, Aparecida de Goiania, Brasil

’Departamento de Informatica, Pontificia Universidade Catolica do Rio de
Janeiro, Rua Marqués de Séo Vicente, 225 RDC, Rio de Janeiro, Brasil

@ Springer Open

of people in a music concert and optimizing urban
traffic [2-5].

However, implementing timely spatial cluster detection
from large position data streams poses several challenges
[6, 7]. First, it has to employ efficient algorithms and
data structures to cope with the high arrival rate of the
position data (location updates) stream and intrinsic com-
plexity of mutually comparing the location of all moving
objects. Second, it must be able to detect arbitrary clusters
shapes, for example, a traffic jam that reaches over several
neighborhoods or a human crowd that spans across the
seashore of a city. Third, it has to provide timely results
that reflect the current clustering scenario to enable a fast
reaction by decision makers. Finally, it must be able to
track its evolution, for example, providing a continuous
view of how clusters are growing or merging.

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-019-0107-x&domain=pdf
http://orcid.org/0000-0003-2795-0009
mailto: marcosroriz@ufg.br
http://creativecommons.org/licenses/by/4.0/

Roriz Junior et al. Journal of Internet Services and Applications

To address these issues, the majority of data stream clus-
tering algorithms [8—11] operate in an on/off-line batch
framework [6, 12], where position data is first accumu-
lated during a given time period (on-line phase) and
they are processed in batch by a specific cluster detec-
tion function (off-line phase). The main problem with
this approach is that this function only processes the data
items within each batch separately and defers the clus-
ter detection process until the end of the off-line phase.
Thus, since it delivers results only at discrete points of
time it is complicated to provide fresh results and a con-
tinuous view of the clusters’ evolution. Further, due to
the batch nature, it can happen that temporally and spa-
tially close location updates end up in different batches,
possibly preventing a cluster to be detected.

Motivated by such limitations, this paper investigates
means of achieving on-line (continuously) and rapidly
(near real-time) detection of spatial clusters from large
position data streams. This problem has the following
three sub-questions:

1 How similar is the on-line and near real-time
clustering result to the ground-truth result, i.e., the
one obtained using the traditional DBSCAN’s [13]
off-line clustering algorithm?

2 How scalable is this approach w.r.t. the data stream
volume, i.e., is it possible to provide or maintain the
clustering quality when increasing the throughput of
the data stream?

3 Finally, can this approach continuously monitor, in
near real-time, the spatial cluster’s evolution?

To address such questions, this paper proposes
DG2CEP (Density-Grid Clustering using Complex Event
Processing), a grid-based (counting) algorithm that com-
bines the traditional density-based clustering algorithm
DBSCAN [13] with the data stream processing paradigm
Complex Event Processing (CEP) [14, 15]. One of the
main ideas in DG2CEDP is to change the problem semantic
from distance computations (between the moving objects
location) to counting. To do this, we subdivide the spa-
tial domain into a grid, an efficient index data structure
for spatial data. Then, rather than measuring the distance
between each pair of moving objects, we count the num-
ber of objects mapped to each cell. Cells that contain
more than a given threshold of moving objects are fur-
ther analyzed. This process triggers an expansion step that
recursively merges a dense cell with its adjacent neigh-
bor. Since cells are aligned in a grid, the expansion step is
straightforward.

With this method, the main performance bottleneck
is no longer the distance comparison between moving
objects, but the number of grid cells. This entire approach
is described using the CEP data stream processing

(2019) 10:8

Page 2 of 28

paradigm. CEP provides a set of real-time data stream
analytics and pattern primitives [16, 17] through continu-
ous queries, such as filter, join, and sequence.

This paper is based on the thesis results described in
[18], which revisit, combines and extend the preliminary
ideas discussed in [19] and [20]. The first paper only
describes the initial CEP algorithm required to detect
spatial cluster while the latter described an heuristic to
address collateral effects caused by the grid-like approach.
Here, we present a holistic approach that further develops
and combine these two parts to provide a complete and
efficient on-line algorithm. For instance, we extended the
CEP algorithm rules to accommodate the heuristic logic
to improve algorithm precision. We also present an exten-
sive performance analysis and in-depth discussions about
the advantages and limitations of the heuristic-enhanced
DG2CEP when compared to the original DG2CEDP, to the
original density-based algorithm, DBSCAN [13], and to
the batch-based D-STREAM [21].

The main and novel contributions of this paper are:

¢ An on-line counting algorithm based on grid-density
clustering, designed as a network of CEP continuous
query and pattern primitives, that is able to
continuously and timely detect (near real-time)
spatial clusters and its evolution from large position
data streams.

¢ A counting heuristic that mitigates the collateral effects
of the answer loss (blind spot) problem [22, 23] that
appears due to the usage of a grid structure to index
and cluster spatial data.

e A scalable event processing network architecture that
can process data in parallel and be distributed to
process higher data stream throughputs.

This paper is organized as follows. Section 2 briefly
restate the paper problem and present the fundamental
topics used to address it. After that, Section 3 presents
the main related-works. Section 4 presents the proposed
algorithm, DG2CEP, while Section 5 presents a counting
heuristic that mitigates the collateral effects of transform-
ing the problem from distance comparison to counting.
Section 6 presents the evaluation experiment used to val-
idate the proposed algorithm. Finally, Section 7 presents
the concluding remarks and limitations of our approach.
It also points to future works that can address or explore
these issues.

2 Fundamental concepts

2.1 Spatial clustering

Spatial clustering is the process of identifying agglom-
erations in spatial data [24], such as those produced by
moving objects (e.g., vehicles and pedestrians). To exem-
plify this concept, consider the spatial data of vehicles

Roriz Junior et al. Journal of Internet Services and Applications

(moving objects) in Fig. 1. This figure illustrates three
moving object clusters. Each cluster contains at least five
moving objects, which need to be close and connected to
one another. Note that moving objects that are not close
to other objects are considered noise.

The Density-Based Spatial Clustering of Applications
with Noise (DBSCAN) [13] is a classic algorithm that uses
density thresholds to discover such clusters. We decided
to base our approach in this algorithm due to its ability
to discover arbitrary cluster shapes, e.g., a cluster repre-
sented by a complex polygon such as a traffic jam that
spans several different streets.

DBSCAN searches for concentrations of spatial data
points, in our case, moving objects’ current position. To
do that, it uses two density parameters, an ¢ radius and the
minimum density minPts of spatial points, to specify the
density-based cluster definition.

A moving object p that has more than minPts other
moving objects in its e—Neighborhood is known as a core
moving object, where the e—Neighborhood of p is the set
N:(p) = {q € D | distance(p,q) < ¢} and D is the set
of all current moving objects location updates [13, 25].
Neighboring moving objects, in an ¢ of a core object p, but
whose density is less than minPts are classified as border
objects. Those that are neither core or border object are
considered noise objects.

The main idea of DBSCAN is thus to recursively visit
each object ¢ € N¢(p) in the neighborhood of a core p
object, in order to check if g is also a core object, i.e. if it

(2019) 10:8

Page 3 of 28

also has minPts neighbors. By such, the cluster is recur-
sively expanded until no further objects are added to the
cluster, i.e., all objects checked in the recursion step are
border objects or have been previously visited.

When applied to large numbers of moving objects,
the bottleneck of DBSCAN becomes the computation of
N (p) [24]. Specifically, DBSCAN needs to compare the
pairwise distance between p and all the remaining moving
objects in order to select those that are within & dis-
tance. One can optimize this operation by using spatial
data structures (e.g., R-Tree and Quad-Tree). However,
this approach can become troublesome for data streams
primarily because moving objects’ location updates arrive
continuously [6]. Further, it is difficult to access and mod-
ify the spatial data structure consistently in parallel when
handling thousands of position data at once [26-28].

To mitigate this issue, the main methods for cluster-
ing spatial data streams follows an on/off-line framework
[6], proposed by Aggarwal et al. [12]. This two phases
framework operates on a batch, that is, from time to time,
the framework switch from the on-line phase to the off-
line. In the off-line phase, it receives as input the buffered
spatial data from the on-line phase. Then, it executes
DBSCAN in the static buffer data.

The main problem with this framework is that it only
processes the data within each batch and defers the clus-
ter detection process until the end of the off-line phase.
Since it delivers results only at discrete points in time it is
difficult to provide fresh results or provide a continuous

305V @ <
Ru2 o o
N
N A
>
R
vl
Garota da Gavi O
O
O = -
€ P
Subway Zona Sul
Bradesco Thalhoo 0y
Delicatessen (o) =
Bacalhau do Rei o Ipiranga

O

o o

o
O Clustered Moving Object O Noise Moving Object

Fig. 1 Spatial clustering of moving objects in an urban scenario

Roriz Junior et al. Journal of Internet Services and Applications

view of the clusters’ evolution. One way to address this
issue is to decrease the batch period. However, by doing so
it can happen that temporally and spatially close moving
objects are placed in different batches, possibly preventing
a cluster to be detected.

To address these issues, we have decided to explore the
Complex Event Processing (CEP) paradigm. This deci-
sion is based on CEP providing processing primitives for
handling data streams in near real-time.

2.2 Complex event processing

CEP is a programming paradigm that supports processing
data streams in near real-time [16, 29] through continu-
ous queries. A continuous query implements one or more
processing primitives, e.g., filter and negation. Contrary to
a database, which stores data and then runs queries, CEP
stores queries and continuously runs data through them.

Data stream items are represented as Events in CEP.
They are characterized by a type, a timestamp, and a
payload [29]. For example, we can define the event type
LocationUpdate to represent a moving object location
update using the following payload schema: id, latitude,
longitude, and timestamp. Events in a given data stream
must follow the same type and their arrival order are based
on the timestamp tag [14, 15].

Continuous query uses its primitives to process incom-
ing event in a data stream as it passes. For instance, filter
LocationUpdate events close to a given region.

Continuous queries output events are known as com-
plex event since they represent processed information
[29]. Both, raw events and complex events, can be used
as part of the definition of a complex event. As an exam-
ple, a complex Trafficlam event can be built by combining
multiple LocationUpdate events in the same area and
period.

Each continuous query is executed by a CEP process-
ing stage known as Event Processing Agent (EPA) [15]. An
EPA stage continuously processes incoming events and
outputs derived events to other EPAs stages. By intercon-
necting EPAs, it is possible to build an Event Process-
ing Network (EPN), a topology workflow for the event
stream. Further, the EPN topology structure, a directed
graph, facilitates the distribution of EPAs into different
machines.

To define events and processing primitives, in gen-
eral, CEP engines (implementations) uses the Continuous
Query Language (CQL) [30] formal design due to its
formalism and its similarity with the SQL language. To
illustrate the expressiveness of CQL, consider the contin-
uous query written in Esper’s Event Processing Language
(EPL) [31] in Code 1. The EPL continuously count the
number of filtered LocationUpdate events in a latitude
and longitude interval within a sliding window of 10 s.
Precisely, whenever a location update event is received,

(2019) 10:8

Page 4 of 28

the primitive will slide to the past 10 s of the stream to
count the number of events that are within the specific
latitude and longitude region.

INSERT INTO FilterLocationUpdate
SELECT COUNT (x)

FROM LocationUpdate . TIME (10 s)
WHERE (lat > —21 AND lat < —23)
(lng > —42 AND 1lng < —43)

Code 1 Sample continuous query written in Esper’s Event
Processing Language.

AND

B W N -

CEP provides a method for grouping related events
in a context (window) to enable them to be pro-
cessed relatedly. A CEP context subdivides the event
stream into one or more partitions [14, 15] using log-
ical and/or temporal predicates. Further, each context
partition represents a subset of the partitioned event
stream.

For example, we can subdivide the LocationUpdate
event stream according to the id attribute. The resulting
context partition is a subset stream of Locationlpdate,
such that all events in a given partition contains the same
id, i.e., the events are from the same moving object. Since
context partition are also event streams (a subset), all CEP
primitives work on them.

Time windows are also context partition. Precisely, a
time window is a temporal context [14, 15] that subdivides
an event stream into time intervals using the timestamp
attribute. The two primary kinds of time windows in CEP
are Landmark and Sliding [30, 32]. Landmark time win-
dows provide the ability to process the event stream in
batch. It buffers all event produced during a A time inter-
val and then applies the continuous queries to the whole
set of events.

Sliding windows, on the other hand, move the context
boundary accordingly to the current event timestamp.
Thus, instead of having predefined batch periods, the time
window boundaries slide to the current event timestamp.
More specifically, a sliding window is a moving landmark
window that contains events in the past A time units. By
sliding the time window it is possible to include the pre-
vious adjacent events that would be placed in different
batches, that is, it possible to continuously glimpse in past
events.

3 Related work

This section presents several recent approaches for
clustering large position data streams in near real-
time. Overall, they can be classified according to
the applied technique: sampling, micro-clustering, and
grid-based.

Roriz Junior et al. Journal of Internet Services and Applications

3.1 Sampling

DENSE [33] is an algorithm that uses sampling to cluster
large position data streams. To do so, every A time units, it
collects all the moving objects’ position data. Then, using
the collected data it computes the spatial clusters using an
off-line DBSCAN-like algorithm. After that, it selects the
k most representative moving objects from the resulting
clusters.

A problem with this approach it that it delays the detec-
tion of emerging clusters since DENSE only processes
data from the k moving object that is already in a cluster.
Clusters that rapidly appear and disappear during sam-
pling may not be detected since its moving objects are
not within the k” most representative moving objects.
Specifically, before electing a new set of k? representa-
tives, DENSE only update the existing clusters. Finally,
this approach cannot provide a continuous view of the
clusters’ evolution, e.g., if an existing cluster has merged
with another one since cluster will only be recomputed at
discrete A periods.

3.2 Micro-clustering

Micro-Clustering is a summarization technique for clus-
tering based on cluster features [8], a characteristic vector.
The overall idea is to summarize the cluster characteris-
tics, such as its centroid, the number of moving objects, its
radius, rather than the data points itself. Algorithms using
this concept associate each new moving object with some
neighboring micro-cluster.

Based on this concept, Kranen et al. [10] presents
ClusTree a micro-cluster approach that stores micro-
clusters in a balanced spatial index where higher-level
entries in the tree represent aggregated clusters (com-
posed of micro-clusters). When updating the struc-
ture for each newly arrived item, due to the current
stream flow, there might not always be sufficient time
to reach the leaf node. In such cases, ClusTree inserts
the moving object to the closest micro-cluster in the
tree hierarchy. However, it is difficult to ensure that
the moving object is, in fact, closer to a given micro-
cluster since its centroid is essentially the median of the
underlying objects locations. Thus, this approach can lead
to a moving object being inserted in a wrong micro-
cluster.

Jensen et al. [34] propose a novel approach for clus-
tering moving objects. Similar to ClusTree, it combines
a micro-cluster approach with a spatial index. But, by
assuming that cluster shapes are circular, it can predict
when a cluster will split. It does that by using a maxi-
mum radius and the moving object’s velocity. One of the
main contributions of their work is the ability to pre-
dict cluster splits or merges by using the moving object’s
velocity direction and speed vectors and assuming a lin-
ear movement from them. However, it also restricts the

(2019) 10:8

Page 5 of 28

cluster shape (circular), which may not be feasible for
many applications.

3.3 Grid-based

Grid-based clustering algorithms have been proposed as
a means of scaling the clustering process [2, 6, 21]. In this
approach, moving objects are mapped to rectangular grid
cells (a.k.a. grid partitions). Thus, each grid partition only
“holds” the objects whose position data falls into the cell’s
geographic area. Dense cells are then further merged to
define the cluster boundary.

D-STREAM [21] and DENGRIS-STREAM [35] are two
well-known representatives of grid-based algorithms. As
with other approaches, both algorithms follow Aggarwal
et al. [6, 12] on/off-line two-phase batch framework and
inherits all its limitations.

Moreover, in both algorithms, the clustering function
does a global search for all dense and modified cells of
the grid, which involves high processing cost over the
streamed data, especially for large grids. Finally, both
approaches are only able to provide a discrete view of the
spatial cluster evolution. Thus, not being able to yield a
smooth and continuous view of its evolution, nor detect
the rapid formation and dispersion of spatial clusters
within the same batch.

4 Density-grid clustering using complex event
processing

This section presents Density-Grid Clustering using
Complex Event Processing (DG2CEP), a density-grid data
stream clustering algorithm expressed as a network of
CEP primitives. DG2CEP combines the grid index [2, 24]
with CEP’s data stream processing primitives [14, 15] to
enable a continuous detection of spatial clusters and their
evolution in zear real-time.

Contrary to DBSCAN, which computes a pairwise dis-
tance between moving object positions, DG2CEP employs
a counting based semantic. To do so, it divides the
spatial domain in a grid of context partitions. Then,
each moving object location update is mapped into
one grid cell. When one grid cell contains more than
minPts unique location updates — within a sliding win-
dow of a A period — a core cell event is derived.
This event is enriched with the adjacent cell border
events to form a Cell Cluster event (core plus bor-
der cells’ content). On the other hand, a Cell Disperse
event is generated to indicate that the cell has become
sparse, i.e., when it no longer contains minPts location
updates.

Grid Cluster events are composed of one or more adja-
cent Cell Cluster events. They contain a set of adjacent
core cells and their corresponding border cells. Incoming
Cell Cluster and Cell Disperse events are correlated exist-
ing grid clusters to either create, destroy, update, merge,

Roriz Junior et al. Journal of Internet Services and Applications

or split them. As a result, this process produces an output
containing the resulting grid cluster and its corresponding
semantic, e.g., add, merge.

Overall, DG2CEDP, illustrated in Fig. 2, is divided in three
continuous stages:

1 Fetching and mapping the moving object’s position
data to Location Updates (Stream Receiver EPN);

2 Detection of grid cells which have become dense or
sparse over time (Cell EPN);

3 Correlate dense and sparse cells with existing grid
clusters to create or modify them (Grid EPN).

Each stage of the algorithm can be deployed concur-
rently to distribute the workload. Distributed instances
are interconnected through a publish/subscribe middle-
ware that provides uncoupled communication between
each stage. For instance, a deployed instance can subscribe
to position data of a specific spatial range to only handle
events from that region, as shown in Fig. 2, where each
Cell EPN only consume events from specific Location
Update range.

4.1 Stream receiver EPN

DG2CEP’s first stage, Stream Receiver, is responsible
for continuously receiving and mapping incoming mov-
ing objects location as LocationlUpdate events. Moving
objects periodically inform their location by sending the
following data: (id,lat,Ing,t), where id is the moving
object’s identifier, lat and [ng are their current position
(latitude and longitude values, respectively), and ¢ is the
timestamp the data was sampled.

(2019) 10:8

Page 6 of 28

Incoming data stream tuples are mapped to a grid cell
(i,J) to avoid the pairwise distance comparison between
them. By doing so, the algorithm can rely only on counting
the number of location updates in each grid cell to dis-
cover dense and sparse cells, that will constitute the spatial
clusters.

Thus, following this idea, the monitored spatial domain
(a rectangular region defined by [latin, latmax] and
[Ing,in IN8,10,]) is divided into a grid G of grid cell size
% X % The choice for this respective grid cell size

is to guarantee that the maximum distance between any
two location updates within the grid cell is ¢, similar to
DBSCAN e—Neighborhood, as shown in Fig. 3. Thus, G is
segmented in the following intervals:

o | — [lngm,-n, Ing i, +ix %: S rlngmax] and
€

* j— [latmi,,, latyin +j % N ,lat,mx]

for longitude and latitude respectively.

Algorithm 1 describes the required steps to trans-
late incoming data into Locationlpdate events. DG2CEP
stores the grid intervals in a static data structure, which
allows efficient retrieval of the corresponding cell index.
It is possible to directly compute the cell index using the

formula: [%J and L%J, where lat and Ing

are the position data location, and lat,;, and Ing,,;, are
the domain region’s lower boundaries. This formula repre-
sents the roughly, rounded, number of % units required
to index the incoming position data. Finally, DG2CEP
emit a LocationlUpdate event that enriches the incoming
position data (id, lat, Ing,t) with its corresponding grid
cell i and j index.

DG2CEP
o CELL EPN

[—]
| — |

DG2CEP
STREAM

DG2CEP
STREAM

DG2CEP
CELL EPN

i@ o

<=
-
-
= p=

K Deploy Location Dense Dispersed
=] Instance Update Cell Cluster Cell Cluster

Fig. 2 Overview of DG2CEP distributed event processing architecture

l u
. New Merged n Removed a Z n Updated
Cluster Cluster Cluster Cluster

DG2CEP

= CELL EPN
DG2CEP

[—]
—

.. GRID EPN

DG2CEP
., CELL EPN

)%
'y --»

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 7 of 28

Fig. 3 Example of DG2CEP % X % grid cell division

-1

4—8/\/2—;

Algorithm 1: DG2CEP (Stream Receiver)

Input: An input stream of position data D, the ¢
distance threshold, the minimum number of
moving objects minPts, and the latitude
[latmin, latimax) and longitude [Ingin, Ingmax]
intervals

Output: An output stream of LocationUpdate

(id, lat, Ing, t,i,]) events

1 latindex < segment lat interval by %

(]

Ingindex < segment Ing interval by %

w

while position data stream D is active do

4 rawlu < read (id, lat, Ing, t) from D

: : ~ | lat—lat,,;y
5 i < FINDINDEX(lat, latindex) >~ Lisﬁ J
6 | j < FINDINDEX(Ing, Ingindex) o~ LW;I#J
7 emit LocationUpdate({rawlu, i, j))

s end

This algorithm can be expressed in CEP by using
the project and enrich primitives. Project retrieves the
existing data, while enrich adds the cell index, creat-
ing a Locationlpdate event. An EPA with this con-
tinuous query can be deployed in parallel without any
collateral effects due to the stateless nature of such
primitives.

4.2 Cell EPN

DG2CEP second stage, Cell, is responsible for discov-
ering dense and sparse grid cells from incoming Loca-
tionUpdate events. Thus, first, it uses a communication
middleware to subscribe to LocationUpdate events that
are within a spatial range. By subscribing to events that
only occur in such region, it is possible to distribute the
workload among instances, as shown in Fig. 2.

4.2.1 Dense cell discovery
Algorithm 2 describes how DG2CEP detects the forma-
tion and dispersion of dense and sparse cells. Each grid

cell gets assigned a density value, which is the number of
unique LocationUpdate events mapped to the cell within
the past A time units.

Algorithm 2: DG2CEP (Dense and Disperse Cells)

Input: A stream D of LocationlUpdate events, the ¢
and minPts thresholds, A period, and the
latitude and longitude intervals

Output: A stream of DenseCellCluster

(Cell, Neighbors) and of
DispersedCellCluster (Cell) events

1 G <« agrid dividing the Ing (i) and lat (j) intervals by
ev2

2 L < amap to store the latest cell of each moving
object

3 while data stream D is active do

4 lu < read location update (id, lat, Ing, t, i, })

from D
5 C < unique location updates in G;; in the past A
period
6 > Verify the cell density
7 if |C| > minPts then Gj; is a dense cell
8 N <« Retrieve the neighboring (adjacent)
Grid cells
9 emit DenseCellCluster ((C,N)) event
10 end
11 > Now we check if moving object changed cell and

if the previous will become sparse
12 if L(lu.id) # current(i,j) then obj. changed cell

13 if cell will become sparse with this movement
then
14 emit DispersedCellCluster ((L(lu.id)))
event
15 end
16 end

17 > Update the last cell of the moving object
18 L(lu.id) < (lu;, luj)
19 end

Roriz Junior et al. Journal of Internet Services and Applications

LocationUpdate events assigned to a cell are all within
¢ distance (e-Neighborhood) apart from each other since
the cell length is %, which means that the maximum dis-

tance between two moving objects in the same grid cell
is \% x +/2 = &. Hence, to calculate the grid cell density

the algorithm retrieves all unique LocationlUpdate events
in the data stream, within a A period, that are in the
incoming event grid cell index (e.g., Gj).

The grid cell structure can be translated to CEP as con-
text partitions that segments the incoming LocationlUp-
date event stream based on its (i,) index. For example,
Code 2 creates such context partition (CellContext) fol-
lowing this definition. Each stream partition will only
consider events that are in the same grid cell, i.e., those
that have the same i and j index.

Following this idea, the cell density value can be easily
computed in CEP by taking advantage of the CellContext
partition. Precisely, whenever it receives a Locationlp-
date event it can use its (i, j) index to select the appropriate
context partition sub-stream, followed by the event times-
tamp ¢ and to slide and retrieve only events that are within
a given period. The resulting sub-stream slides the context
sub-stream and mitigating the issues related to batching,
where spatially close data were placed in different batches,
since the window will slide accordingly to the analyzed
event.

Likewise, core moving objects in DBSCAN, grid cells
whose density value is greater than or equal to minPts are
considered dense and classified as a core. Therefore, to
discover core cells, DG2CEDP filter the CellContent event
stream to identify events whose density value is equal or
higher than minPts. This simple task can be continuously
and timely done in CEP through the usage of the filter and
project primitives. If the analyzed CellContent event den-
sity surpass minPts, the EPA produces a derived complex
CellCore event.

1 CREATE CONTEXT CellContext
2 PARTITION BY ; AND j
3 FROM LocationUpdate

Code 2 DG2CEP grid as a context partition (in EPL).

Analogously to DBSCAN, in DG2CEP, the most
straightforward cluster is formed by the combination of
a core grid cell (C) and its neighboring border cells (),
which are then further visited in a later part of the
algorithm. Thus, DG2CEP needs to enrich the CellCore
events with its adjacent border cells to create a complex
event named DenseCellCluster, to be further expanded.
This can be done by joining incoming CoreCell event C
with existing CellContent events (in the A period). As a
result, the continuous query produces a complex Dense-
CellCluster event, which contains the CellCore event (C)

(2019) 10:8

Page 8 of 28

and the resulting collection set containing its neighboring
cells (V).

The degree of parallelism of the Cell processing stage is
associated to the number of grid cells, that is, this stage
can process in parallel one event for each grid cell index
since its computation is based on each grid cell. This
upper limit is used to avoid inconsistency. For example,
consider that two LocationUpdate events from different
moving objects, but mapped to the same grid cell (i, j)
index, are being processed in parallel.

In such scenario, due to the stateful nature of the count
primitive, it may miss the other LocationUpdate that is
being processed in parallel. However, it is important to
note that this degree of parallelism refers to each EPA and
not the entire EPN, that is, several events with the same
cell index can coexist in the EPN, but at different EPAs
pipeline stages.

4.2.2 Sparse cell discovery

Cells become sparse when its density drops below minPts.
This can happen whenever moving objects change their
grid cells or if they stop updating their location. To detect
the first situation (cell change), DG2CEP stores the latest
grid cell of each moving object in a map £, as shown in
Algorithm 2. For instance, if the most recent position of
a moving object with id equal to 7 was in grid cell (4,9),
then £(7) = (4,9). DG2CEP checks if a moving object has
changed it cell by comparing if its incoming LocationlUp-
date event cell index differs from its than its previous
position, i.e., if £L(id) # (i,]), where i and j are the current
location update cell indexes.

This situation can be timely verified by an EPA contin-
uous query using the CEP sequence and filter primitives.
To do that, first, the EPA employs the select primitive to
extract consecutive LocationUpdate events. Then, it fil-
ters the event if their grid cell index differs. As output,
the EPA produces a complex CellRecheck event contain-
ing the previous grid cell of the incoming moving object.
If the density value of a cell is less than minPts the con-
tinuous query generates a complex DispersedCellCluster
event to indicate that it has become sparse.

Moving objects can also stop sending Locationlp-
date events, which can lead to a cell cluster becoming
sparse even though moving objects did not change cells.
DG2CEP can detect such situation through the usage
of CEP sequence and absence primitives combined with
a A sliding window period. This EPA verifies if a pre-
vious DenseCellCluster event in a grid cell (i,) is not
followed by another DenseCellCluster event within a A
period. The absence of this event throughout this period
indicates that the number of location updates mapped
to the cell dropped to less than minPts and that it is no
longer a cell cluster. By setting up a A time window value
equal to the moving objects’ location update frequency,

Roriz Junior et al. Journal of Internet Services and Applications

DG2CEP makes sure that all location updates have been
considered.

Similar to the dense cell discovery, the degree of paral-
lelism for the sparse detection phase is associated with the
number of context partitions (grid cells). It can process an
event for each grid cell in parallel without having collat-
eral effects. Further, the sparse detection algorithm can be
processed in parallel with the dense cell discovery one.

4.3 Grid EPN

So far DG2CEP is only detecting the formation and
dispersion of individual cell clusters. To detect clusters
of arbitrary shapes, DG2CEP also needs to implement
the successive merge and unmerge of cells, similar to
DBSCAN expansion step.

The Grid EPN is responsible for handling cell clus-
ter and disperse events to create, destroy, and evolve
grid clusters. In terms of CEP workflow this boils down
to merging and expanding grid clusters when receiving
DenseCellCluster events, while removing cells from, and
occasionally splitting or destroying, existing grid clusters
when receiving DisperseCellCluster events.

Analogous to DBSCAN, where clusters are collections
of density-connected core and border moving objects, in
DG2CEDP, grid clusters are the resulting combination of
one or more adjacent DenseCellCluster events. In turn,
each DenseCellCluster event contains a core grid cell and
its corresponding neighbors.

To represent a grid cluster, DG2CEP uses CEP’s stream-
ing relation concept, a shared memory structure that can
be used within different continuous queries. By storing the
grid clusters in such relation, DG2CEP can add, update,
and remove clusters from different EPAs. The cluster
streaming window schema is defined as follow: (cid, x,),
where cid is the cluster identifier and x and y are the core
cell cluster index!.

(2019) 10:8

Page 9 of 28

To exemplify this schema, consider the Grid Clusters
(GC) streaming window illustrated in Fig. 4. Here, a grid
cluster with cid = 15 contains two core cells, with indexes
(5,9) and (5, 10), while the cluster with cid = 16 contains
three core cells: (3,3), (4,2) and (4, 1). The relation win-
dow only index the grid clusters core cells, since its border
ones can be easily retrieved through the core cells adja-
cency. The remaining subsections discuss how to build
and manage such clusters.

4.3.1 Grid add, update, and merge

Algorithm 3 describes how DG2CEP expands DenseCell-
Cluster events to create and evolve grid clusters. First,
DG2CEP unwrap the complex event and adds its core and
border cells to a grid G. Before further processing the
event, it has to verify if it is creating, augmenting, merg-
ing, or just updating an existing grid cluster. We decide
to untangle these different cases by checking for a cluster
update since it is the most frequent situation, i.e., when
a cell cluster updates the position or number of moving
objects.

DG2CEP updates an existing cluster if it contains a core
cell which index is equal to the incoming cell Gj;. If pos-
itive, it output a GridCluster event with the cluster ID
and a UPDATE tag. However, when no existing clusters
contain Gj;, it means that either the core cell can form a
cluster or can be merged into an existing one. Neverthe-
less, in both cases, the conclusion of such operation is a
new cluster, either one with this single cell or the result of
the merged one. Thus, DG2CEP insert a new grid cluster
in the streaming window containing such cell. Subsequent
EPAs will process this information to filter out each case.

To avoid inconsistency issues when processing events in
parallel, a lock is applied for this rule for each cell index.
Thus, the degree of parallelism associated with this EPA
is also the number of cells. While an event with cell index

Yy

10
9 Cluster Cellz | Celly
8 Index Index
7
6 5
5 5 9
4 3 3
3 — 16 4 2
2
1 16 4 1

x
1 2 3 4 5 6
Fig. 4 An example of the Grid Clusters streaming window

Roriz Junior et al. Journal of Internet Services and Applications (2019) 10:8 Page 10 of 28
Algorithm 3: DG2CEP (Grid Add/Merge/Update) 3 WHERE DC.i=GCx AND DCj=GCy
Input: A stream D of DenseCellCluster (C,N), the ¢ 4 WHEN MATCHED G
threshold, and the latitude and longitude 5 THEN INSER'Ij INTO
intervals 6 SELECT GC.cid, "UPDATE"
Output: Continuously output pairs (gcid, S) of grid 7 WHEN NOT MATCHED Ge
clusters ID gcid and their corresponding 8 THEN INSERT INTO)
9 SELECT nextClusterID++ AS cid,

semantic S

1 G < agrid dividing the Ing (i) and lat (j) intervals by
£v2

2 GC < arelation {cid, x, y) to store the grid clusters
cells

3 while data stream D is active do

4 (C,N) < read dense cell cluster event from D
5 S < NONE
6 > Now we check if the core cell belong to a grid
cluster
7 if a grid cluster contains G;; then C is in a grid
cluster
8 geid < get the cluster ID
9 S < UPDATE
10 elseG;; is not in any existing grid cluster
11 gcid < generate a new cluster ID
12 > Check if it is neighbor of an existing grid
cluster
13 N’ < Get Clusters Adjacent to G in GC
14 if N/ = & then there are no clusters adjacent
to Gij
15 | S < aDpD
16 else
17 S < MERGE
18 Merge the clusters by updating their id to
geid
19 end
20 end
21 emit GridCluster ({gcid, S)) event
22 end

Gjj is being processed, subsequent events with index i and
j are queued, while events with different cell indexes can
be processed in parallel.

Part of this algorithm is described in CEP in Code 3.
This EPA uses the merge primitive to atomically update
or insert a core cell in the GC relation if there is a clus-
ter that contains the incoming core cell i and j index. If
there is a match the EPA outputs a complex GridCluster
UPDATE event by using the corresponding cluster id. Oth-
erwise, the EPA insert a new entry to the GC streaming
window containing the incoming core cell indexes and a
newly generated cluster id.

1 ON DenseCellClluster AS DC
2 MERGE INTO GC

10 DC.i AS x, DCj AS y
Code 3 Grid Merge (in EPL).

Now, DG2CEP needs to process the newly created grid
cluster. Thus, first, DG2CEP identify if there are adja-
cent grid clusters to the newly created one. This task can
be done by querying the GC streaming window using
each adjacent (border) cell index. If the EPA returns an
empty set A/ of neighbors, i.e., if there are no grid clus-
ters that are neighbors of the newly dense cell, then there
is no merge process. However, if the A/’ set is non-empty,
DG2CEP will merge the grid cluster by uniting the neigh-
boring grid clusters. This is due to the newly created grid
cluster serving as a link to connect all its neighboring grid
clusters. To efficiently merge the cluster, DG2CEP needs
to update all core cells of adjacent grid clusters to the new
id.

To exemplify this process, consider the scenario shown
in Fig. 5. The GC streaming window contains tree grid
clusters. Now, consider that the incoming DenseCellClus-
ter event is the hashed cell with index equal to (4,4).
DG2CEDP first verifies if the incoming cell event is already
contained within a given grid cluster. In this case, it is not
located in any grid cluster. Thus, it creates a new grid clus-
ter using the incoming event cell and a unique ID, e.g. 17.
Then, it looks for adjacent grid clusters in its neighboring
cells. In this case, there are three adjacent grid clusters.
The resulting of this merge is a single grid cluster with ID
17 and composed by the union of all adjacent grid clusters
(12, 14, and 16) since the incoming core cell interconnects
them.

Finally, in addition to the event semantics (e.g., add,
merge), the grid cluster output should also include the
core and border cell contents. DG2CEP build such out-
put by consuming the GridCluster event. The resulting
set is wrapped alongside the event semantic in a com-
plex GridClusterOutput event. This event is intended to
be consumed by endpoint applications or to be further
processed by other EPAs continuous queries.

4.3.2 Griddisperse

When a cell cluster disperses, i.e., when receiving a Dis-
perseCellCluster event, it is necessary to timely reflect
this change in the GC streaming window, as described in
Algorithm 4. First, DG2CEP identify the cluster that con-
tains the dispersed cell. This is done by comparing the

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 11 of 28

Y

Y
o

-t

Y

-t
o

N W R VT NN o O

-

1 2 3 4 5 6

Fig. 5 Sample scenario of merging grid clusters

NoWwW R U N N o O
- - = =
L= N =N N N
S =N W A%} W W
W A%} [= NN |

Cluster | Cellz | Celly
1D Index Index

Cluster | Cellz | Celly
ID Index Index
17

17
17

r

W Ui o~ U

17
17

3
3
b
17 3
4
4
4

\ L)

incoming disperse cell index to the grid clusters’ core cells
indexes in GC.

Incoming DisperseCellCluster events are joined with the
GC relation by correlating the disperse cell indexes. Using
the dispersed cluster id, DG2CEP extract its core cells. By
doing so, it can verify if the cluster in question should be
destroyed or split after removing the dispersed cell.

After extracting the cluster core cell, DG2CEP only
needs to identify and handle possible residual (e.g., split)
clusters. A list of clusters R is created to hold the resid-
ual clusters. Each member of this list is a set r (residual
cluster) whose elements are the core cell.

To verify if a core cell belongs to a residual cluster,
DG2CEP check if a residual cluster contains an adjacent
cell to the one being analyzed. If it does the remainder core
cell is added to the residual cluster, otherwise, a new resid-
ual cluster is created with this cluster. After this step, the
cluster containing the dispersed cluster is deleted. Then,

each of the residual clusters is reinserted in the streaming
window. This is done by generating a new cluster id with
the combination of the core cells belonging to this resid-
ual cluster. If there is no residual grid cluster, i.e., R = @,
a destroyed semantic is emitted to indicate that the grid
cluster has faded.

4.4 Discussion

By using an \% X % square shaped grid cells, DG2CEP
reduces the problem to counting the number of mov-
ing objects that fall into each cell. Similar to DBSCAN,
in DG2CEP still needs to expand the core grid cells, i.e.,
those that are dense w.r.t. the minPts parameter, but this
process is more straightforward and efficient as they are
disposed in a grid. Hence, the main performance factor
is not anymore the number of moving objects location
updates but instead the number of grid cells g, or context
partitions, which solely depends on ¢.

Roriz Junior et al. Journal of Internet Services and Applications

Algorithm 4: DG2CEP (Disperse)

Input: A stream D of DispersedCellCluster (C), the ¢
and minPts thresholds, A period, and the
latitude and longitude intervals

Output: Continuously output zero or more pairs

(G, S) of residual grid clusters G and their
corresponding semantic S

1 G <« agrid dividing the Ing () and lat (j) intervals by
ev/2

2 GC < arelation (cid, x, y) to store the grid clusters
cells

3 while data stream D is active do
4 C <« read dispersed cell event from D
5 rcid < retrieve the grid cluster ID
6 > Remove the dispersed cell from the given cluster
7 GC « GC — {{rcid, C;, Cj)}
8 R <« Compute the residual grid clusters
9 if R = & then there are no residual grid clusters
10 ‘ emit GridCluster (rcid, DESTROYED)
11 elsethere are residual grid clusters
12 delete all residual core cells in Clusters
13 foreach residual grid cluster r from R do
14 ncid < generate a new cluster ID
15 emit OutputGridCluster (ncid, SPLIT)
16 end
17 end
18 end

The tuning of the ¢ parameter and the frequency of
location updates sent by moving objects for a concrete
application is very complex, and requires expertise in the
application domain [2, 6]. We assume that such informa-
tion is known in advance. Regarding the sliding window
size (A), it has a direct relationship with the expected fre-
quency of the moving objects’ location update. Ideally,
A should be large enough to slide and retrieve the latest
location updates of every moving object being considered.

Regarding algorithmic complexity, it is hard to calculate
DG2CEP computational cost given its event-based nature.
Considering the worst case scenario, the computational
cost is determined by its longest event path, i.e., a loca-
tion update that passes through all EPAs stages. Thus, in
this case, the computational cost of DG2CEP per location
update is:

DG2CEP = O(SR) + O(Cell) + O(Grid)
Odgg) + 01 + O(g)
= 0@

where g is the number of grid cells.

The Stream Receiver (SR) EPN cost is associated with g,
the number of grid cells (context partitions). Using a static

(2019) 10:8

Page 12 of 28

grid structure that holds intervals, such as Segment Tree,
DG2CEP can identify the grid cell indexes in O(lgg). The
computation of an approximation cell index can also be
done in constant time, O(1), since it can be directly com-
puted through the location update latitude and longitude
values, roughly the number of % units required to index
this position.

After mapping the location updates to a cell, DG2CEP
checks if the given cell density is greater or equal to
minPts. When this happens, the algorithm retrieves its
adjacent neighbors and builds a complex DenseCellCluster
event to be further expanded. Further, it also checks if the
previous cell of the moving object has dispersed. In both
cases, for detecting dense and sparse cells, the computa-
tion can be done in constant time since it involves basic
operators.

Finally, the last algorithm stage, Grid EPN, consumes
the dense and disperse cell events. The DenseCellCluster
event triggers the EPA to check if the incoming dense cell
will form a new grid cluster or is part of an existing one.
This process requires an iteration over the existing grid
clusters cells. In the worst case, each cluster could be a sin-
gle cell in the grid, which would require an iteration over
all g grid cells. Hence, its computational cost is O(g). For
DisperseCellCluster events the process is similar. Here, the
worst case scenario is that a cell becomes sparse in a grid
cluster composed of every cell. In this case, the algorithm
would need to iterate over all the g grid cluster cells to
discover residual clusters. Thus, its computational cost is
also O(g). Therefore, considering all the aforementioned
steps, the cost for the entire DG2CEP algorithm pipeline
is O(g).

However, it is important to note that DG2CEP worst-
case scenario is unlikely to occur for all events in the
stream. It would require all location updates in the A
time window to have their corresponding moving objects
located in dense cells. In most cases, most location update
events will pass only through the SR and stop at the Cell
stage, which has a low cost.

4.5 Limitations

While DG2CEP’s counting approach of grid cells gives a
performance advantage over distance comparison, it also
entails what we call the answer loss or blind spot problem:
the difficulty to detect a dense grid cluster when spatially
close location updates are mapped to adjacent grid cells
[22, 23, 36]. The answer loss problem happens in any grid-
based approach because the spatial domain is segmented
in € square shaped cells, and moving objects that are ¢ dis-
tance apart from each other may be mapped to different
cells, not contributing to the required minPts density. For
example, suppose that minPts = 4 and the cells have the
following location updates illustrated in Fig. 6. In this case,
no cell would be dense since their density is below the

Roriz Junior et al. Journal of Internet Services and Applications

4—8/\/2—>
: \

_) &

Fig. 6 Blind Spot Scenario in DG2CEP for minPts = 4

minPts threshold even though there is a definite high den-
sity of location updates in the picture close to the borders
of all 4 cells.

It is possible to compare DG2CEP’s and DBSCAN’s
clustering results. Considering that there are no answer
loss, DG2CEP clustering results are a superset of
DBSCAN one. Suppose that a grid cluster in DG2CEP has
¢ core and b border grid cells. Hence, all location updates
in the ¢ core grid cells would also be included in DBSCAN
result since they are all within the ¢ distance. DG2CEP
default expansion includes all the border grid cells. There-
fore, in the worst-case scenario, the neighbor grid cells
should not be included, since their content is beyond the
¢ distance. To exemplify this issue, consider the scenario
illustrated in Fig. 7, with minPts = 4 and a grid cluster
with two core and eight border cells.

(2019) 10:8

Page 13 of 28

The number of location updates detected by DG2CEP
in this cluster would be |c| + |b| = 12, where |c| and |b|
are the number of location updates placed in the cluster’s
core and border cells respectively. This result is a super-
set of DBSCAN’s outcome, which is 9 location updates.
This clustering error is limited by following equation: |b| x
(minPts — 1). This means that, since DG2CEP includes all
the content of neighbors partitions, in the worst-case sce-
nario, all their moving objects are not within ¢ distance of
the core partition. However, these partitions are limited by
minPts, otherwise, they would have been included as core
partitions.

5 Answer loss heuristic

In this section, we present a heuristic to address the
answer loss subproblem [22, 23, 36]. This subproblem
happens in DG2CEP, and other grid-based approaches,
due to the discrete division of the spatial domain into grid
cells, which can lead to spatial close locations updates
being mapped to different cells. Although moving objects
are close w.r.t. ¢ and minPts, a cluster may not be detected
since they objects may be mapped to different grid cells,
as seen in Fig. 6.

5.1 Transient heuristic

To address the answer loss subproblem, while retaining
DG2CEP counting semantic, we propose a density heuris-
tic that logically divides each grid cell into S inner slots
(strips), in both directions, horizontal and vertical. The
overall idea is to consider the distribution of moving
objects inside these adjacent cell slots when calculating
the cell density. Then, the density function counts the
number of location updates in those inner slots in a way
that slots closer to G;; have a higher weight than those that
are more distant.

Each location update mapped to a grid cell G; is also
mapped to a horizontal and vertical slot index s, such that
s varies from 0 to § — 1, the first and last slot respec-
tively. This operation can be effectively done in constant
time during DG2CEP Stream Receiver EPN phase by

o%

(0]

Fig. 7 DG2CEP result as a superset of DBSCAN one

O Moving Object

Roriz Junior et al. Journal of Internet Services and Applications

comparing the location update position with the width
and length size of each slot.

Since the heuristic considers moving object in adjacent
cells when computing a given cell density, as a collateral
effect, it can lead to a cluster that does not exist. To mit-
igate this issue, the idea is to apply the heuristic only to
cells whose density fall within minPts and an even lower
boundary transientPts. Such cells are called transient grid
cells.

To apply the heuristic, DG2CEP needs to analyze the
neighborhood of the transient grid cell. To do so, it
updates the density function to consider the inner den-
sity of neighboring cells, as shown in Fig. 8. We use a
decay weight function that counts the number of loca-
tion updates inside each inner slots of each neighboring
cell in such a way that slots closer to G;; receive a higher
weight. The heuristic density is the sum of the loca-
tion updates’ placed in each slot with their corresponding
weight. Closer slots indexes vary according to the position
of the neighboring cell, as shown by darker tones in Fig. 8.

The heuristic density function is described as:

S
d(Gyj Ne(Gy)) = Gyl + > <Znsst),

neN, (Gj) s=0

where |G| is the number of location updates contained in
Gy, n € Ne (Gij) is a adjacent cell neighbor, S is the total
number of inner slots, #; is the number of location updates
in the s slot index of a neighboring cell 7, and w; is the
s decay weight.

The density heuristic can use two weight functions, a
linear and an exponential one, as illustrated by Fig. 9. The

linear decay weights can be computed as wy = 1 — g,
where s is the given grid cell inner slot index. For exam-
ple, considering S = 4, the slots weights are wp = 1,

w1 = 0.75, wy = 0.50, w3 = 0.25 and w4 = 0. Thus,
when computing the cell density, the number of location

(2019) 10:8

Page 14 of 28

updates in the first slot contribute directly, since they are
multiplied by 1, while those placed in the last slot does not
add to the cell density.

Likewise the linear weight, the exponential decay
weights can be computed as ws; = k*, where k is a number
between 0 and 1 such that k<° ~ 0. Based on this defini-
tion, k varies accordingly to the number of inner slots S.
For example, considering that cells have S = 4 inner slots,
k value is approximately 0.3162, i.e., 0.3162* ~ 0, while for
grid cells that have S = 10 inner slots, k is approximately
0.6309, since 0.6309'% ~ 0.

5.2 Usage and limitations

By applying the discrete weight function to the neighbor-
ing cells inner slots, the proposed heuristic can detect
several answer loss clustering scenarios. For example, con-
sider the clustering scenario of Fig. 10a and parameters
S = 4 and minPts = 4. Since the analyzed grid cell den-
sity is 2, thus less than minPts, DG2CEP would not detect
the cluster. Using the heuristic, with a linear weight decay,
the computed density will be 2 4+ (1 x 1) 4+ (4 x 0.75) =
5 > minPts, thus, the cluster would be detected. An expo-
nential decay weight will also detect this cluster, since the
density would be 2 + (1 x 0.3162°) + (4 x 0.3162!) =
4.26 > minPts.

On the other hand, as a collateral effect of considering
moving objects of neighboring cells when calculating the
cell density, the proposed heuristic would detect a non-
existing cluster (a false positive) in some situations, as
illustrated in the cell configuration of Fig. 10b, for § = 4
and minPts = 4. In this scenario, DG2CEP would cor-
rectly not detect the cluster, since the cell density is 1.
However, the linear weight decay would wrongly detect
the cluster, since the cell density in this case would be
1+Ax1)+@Ax075 + (2 x05)+ (1 x 025 =
4 > minPts. Nevertheless, in this scenario, the exponen-
tial weight decay would correctly not detect such cluster,

=

Fig. 8 Density neighborhood of a cell Gj. Note that the neighbor’s closer inner slots is relative to the position of G;

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 15 of 28

3 1.00
Z 07
2 050
5 0.25
= 0.00

Slot s

Fig. 9 Linear and exponential weights for S = 4 inner slots

3 1.00
=~ 0.75
& 0.50
S 0.25
= 0.00

since the computed density would be 1 + (1 x 0.31620) +
(1 x0.3162") + (2 x 0.3162%) + (1 x 0.3162%) = 2.54 <
minPts.

To mitigate the heuristic collateral effect of detect-
ing non-existing clusters, we propose only to apply the
method in transient cells, i.e., those whose density is
lower than minPts, but higher than a transientPts thresh-
old, where transientPts < minPts. By using a lower-
bound threshold, we can restrict the heuristic applica-
tion to almost dense grid cells. For example, consider a
transientPts = 2 threshold in the clustering scenario of
Fig. 10b. In this configuration, the linear weight heuristic
will correctly not detect the cluster, since the cell den-
sity would be 2. In addition to mitigating false positive
answers, transient cells also reduce the overall heuristic
computational cost, since the heuristic will only apply to
grid cells whose density are within the transient interval.

6 Evaluation

DG2CEP was evaluated using a real-world data stream
generated by the bus fleet of the city of Rio de Janeiro?.
The evaluation had the following goals. First, measure the
elapsed time required by DG2CEP to detect the forma-
tion, dispersion, and evolution of spatial clusters when

compared to the baseline DBSCAN off-line algorithm.

Second, measure the elapsed time required by the well-
known grid and batch-based D-STREAM [21] algorithm
to indirectly compare it to DG2CEP. Further, measure how
the elapsed time varies according to the number of moving
objects and partition sizes ¢.

We also evaluated the heuristic-enhanced DG2CEP
under different transient thresholds. Here, the goal was
to compare the heuristic version with basic DG2CEP and
DBSCAN. Also, we evaluate if the number of inner slots
impacts the number of clusters found.

Finally, the evaluation measured how similar DG2CEP’s
clustering result is to DBSCAN throughout the entire data
stream using a second-by-second analysis. By doing that,
we aim to verify if DG2CEP’s clustering result can keep
up” to DBSCAN by measuring their similarity through-
out the data stream. For this we used the Rand Index
[37], which measures the similarity between clusters, con-
sidering the number of true positive, true negative, false
positive, and false negative moving objects placed in a
given cluster.

6.1 Implementation

DG2CEP was implemented using Java and several open
source libraries. The reason for using Java is due to
the numerous libraries, frameworks, and middleware

(a)

(b)

Fig. 10 Cell configuration scenarios. In a the scenario forms a cluster, while in b it does not

Roriz Junior et al. Journal of Internet Services and Applications

platforms available in this language. For example, we
opted to use the Esper CEP Engine [31], one of the lead-
ing open source CEP engines, which is available as a
Java library. Esper provides a continuous query CQL-
like declarative language that supports CEP’s primitives.
We implemented DG2CEP event processing network as a
network of Esper’s continuous queries.

DG2CEP also uses the SDDL communication mid-
dleware [38] to interconnect the different parts of the
EPN. SDDL provides publish/subscribe communication
with real-time guarantees for local, mobile, and cloud
instances, based on the OMG DDS standard. It is also
written in Java and uses OpenSplice, an open source
implementation of the DDS standard.

Each DG2CEP distributed instance also implements
a wrapper for life-cycle management and interaction
with the Esper CEP Engine, that can dynamically create
and destroy EPAs. These functions are implemented as
commands, enabling EPAs to be deployed and intercon-
nected locally or remotely by dynamically generating the
necessary listener and subscriber routines to receive or
route input/output events. This strategy enables DG2CEP
instances to be as flexible as needed. For example, one can
deploy the entire EPN in a single machine, or subdivide
into different machines.

6.2 Datastream

We crawled the data stream from the data.rio open
platform and obtained a dataset containing the trajectory
data for the city’s 11,324 buses for one hour (from 17:30 to
18:30) for the week of July 12" to 19" of 2016. We choose
the rush hour period because it contained the most sub-
stantial throughput, and probably the largest number of
spatial clusters.

While crawling the data stream, we learned that, on
average, each bus update its location every 60 s. Hence,
considering 11,234 buses, each second contains in average
187 location updates. With the intent to increase the data
stream volume, we augmented the data stream using lin-
ear interpolation between buses location updates in such
a way that a location update is emitted every second for
every bus. More precisely, between two consecutive buses
location update points we generated additional location
updates on the direct line between these two points. Using
this method, we produced four resulting data streams with
2500, 5000, 7500, and 10000 location updates events per
second.

The reason for choosing such numbers is to reflect
the size of real-world bus fleets in metropolis [39]. For
instance, New York City has 5700 buses, while Los Ange-
les has 2328 [40]. Further, as said, moving objects does
not necessarily send an update every second. By augment-
ing the data stream, we aim to evaluate if DG2CEP can
scale and handle higher throughputs. For example, a data

(2019) 10:8

Page 16 of 28

stream with 7500 location updates per second can repre-
sent a moving object fleet of 60 x 7500 = 450, 000 vehicles,
where each individual moving object update its position
every 60 s.

We established the data stream ground truth cluster-
ing results by computing DBSCAN? at every second of
the one hour. As a result, we have a snapshot of the spa-
tial clusters and their content (moving object’s location
updates) that appears at every second of the data stream.
This is an expensive computing task. It took more than
24 hours to compute the second-by-second ground truth
results. Using this information, we are able to evaluate
how close DG2CEP is to the optimal off-line clustering
result.

6.3 Answer loss

The first experiment evaluates the proposed heuristic
impact in the DG2CEP performance concerning simi-
larity and number of wrongly detected and undetected
clusters. We start by evaluating the proposed heuristic
since the later experiments will utilize the heuristic. Using
the heuristic-enhanced DG2CEP, the evaluation had two
goals:

e Measure the similarity of clusters found, when
compared with the original DG2CEP and the baseline
DBSCAN off-line algorithm. Furthermore,
investigate how these results vary with different
transientPts values that define transient cells.

¢ Investigate if the number of correct and incorrect
clusters found and their similarity with DBSCAN
vary when using a different number of inner slots s.

The second-by-second DBSCAN ground-truth result
enabled us to compare and measure the effect of the pro-
posed heuristic clustering with the original grid-based
DG2CEP and DBSCAN output. Whenever the enhanced-
heuristic DG2CEP discovers a cluster, we take a snapshot
of its content (moving objects’ location updates) to ana-
lyze at a later time. Using this information, we compare
the clusters found with their counterparts in the ground-
truth log.

A cluster C is discovered in DG2CEP at timestamp ¢
if DBSCAN ground-truth log contains a cluster D, in the
same timestamp, such that the overlap between them is
higher or equal to 50% (C N D > 0.5), i.e., the cluster
found in DG2CEP contain at least 50% of the content of
the ground-truth cluster. Such threshold 50% comes from
the MONIC clustering transition model [41], which states
that a cluster is a match only if it contains at least half of
its members.

If the heuristic wrongly detects a cluster, i.e., no similar
cluster exists in DBSCAN log, hence it is marked as false
positive (FP). All clusters not detected by the heuristic but

Roriz Junior et al. Journal of Internet Services and Applications

present in the ground-truth log are marked as false nega-
tives (FN). By comparing these metrics, the percentage of
incorrectly clusters found (FP) and missed clusters (FN),
to the total number of clusters in the ground-truth log,
we can measure DG2CEP effectiveness of handling the
answer loss problem.

6.3.1 Experiment parameters

Since the primary interest of this experiment is to measure
the heuristic impact in DG2CEP we fixed a set of values.
First, we used a data stream throughput of 5000 location
updates per second, a grid size of ¢ = 100 meters, and
minPts = 20. We also set DG2CEP’s sliding window to be
A = 60 s, i.e., we consider the location updates received
within the last 60 s.

We considered transientPts thresholds ranging from
90% to 30% of minPts. Since minPts = 20, we evaluate the
following transientPts thresholds: 18, 16, 14, 12, 10, 8, and
6. We chose to vary the threshold until it is 30%, because
lower values tend to produce more false positive clusters
due to the heuristic collateral effects.

Finally, we evaluate the impact of inner slots (S = 10).
Hence, since ¢ = 100 m, each inner slot s = %
width is 10 meters. We choose these values considering
that the GPS accuracy is approximately between 10 to 20
meters. However, in this experiment, we also evaluate if
the total number of slots S impact the similarity of clus-
ters found. For this test, we have considered the following
number of slots: 10, 50, and 100. As a result, we have the
configuration shown in Table 1.

6.3.2 Experiment setup

We executed these experiments in the Microsoft Azure
Cloud platform using two virtual machines running
Ubuntu GNU/Linux 14.04.3 64-bit and the Open]DK
1.7.91 64-bit Java runtime. One of the virtual machines
replayed the data stream, while the second one contained
an instance of DG2CEP with its entire EPN. The virtual
machines were interconnected through a Gigabit link/bus
and had the following hardware configuration:

e Intel® Xeon CPU E5-2673 v3 @ 2.40 GHz
e 28 GiB Memory RAM

6.3.3 Result and analysis

In this subsection, we present and discuss the evaluation

results. Each experiment was run 10 times, and the error

bars in the graphs represent a 95% confidence interval.
Figure 12 illustrates the average percentage of missed

clusters (False Negative — FN) and incorrectly clusters

Table 1 Parameters for DG2CEP’s Heuristic Experiment
Total # Slots § Fixed
10,50, 100

transientPts

18,16,14,12,10,8,6

&, minPts, A, Throughput

(2019) 10:8

Page 17 of 28

found (False Positive — FP) of the proposed heuristic in
DG2CEP at a given second, when compared with the
ground-truth clustering results in the specified second
for a one-hour test period and parameters ¢ = 100,
minPts = 20, and S = 10. The two line graphs illustrated
by Fig. 12a and b represent the values obtained when eval-
uating the heuristic with linear and exponential weights
respectively.

According to the linear weight graph, Fig. 12a, the tran-
sientPts thresholds that yielded the best tradeoff results
were 60% and 50% of minPts. These thresholds reduced
the number of missed clusters from 80% to 23.57% and
15.32%, respectively, with a collateral effect of incorrect
clusters of 13.51% and 19.05%, respectively. More specif-
ically, using such parameters, a single heuristic-enhanced
DG2CEP instance was able to provide in real-time at a
given second a clustering result that is 84.68% similar to
the off-line DBSCAN result at that second.

To exemplify such results consider the graphs illustrated
by Fig. 11, which shows the similarity between the clusters
found of DBSCAN and DG2CEDP, using a linear heuristic
and transientPts = 50%. Each marker (in red) represent a
cluster centroid. As can be seen, clusters detected in real-
time by the on-line DG2CEP algorithm are located in a
similar position to their counterpart in off-line DBSCAN.

The heuristic exponential weight graph, Fig. 12b, pre-
sented better results as transientPts decreases. This illus-
trates that exponential weights is more tolerant of collat-
eral effects. For example, the number of incorrect clusters
results is 4.47% for a transientPts equal to 30% of minPts.
However, for this parameter, the heuristic reduced the
number of cluster not detected due to the answer loss
problem, from 80% to 31.51%, instead to 13.51% when
using linear weights.

With respect to the relationship between the total
number of cell subdivisions S and the heuristic results,
Figs. 13 and 14 shows how the number of unde-
tected clusters (false negative) and incorrectly clusters
found (false positive) vary for different number of cell
slots when using the heuristic linear and exponen-
tial weight respectively for parameters ¢ = 100 and
minPts = 20.

The experiments indicate that the heuristic-enhanced
DG2CEP yields better results without it. Further, it shows
that linear weights, combined with a smaller number of
subdivision slots S and a transient threshold of 50%, pro-
duced the most similar clustering result to DBSCAN.
Hence, for the next experiments we use a heuristic-
enhanced DG2CEP with such parameters (¢transientPts =
50%, S = 10, and linear weights).

6.4 Elapsed time
For this experiment, we first distinguish where new clus-
ters appear in DBSCAN’s ground truth result. A cluster C

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 18 of 28

nuério®
Museu do Amanhafz}
@Museu de Arte do Rio

R% de!anelro

SAQ CRISTOVAO

IGUEIRA @ Museu Nacional - (@) s

- e > Aquedut Vda Carioca
o el ‘ e @ Museu de At
2 esTAcio GLORIA
3 SANTA TERESA © Marina da|
5
&
1 ¢
2
§
FLAMENGO
Area de
l COSME VELHO
Pao de Acuci
Cristo Redentor & BOTAFOGO
X (=] URCA
HUMAITA Universidade
Parque Lage | - Federal do
LAGOA Rio de Janeiro | e
Jardim
Botéanico do

COPAC%ANA

Praia de Copacabana Q)

Rio de Janeiro

GAVE@

1 EDI AL

Fig. 11 Graphical comparison between the off-line DBSCAN clustering result and DG2CEP on-line clustering result

anuario®
Museu do Amanhaf

M A Ri
SAO CRISTOVAO @ usspde SaSEcl

@ e 'i'?
(NGUEIRA @Museu Nacm@ UFRJ Ri %anelr»

Aqueduto da Carioca
MARACANA o

Pachued @ Museu de
Z ESTACIO GLORIA
3 SANTA TERESA ©) Marina|
: %
= a
3
3: \/
p { FLAMENGO
Area de
linear Pao de Ag
FETROTT BOTAFOGO
© URrcA
HUMAITA Universidade
Parque.Lage ~ Federal do
LAGOA Rio de Janeiro LEME
Jardim
Botanico do @
Rio de Janeiro COPACABANA

- Praia de Copacabana Q
GAV E@

LEBLON

is said to appear at second ¢ if there is no cluster B in the
previous timestamp t—1 whose intersection BNC is higher
than 0, w.rnt. the moving objects in each set. By using
such information it is possible to compare DBSCAN to
DG2CEP’s second-by-second clustering results Precisely,
the elapsed time required by DG2CEP to detect a cluster C
that appeared in timestamp ¢ in DBSCAN is the minimum
timestamp g > ¢ that contains a cluster D who contains at
least 50 % of C elements (CN D > 0.5).

We apply similar logic to discover where DBSCAN’s
clusters dispersed. For instance, a cluster C from times-
tamp ¢ — 1 is said to have dispersed at timestamp ¢ if there
is no cluster B in ¢ such that the intersection between
CNB is higher than 0, w.r.¢ their content (moving objects).
This means that DBSCAN results show that timestamp
¢t no longer contains a cluster that was in the previous
second. Similar to the formation approach, the elapsed
time required by DG2CEP to detect the dispersion of C

100% [T T T J T -

80% M.

60% L

40% |- N R

20% »

0% I L ! I |
X N N X N N N N
[=3 (=1 o o (=} (=} [= [=}
S (=2 0 ~ ©° n <)
lower Pts

(@)

Fig. 12 Percentage of Incorrectly Detected (FP) and Undetected Clusters (FN) in heuristic-enhanced DG2CEP (for ¢ = 100, minPts = 20, and

S = 10). a Linear Weight b Exponential Weight

100%
80%
60%
40%
20%
0%

X N X N N N N N

[=3 (=} [=4 (=] [=} (=} [=} [=}

9 (=] 0 ~ o =] < 2]

lower Pts

(b)

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 19 of 28

—S=10-8-5 =50-4- S =100

100%
80%
60%
40%
20%

0%

X X N X N N N X

(=3 (=3 (=] o (=] (=3 (=] f=3

S (=] Q0 ~ o 0 < (2]
lower Pts

(a)

—--S=10-8-8 =50-4- S =100
100% T T
80%
60%
40%
20%
0% I
N X X N X N N X
§ g8 8 & 8 8 & 8
lower Pts

(b)

Fig. 13 Relationship between heuristic results and the total number of cell slots subdivisions & for linear weights. a False Positive b False Negative

at timestamp ¢ is the minimum timestamp g > ¢ that no
longer contains a cluster D whose intersection with C is
higher than 0 (CN D > 0).

Finally, we do the same for cluster evolution. A cluster
C evolves in DBSCAN at timestamp ¢ when its content
changes over 50 % within the previous second, that is, if
exists a cluster B in timestamp ¢ — 1 where they contain
elements in common, BN C > 0, but their intersection
BNC < 0.5is less than or equal to 50 %. Hence, the elapsed
time required by DG2CEP to detect this evolution is a
timestamp g > t whose contain a cluster D whose inter-
section with C is higher or equal to 50% (C N D > 0.5).

6.4.1 Experiment parameters

The goal of this experiment is to discover the elapsed time
required by DG2CEP and D-STREAM to detect clusters
under different data stream volumes. To do so, the test
used three data stream throughputs: of 2500, 5000, and
7500 location updates per second.

A primary parameter of DG2CEP is the size of &-
squared grid cells (context partitions). To verify the
impact of ¢ in the elapsed time, we further tested the
experiments using three grid cell sizes: 50, 100, and 150
meters. Also, in all test runs, we set the sliding window A

to be 60 s, to reflect the maximum interval used by the bus
fleet to send their location update. Further, we fixed the
value of minPts to be 20. Also, we use the proposed heuris-
tic with linear weights, transientPts = 50% x 20 = 10, and
S = 10 subdivision slots. As a result, we have the exper-
iment configuration shown in Table 2. We executed each
experiment scenario 10 times, totalizing 90 executions.

To compare D-STREAM results to DG2CEP, through
DBSCAN ground-truth, we also executed the experiment
configurations using D-STREAM with the following batch
periods: 30, 45, and 60 s. We choose these values to
understand the relationship between a lower, medium,
and higher batch period.

6.4.2 Experiment setup

We executed all experiments in the DigitalOcean Cloud,
where we used virtual machines running the Ubuntu
GNU/Linux 14.04.5 64-bit operating system. Each exper-
iment run was tested ten times, and error bars represent
a confidence interval of 95%. All virtual machines were
interconnected through a Gigabit link/bus and had the
following hardware configuration:

e 4 x Intel Xeon CPU E5-2660 @ 2.20GHz

—--S=10-®-8S=50-4- S =100

100%
80%
60%
40%
20%

0%

N N N X N X N N

[=] [=] o o [=} [=} [=} [=}

9 (=] o0 ~ o 0 A N
lower Pts

(@)

Negative

—-S5=10-®-S=50-4- S =100

100% ‘ ‘ ‘
80%
60%
40%
20%
0%

| |
N X N N N N N N
(=] [=} [=3 [[=] (=} [=} [=}
S (=] o0 ~ o Y=} A N
lower Pts

(b)

Fig. 14 Relationship between heuristic results and the total number of cell slots subdivisions S for exponential weights. a False Positive b False

Roriz Junior et al. Journal of Internet Services and Applications

Table 2 Parameters for DG2CEP's Elapsed Detection Experiment

& Throughput (lu/s) minPts A

50m 2.5k, 5k, 7.5k 20 60s
100m 2.5k, 5k, 7.5k 20 60s
150 m 2.5k, 5k, 7.5k 20 60s

e 8 GiB Memory RAM

For this experiment, we used four different setup config-
urations. The first experiment setup configuration, which
we called DG2CEP Single Instance, contains two vir-
tual machines. One of the virtual machines replayed the
data stream, while the second one held an instance of
DG2CEP with its entire EPN. Similarly, we created a
D-STREAM Single Instance setup. On this case, instead of
DG2CEP, the second virtual machine contains an instance
of D-STREAM.

We were also interested in measuring how the number
of deploy instances impacts the experiment. For this, aside
for a virtual machine to replays the data stream, we also
executed the test with four and eight distributed DG2CEP
instances. In the first case, here called DG2CEP 2-2, we
subdivided the spatial domain into two parts and used a
total of four virtual machines (two for the CELL EPN and

(2019) 10:8

Page 20 of 28

the remaining two for the GRID EPN). In the second case,
called DG2CEP 4—4, we subdivided the spatial domain
into four parts. Similarly, we use four virtual machines
for the CELL EPN and the other four to the GRID EPN
instances.

6.4.3 Results and analysis
Figure 15 shows the elapsed time, in seconds, that
DG2CEP and D-STREAM required to detect a cluster for-
mation when compared to DBSCAN second-by-second
ground-truth information. The graph indicates that the
size of ¢ impacts the detection time. As expected, a
smaller ¢ yields a shorter detection time when compared
to the one with a large €. A smaller ¢ divides the spatial
domain into a larger number of context partitions, which
in turn increases the cost of identifying the context par-
tition index for each location update. However, a larger ¢
can also increase the detection time for cluster formation
when compared to a lower ¢ value. The primary reason is
the increase in workload in the processing network. Since
more moving objects are mapped to the same grid cell,
which in turn generate more events that pass through the
processing network, this additional load is reflected in the
detection time.

The experimental results show that a single instance of
DG2CEP can detect cluster’s formation in a few seconds,

= 10

o gl|®¢= 50 m

£ ~@-e=100m

B 6 ac=150m

g 4

2 T

5 2 Poorrrrrnr .
=0

2500 5000 7500
Throughput [lu/s]
(a)

= 10

o gl|®¢=50m -
5 e =100m

= 6

g 4

_(% 2

=0

2500 5000 7500
Throughput [lu/s]
(©)

d DG2CEP 4-4

Elapsed Time [s]

30

=

g 8
Z 6
g 4
& 2
B0

|
5000
Throughput [lu/s]

(b)

10

| —e—¢c =50m
i€ =100m
-4- £=150m

Throughput [lu/s]

(d)

Fig. 15 Elapsed time to detect a cluster formation w.r.t. DBSCAN. a DG2CEP Single Instance b D-STREAM Single Instance (¢ = 100m) € DG2CEP 2-2

Roriz Junior et al. Journal of Internet Services and Applications

as illustrated in Fig. 15a. The experiments also indicate
that the algorithm scales with the number of moving
objects, showing a linear increase in the cluster formation
and dispersion detection times when increasing the data
stream throughput.

For scalability, the experiment results, illustrated in
Fig. 15¢ and d, indicates that the elapsed time required
by DG2CEP to detect the cluster’s formation reduced
when increasing the number of distributed instances. For
instance, considering ¢ = 100m in a data stream sce-
nario of 7500 location updates per second, the detected
time reduced from 6.46s (single machine) to 4.40s for
DG2CEP 2-2 configuration and to 1.83 s for its 4—4 con-
figuration. Although more instances speed up DG2CEP
process, in some cases it can lead to an increase in the
elapsed time due to the overhead involved in transferring
data between instances.

Concerning batch-based approaches, D-STREAM
required more time to detect the cluster formation than
any DG2CEP configuration under all batch periods. For
example, for ¢ = 100m and a data stream through-
put of 5000 location updates per second, it required
approximately 60.38s, 51.48s, and 61.79 s to detect the
cluster formation for batch periods of 30, 60, and 90 s
respectively.

(2019) 10:8

Page 21 of 28

As expected, a smaller and higher batch period required
more time to detect the cluster formation that a median
one. With a smaller batch period the costly off-line pro-
cessing is done more frequently than for the other periods,
and thus more regularly D-STREAM will have to stop
and compute the clusters while halting the on-line phase.
Although a larger batch period also considers a higher
number of moving objects in its buffer, the substantial
waiting period between batches means that the cluster
result is usually outdated.

The elapsed time to detect a cluster dispersion by
DG2CEP and by D-STREAM for all tested scenarios is
illustrated in Fig. 16. All values are higher than the ones
required to detect a cluster formation. The reason is the
way that dispersion of a cluster is detected in DG2CEP:
a dispersion event is triggered when a moving object
changes its cell or if DG2CEP does not receive a Dense-
CellCluster event within a A period.

The results also indicate a correlation between the grid
cell ¢ size and the elapsed time required to detect a dis-
persed cluster. A larger ¢ takes more time to detect a
cluster dispersion since moving objects are mapped to
fewer grid cells. In particular, those moving objects help
to maintain the grid cell denser for extended periods. For
example, the larger a grid cell is the more it takes a moving

= 10

o 8 ——c=50m

= 6 || ~®-c=100m
E -4- £=150m
el 4 Frae————

S T -
& 2

B0

5000 7500
Throughput [lu/s]

= 10
I} 8 ——c = 50m
g ~m-e=10m | _— ot
SIS -A-g=150m | _ _— -2
~ g e - S i
% - -
E} 2
H 0
2500 5000 7500

Throughput [lu/s]

()

d DG2CEP 4-4

150 [
130
110

70
50

Elapsed Time [s]
©
S
|

2500 5000 7500

Throughput [lu/s]

(b)

= 10

v gl|—®¢c= 50m

& g =100m

B 6 _a ¢=150m

=2 4

2

E 2 :‘uu_u.wu,_wu

m 0 | |
2500 5000 7500

Throughput [lu/s]

(d)

Fig. 16 Elapsed time to detect a cluster dispersion w.r.t. DBSCAN. a DG2CEP Single Instance b D-STREAM Single Instance (¢ = 100m) ¢ DG2CEP 2-2

Roriz Junior et al. Journal of Internet Services and Applications

object location update to change its cell which in turn
delay the event that triggers the dispersion. Although the
elapsed times to detect a cluster dispersion is higher than
to detect its formation, a single DG2CEP instance is still
able to detect it in few seconds as illustrated in Fig. 16a.

Similar to the experiment with cluster formation, the
results indicate that the elapsed time to detect cluster
dispersion also reduced when increasing the number of
DG2CEP instances, as shown in Fig. 16c and d. For exam-
ple, consider DG2CEP’s 4—4 distributed configuration.
Considering ¢ = 50m in a scenario with 5000 location
updates per second, the detected time reduced from 5.98 s
(single machine) to 2.55s.

D-STREAM'’s batch-based approach presented signifi-
cantly worst results for detecting cluster dispersion when
compared to detecting its formation. The primary reason
for this is that D-STREAM does not handle moving object
that changes grid cells. which in turn may retain the same
moving object in multiple cells. Hence, the dispersion pro-
cess will take more time since more moving objects are
contributing to a cell density.

As expected, D-STREAM required more time to detect
the cluster dispersion than any DG2CEP configuration for
all batch periods. For example, for ¢ = 100 m and a data
stream throughput of 7500 location updates per second, it
required approximately 133.41s, 117.17 s, and 141.55 s to

(2019) 10:8

Page 22 of 28

detect the cluster formation for periods of 30, 60, and 90 s
respectively. Likewise, the experiment with cluster forma-
tion, the smaller and higher batch period required more
time to detect the cluster dispersion that a median one.

6.4.4 Evolution

Figure 17 shows the elapsed time, in seconds, that
DG2CEP and D-STREAM required to detect a cluster
evolution when compared to DBSCAN second-by-second
log. The results indicate that DG2CEP was able to detect
the cluster evolution under a few seconds. Furthermore,
under all scenarios, the elapsed time required to detect
a cluster evolution was lower than the time necessary to
detect its formation and dispersion.

One of the reasons for a faster detection time for evo-
lution is that DG2CEP only needs to update the cluster
content instead of either adding or merging to an exist-
ing one, which adds as overhead to the elapsed time.
For instance, considering ¢ = 100m and throughput of
5000 location updates per second, a 2-2 DG2CEP con-
figuration required approximately 2.1 s to detect a cluster
evolution instead of 3 s for its formation.

Likewise, with cluster formation and dispersion, a single
instance of DG2CEP was able to detect cluster evolutions
within a few seconds, as shown in Fig. 17a. For exam-
ple, considering ¢ = 100m, a single DG2CEP instance

[
o

—e—c=50m
- & =100m

Elapsed Time [s]
S CNENC o)

~4-e=150m | __—
.——________—."_‘
2500 5000 7500

Throughput [lu/s]

(a)

= 10
o gl|—®¢= 50m
£ e =100m
B 6 u-e=150m
= 4
o I
_‘% 2
B 0
2500 5000 7500

Throughput [lu/s]

(c)

d DG2CEP 4-4

Fig. 17 Elapsed time to detect a cluster evolution w.r.t. DBSCAN. a DG2CEP Single Instance b D-STREAM Single Instance (e = 100m) ¢ DG2CEP 2-2

90
80 |-
70 |
60
50
40
30

Elapsed Time [s]

|
5000
Throughput [lu/s]

(b)

10

—e—c=50m
- = 100m
-4- £=150m

Elapsed Time [s]
SO N = O

Throughput [lu/s]

(d)

Roriz Junior et al. Journal of Internet Services and Applications

detected in average that a cluster has changed 50% of its
element within 1.9s, 2.3 s, and 5.28 s seconds for respec-
tively the data stream throughput of 2500, 5000, and 7500
location updates per second.

When adding new DG2CEP instances these numbers
dropped w.r.t. a single instance, as illustrated in Fig. 17¢
and d. For instance, in all data stream throughputs, the
4—4 DG2CEP configuration was able to reflect the off-
line DBSCAN second-by-second cluster evolution result
within 1.5 s. Similar to the previous experiments, D-
STREAM required more time to detect the cluster evo-
lution than any DG2CEP configuration under all batch
periods.

6.5 Similarity

Beside the elapsed time, we measured the similarity
between clustering results, i.e., how similar DG2CEP
results are to DBSCAN’s second-by-second log. Also, we
indirectly compare DG2CEP with D-STREAM, through
their continuous similarity to DBSCAN.

We measured the similarity for individual clusters and
the entire cluster results. For individual clusters, we esti-
mated how similar a cluster found in DG2CEP is to its
counterpart in DBSCAN. To do so, whenever DG2CEP
detects a cluster we take a snapshot of its content and
compare it to DBSCAN second-by-second log. Then we
use the Rand Index [37] metric, which expresses the per-
centage of similarity between two clusters. Rand Index is a
number between 0 and 1, where 1 means that the clusters
are identical and 0 means that they are totally different,
i.e., that they have no common moving object. Rand Index
is expressed as mgﬁ%, where TP, TN, FP, FN,
are the number of true positive, true negative, false posi-
tive, and false negative cases respectively, w.r.t. the moving
objects outputted by DG2CEP and DBSCAN.

DG2CEP and DBSCAN may identify several clusters
in the same snapshot. Thus, to identify the cluster D in
DBSCAN that is the counterpart to C , the one discov-
ered by DG2CEP, we need to compare C with all clusters
found by DBSCAN in the snapshot. Precisely, we use C
timestamp to retrieve all clusters found S in that given sec-
ond. Then, we choose the cluster D with the highest Rand
Index since it is the one in DBSCAN’s output closer to the
cluster found with DG2CEDP, that is, the counterpart clus-
ter D is computed as a cluster that has the higher Rand
Index value D = max((RandIndex(d,C) | Vd € S)). We
call this metric Detected Rand Index (DRI), as it represents
the Rand Index of a individual (detected) cluster.

We also measured how similar are the complete set of
clusters detected in DG2CEP to DBSCAN. This measure-
ment metric, which we called Complete Rand Index (CRI),
compares the entire set of clusters found in DG2CEP or D-
STREAM with those found by DBSCAN in a given second,
not just the similarity of the detected ones. Thus, at every

(2019) 10:8

Page 23 of 28

second, in addition to the Detected Rand Index (DRI) we
consider the number of undetected clusters in the total
number of clusters.

For example, suppose in a given timestamp that
DG2CEP detected 3 clusters (c1, ¢z, and c3), while
DBSCAN yields 4 clusters. Then the Complete Rand Index
is calculated as dri(cl)+dri(f,f)+dri(c3)+0, where dri is the
Detected Rand Index of the clusters detected by DG2CEP.
Undetected clusters have dri = 0, since the algorithm did
not detect them, thus, contributing to the decrease of this
similarity index.

6.5.1 Experiment parameters

To measure the data stream volume influence, the experi-
ment was executed using two different throughputs: 2500
and 5000 moving object’s location updates per second, as
described in Section 6.2. The experiment also measured
the influence of different e-squared grid cells (context par-
titions) sizes. Since this is a time-consuming experiment,
we limited the parameter variation to 50 and 100 meters.
In addition, in all test runs, we set the sliding window A to
be 60 s, to reflect the maximum interval used by the bus
fleet to send their location update. Further, we fixed the
value of minPts to be 20. As a result, we have the exper-
iment configuration shown in Table 3. We executed each
experiment scenario 10 times, totalizing 40 executions.

6.5.2 Experiment setup

We executed all experiments in the DigitalOceal Cloud
with the same four setup configurations that were
described in Section 6.4.1.

6.5.3 Results and analysis

Figure 18 shows the Detected Rand Index for each exper-
iment scenario. The graph indicates that DG2CEP’s clus-
tering result is similar to DBSCAN. For example, in the
scenario with a throughput of 5000 lu/s, the clusters found
in a single DG2CEP instance (a) achieved a similarity of
93.61% and 86.54% with their counterpart in DBSCAN’s
output for ¢ = 50 and ¢ = 100 respectively. When using
a 4—4 DG2CEP instance (b), the similarity increased to
98.66% and 94.11% for ¢ = 50 and ¢ = 100 respectively.
These results suggest that there is a relationship between
the similarity and the size of the grid cell. For instance,
the scenarios that used ¢ = 50 were the ones that pre-
sented the highest similarity. The primary reason is that
smaller values of ¢ yield smaller grid cells, which in turn
have smaller areas close to the cell’s borders.

Table 3 Parameters for DG2CEP’s Similarity Detection

Experiment

e Throughput (lu/s) minPts A
50m 2.5k, 5k 20 60s
100 m 2.5k, 5k 20 60s

Roriz Junior et al. Journal of Internet Services and Applications (2019) 10:8 Page 24 of 28
1 T =]]_ F e F
é 08| N TT—— R 7 ,‘l:é 0.8
= 0,6 4 506 i
= =l
= 047 =g 50 |2 g 04 ——c=50m ||
2 0,2 2 0,2
a Y -~ =100m ~ Y - =100m
0 ; 0 ;
2500 5000 2500 5000
Throughput [lu/s] Throughput [lu/s]
(a) (b)
1
5 50,6 e e —
g < 04 —eo— @30s
% % ’ e @Q45s
0,2
~ a YUl -A- @60s
0 2500 5000
Throughput [lu/s] Throughput [lu/s]
(c) (d)
Fig. 18 Similarity of detect clusters with their counterpart in DBSCAN. a DG2CEP Single Instance b DG2CEP 4-4 ¢ D-STREAM (¢ = 50m) d D-STREAM
(e = 100m)

If we look at the previously elapsed time results, a
smaller ¢ subdivides the domain into a larger number of
grid cells, which in turn increases the cost of identify-
ing the grid cell index for each moving object. Therefore,
there is a trade-off when using DG2CEP: the smaller ¢ is,
more similar will be the results of DG2CEP and DBSCAN
at the cost of increasing the required computational effort
and processing time.

As expected, D-STREAM results were lower than
DG2CEP. This graph also indicates that the similarity of

clusters found in both algorithms scales with the data
stream throughput, showing a linear decrease in the simi-
larity when increasing the data stream volume.

Figure 19 shows how the similarity of clusters found by
DG2CEP and by D-STREAM evolve when compared to
DBSCAN for a throughput of 5000 lu/s and ¢ = 50 meters.
Confirming our previous findings, clusters detected by
DG2CEP were similar to their off-line DBSCAN coun-
terpart. Specifically, for a throughput of 5000 lu/s and
¢ = 50m, the clusters detected by a single DG2CEP

1 =
%z 0.8 S‘
el
= 06 -
’% 0.4 —— Single
—2-2
o~ i
0.2 4
0 | | T
o 0 o 10 o 0 o
S S = — X | »
= = = = = = =
L} i Lo} i i i L

(@)

Fig. 19 Evolution of the Detected Rand Index (“similarity”) of DG2CEP and D-STREAM with DBSCAN. a DG2CEP (¢ = 50m) b D-STREAM (& = 50m)

1 -

% 0.8

.S

= 0.6 =

3o S

F—— S

0.2 —_@60s |
OO il o 0 o L0 [a=)
() Q — — [a\] C}] [ap]
- < = = =< =< =
— i i i | i i

(b)

Roriz Junior et al. Journal of Internet Services and Applications

instance (a) presented in average a similarity of 93.61%
with DBSCAN. Further, based on the line graph, we
observe that DG2CEP was able to detect the clusters’ evo-
lution throughout the entire experiment. Table 4 details
the average Detected (DRI) and Complete Rand Index
(CRI) for DG2CEP and D-STREAM when compared to
DBSCAN.

Throughout the experiment, clusters found in D-
STREAM presented a lower similarity to their DBSCAN
counterpart than the ones detected by DG2CEP. As
expected, a smaller and higher batch period presented
lower similarity than one with a medium one. With a
smaller batch period the costly off-line processing is done
more frequently than for the other periods, and thus
more regularly D-STREAM will not produce any update
of clusters.

Although a higher batch period also considers a higher
number of moving objects in its buffer, the large wait-
ing period between batches means that the cluster result
is usually outdated. Thus, the average batch period of 45
s presented a better balance, yielding a 66.11% similar-
ity with DBSCAN result. It is interesting to note that the
graph lines of D-STREAM contain periodic sharp edges,
representing the buffering (on-line) phase of the algo-
rithm, where the similarity constantly degrades until the
next off-line phase.

The Complete Rand Index metric expresses how similar
DG2CEP and D-STREAM clustering results, as a whole,
are to DBSCAN at every second of the test period. As
shown in Fig. 20, the results indicate that in average a sin-
gle DG2CEP instance clustering result is approximately
equal to 71.58% of DBSCAN’s result. When considering
a distributed DG2CEP instance, these results increases to
roughly 80%. In addition, the graph shows that DG2CEP
was able to maintain such index throughout the test
period.

DG2CEP presented a higher similarity to DBSCAN
results than all D-STREAM batch periods. The medium
batch period (45 s) presented a higher similarity with
DBSCAN when compared to the other periods. For
the tested scenario, it showed a similarity of 46.06% to

Table 4 DR/ and CRI of DG2CEP and D-STREAM with DBSCAN for
& = 50 m and a throughput of 5000 lu/s

Algorithm DRI CRI Conf. Interval
DG2CEP Single 0.9361 0.7158 +0.04
DG2CEP 2-2 0.9588 0.7997 +0.02
DG2CEP 4-4 0.9866 0.7879 +0.02
D-STREAM @ 30s 0.6420 04131 +0.03
D-STREAM @ 60s 0.6611 0.4606 +0.02
D-STREAM @ 90s 0.6257 04039 +0.03

(2019) 10:8

Page 25 of 28

DBSCAN, followed closely by the smallest period (30 s),
while the largest batch period (60 s) presented a similarity
of only 40.39%.

An interesting result from the Complete Rand Index
tests are the sudden appearance of sharply regions in the
graph, such as the one from 17:10 to 17:15 in DG2CEP
graph. We investigated these regions and discovered that
the decrease in the similarity is due to undetected clus-
ters by DG2CEP. Since the CRI metric compares the set of
clusters found in DG2CEP with DBSCAN, an undetected
cluster will decrease the similarity since its DRI is 0 and
CRI is the average of detected rand index in that second.

Nevertheless, the experimental results show that
DG2CEP provides better continuous clustering result
than D-STREAM for all tested batch periods (30, 45, and
60 s). The results also indicate that DG2CEP was able
to monitor cluster evolution and keep up with DBSCAN
second-by-second result. The same cannot be said for
D-STREAM due to its batch-based processing. In fact,
smaller and largest batch periods (30s and 60s) had
a worse result than the medium ones (45s) in both
indexes.

7 Conclusion

This paper presented DG2CEP, an on-line clustering algo-
rithm that uses Complex Event Processing (CEP) [14, 15]
stream-processing concepts to leverage and attain near
real-time DBSCAN-like density clustering, in form of
a network (EPN) of CEP declarative rules, from large
position data streams. It can continuously monitor the
formation, dispersion, and evolution of clusters of arbi-
trary size and shape. In a nutshell, DG2CEP com-
bines density- and grid-based data stream clustering
approaches and represents them as a network of CEP
primitives.

The algorithm performs a DBSCAN-like [13] cluster
expansion procedure but using the on-line and real-
time declarative CEP primitives. The main idea behind
DG2CEP is to mitigate the clustering process by first map-
ping the location updates to a grid, with context partitions

of size % X %, and then successively clustering the con-

text partitions (grid cells) rather than the moving objects’
location updates.

Experimental results (see Section 6) indicate that
DG2CEP addresses the paper main and sub research ques-
tions. The results shows that DG2CEP is able to provide
an on-line and near real-time result from large position
data stream w.r.t. a second-by-second off-line DBSCAN
ground-truth result. For example, as illustrated in Fig. 15,
in a data stream scenario of 2500 moving objects send-
ing their position every second, a single DG2CEP instance
setup detected the cluster formation in 3.33s, 2.50's, and
1.98s for ¢ = 50m, ¢ = 100m, and ¢ = 150m
respectively.

Roriz Junior et al. Journal of Internet Services and Applications

(2019) 10:8

Page 26 of 28

1
% 0.8 E
b —
= 0.6
T 04 i
é 0.2
0 : .
(e 0 o 0 o 0 o
b= I = — xQ N)
~ ~ ~ ~ ~ r~ ~
— i R i Lo i Ao
(@)

1
" —— @ 30s
g UBE —_@45s |
= 0.6 —— @ 60s
g 04 ' = -
& 0.2
0
(=) 0 o 0 (=) 0 =)
< =t — = N N oe)
~ ~ ~ ~ ~ ~ ~
— Rl | i — R —

(b)

Fig. 20 Evolution of the Complete Rand Index (“similarity”) of DG2CEP and D-STREAM with DBSCAN. a DG2CEP (¢ = 50m) b D-STREAM (¢ = 50m)

Similar results were obtained for dispersion detection.
For instance, as shown in Fig. 16. Considering ¢ = 150
m, a single DG2CEP instance was able to detected a clus-
ter evolution within 1.78s, 2.00s, and 3.84 s seconds for
respectively the data stream throughput of 2500, 5000, and
7500 location updates per second.

The experimental results also indicate that DG2CEP
was able to maintain the results quality when increas-
ing the data stream throughput. Considering ¢ = 100 m,
a single DG2CEP instance detected in average a cluster
evolution within 1.9, 2.3 s, and 5.28 s seconds for respec-
tively the throughput of 2500, 5000, and 7500 location
updates per second. When adding new DG2CEP instances
these numbers dropped significantly.

In conclusion, a smaller ¢ divides the domain into a
larger number of grid cells, which in turn increases the
cost of identifying the grid cell index for each mov-
ing object. Therefore, there is a trade-off when using
DG2CEP: the smaller ¢ is, more similar will be the results
to DBSCAN at the cost of increasing the required com-
putational effort and processing time. Hence, the user has
to consider his/her application’s requirements against the
availability of processing resources.

However, in some situations DG2CEP may fail to iden-
tify spatial clusters, a problem known as answer loss (or
blind spot) [22, 23, 36], discussed in Section 5. Although
the heuristic significantly reduce the number of unde-
tected clusters, it may still miss the detection of some
clusters. For instance, considering a data stream scenario
of 5000 lu/s and ¢ = 50 m, a distributed DG2CEP setup
result is approximately equal to 80% of DBSCAN off-line
result at the same second, as shown in Fig. 20. Part of the
remaining clusters are detected by DG2CEP in the next
seconds. Hence, one of the limitations of DG2CEP on-line
approach is the inability to provide an identical result to
DBSCAN. By reducing the clustering problem from dis-
tance comparison, in an ¢ radius, to counting the number

of moving objects, in a squared ¢ grid cell, we are losing
this precision.

As future work, we plan to address the following
issues. By default, each DG2CEP processing stage can be
deployed in a different machine, forming a pipeline work-
flow. However, if a stage is overloaded, it can impact the
entire system. For example, in rush hours, the stream
input stage can receive a high volume of data, thus, pos-
sibly becoming a bottleneck. Motivated by this, we intend
to investigate an autonomous and elastic architecture to
scale DG2CEP, concerning the number of events received,
by dynamically expanding and contracting the processing
topology.

Also, in its current version, DG2CEP requires the set-
ting of several parameters, such as the grid size ¢, the
minimum number of moving objects minPts, and the
sliding window A. It can be complicated for the user
to specify these parameters, especially because they can
change over time and/or in given regions. For example,
the minimum number of moving objects to form a clus-
ter may be different based on the specified time (e.g.,
workhours, midnight) or in different regions (e.g., down-
town, home neighborhoods. Hence, we are interested in
investigating if it is possible to have a parameter free ver-
sion of DG2CEP. Such version would automatically adapt
and change the parameters based on its surrounding and
historical data. The primary issue here is how to dynam-
ically resize the grid cells without losing or duplicating
events.

Endnotes

1\We use x and y to represent a cluster core cell in the
streaming window to avoid confusion with the incoming
grid cell i and j indexes

2The resulting dataset is available to be downloaded and
reproduced at http://www.wikiportes.com.br/dg2cep/.

http://www.wikiportes.com.br/dg2cep/

Roriz Junior et al. Journal of Internet Services and Applications

3For this, we used the Apache Math implementation

of DBSCAN, for more information see: http://commons.

apache.org/proper/commons-math/userguide/ml.html.

Acknowledgements
The authors would like to thank CNPg, FAPERJ, and Microsoft Research who
partly funded this work.

Authors’ contributions

MR is the main contributor of this work, undertaken as part of his Ph.D. studies.
MR has participated in the design of this study, designed and implemented the
algorithms and the prototype, and conducted the evaluation experiments. BO
and ME have contributed to the conception of this study. ME, the supervisor of
ME, and BO have made substantial contributions to the conception and
design of the work and the draft of the manuscript. MR, BO, and ME wrote the
manuscript. All authors have read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 16 April 2018 Accepted: 24 February 2019
Published online: 15 April 2019

References

1.

Dodge S, Weibel R, Lautenschiitz A-K. Towards a Taxonomy of
Movement Patterns. Inf Vis. 2008;7(3):240-52. https://doi.org/10.1057/
palgrave.ivs.9500182.

Amini A, Wah T, Saboohi H. On Density-Based Data Streams Clustering
Algorithms: A Survey. J Comput Sci Technol. 2014,29(1):116-41. https://
doi.org/10.1007/511390-014-1416-y.

Kargupta H, Sarkar K, Gilligan M. MineFleet: An Overview of a Widely
Adopted Distributed Vehicle Performance Data Mining System.

In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD "10. New York: ACM; 2010.
p. 37-46. https://doi.org/10.1145/1835804.1835812.

Ananthanarayanan G, Haridasan M, Mohomed |, Terry D, Thekkath CA.
StarTrack: A Framework for Enabling Track-based Applications. In:
Proceedings of the 7th International Conference on Mobile Systems,
Applications, and Services, MobiSys '09. New York: ACM; 2009. p. 207-20.
https://doi.org/10.1145/1555816.1555838.

Zheng Y, Capra L, Wolfson O, Yang H. Urban Computing. ACM Trans
Intell Syst Technol. 2014;5(3):1-55. https://doi.org/10.1145/2629592.
Silva JA, Faria ER, Barros RC, Hruschka ER, de Carvalho ACPLF, Gama J.
Data Stream Clustering: A Survey. ACM Comput Surv. 2013;46(1):
13-11331. https://doi.org/10.1145/2522968.2522981.

Khalilian M, Mustapha N. Data Stream Clustering: Challenges and Issues.
In: Proceedings of the International MultiConference of Engineers and
Computer Scientists 2010. Newswood Limited; 2010. p. 566-9.
International Association of Engineers. ISBN: 978-988-17012-8-2. http://
www.iaeng.org/publication/IMECS2010/.

CaoF, Ester M, Qian W, Zhou A. Density-Based Clustering over an
Evolving Data Stream with Noise. In: Proceedings of the 2006 SIAM
Conference on Data Mining. Proceedings of the 2006 SIAM International
Conference on Data Mining; 2006. p.326-37. https://doi.org/10.1137/1.
9781611972764.29.

TuL, ChenY. Stream Data Clustering Based on Grid Density and
Attraction. ACM Trans Knowl Discov Data. 2009;3(3):12-11227. https://doi.
org/10.1145/1552303.1552305.

Kranen P, Assent|, Baldauf C, Seidl T. The ClusTree: indexing
micro-clusters for anytime stream mining. Knowl Inf Syst. 2011,29(2):
249-72. https://doi.org/10.1007/510115-010-0342-8.

. YuY, Wang Q, Wang X. Continuous clustering trajectory stream of

moving objects. China Commun. 2013;10(9):120-9. https://doi.org/10.
1109/CC.2013.6623510.

Aggarwal CC, Yu PS, HanJ, Wang J. - a framework for clustering evolving
data streams. In: Freytag J-C, Lockemann P, Abiteboul S, Carey M,

(2019) 10:8

13.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

Page 27 of 28

Selinger P, Heuer A, editors. Proceedings 2003 VLDB Conference. San
Francisco: Morgan Kaufmann; 2003. p. 81-92. https://doi.org/10.1016/
B978-012722442-8/50016-1.

Ester M, Kriegel H, Sander J, Xu X. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In:
Proceedings of the Second International Conference on Knowledge
Discovery and Data Mining. KDD'96. AAAI Press; 1996. p. 226-31. http://
dl.acm.org/citation.cfm?id=3001460.3001507.

Luckham DC. The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems. Boston: Addison-Wesley
Longman Publishing Co,, Inc.; 2001.

Etzion O, Niblett P. Event Processing in Action, 1st edn. Greenwich:
Manning Publications Co.; 2010.

Flouris I, Giatrakos N, Deligiannakis A, Garofalakis M, Kamp M, Mock M.
Issues in complex event processing: Status and prospects in the Big Data
era. J Syst Softw. 20161-20. https://doi.org/10.1016/j.js5.2016.06.011.
Kudyba S. Big Data, Mining, and Analytics, 1st edn. Boca Raton: Auerbach
Publications; 2014. p. 325.

Roriz Junior M. DG2CEP: An On-line Algorithm for Real-time Detection of
Spatial Clusters from Large Data Streams through Complex Event
Processing, PhD thesis: Pontificia Universidade Catélica do Rio de Janeiro;
2017.PhD Thesis.

Roriz Junior M, Endler M, Silva e Silva F. An on-line algorithm for cluster
detection of mobile nodes through complex event processing. Inf Syst.
2017,64:303-20. https://doi.org/10.1016/j.is.2015.12.003.

Roriz Junior M, Endler M, Casanova MA, Lopes H, Silva e Silva F.

In: Madria S, Hara T, editors. A Heuristic Approach for On-line Discovery
of Unidentified Spatial Clusters from Grid-Based Streaming Algorithms.
Cham: Springer; 2016, pp. 128-42. https://doi.org/10.1007/978-3-319-
43946-4_9.

Chen'Y, Tu L. Density-based Clustering for Real-time Stream Data.

In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD '07. New York: ACM; 2007.
p. 133-42. https://doi.org/10.1145/1281192.1281210.

Jensen CS, Lin D, Ooi BC, Zhang R. Effective Density Queries on
Continuously Moving Objects. In: 22nd International Conference on Data
Engineering (ICDE'06). IEEE; 2006. p. 71. https://doi.org/10.1109/ICDE.
2006.179.

Ni J, Ravishankar CV. Pointwise-Dense Region Queries in Spatio-temporal
Databases. In: Data Engineering, 2007. ICDE 2007. IEEE 23rd International
Conference On; 2007. p. 1066-75. https://doi.org/10.1109/ICDE.2007.
368965.

Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques, 3rd edn.
San Francisco: Morgan Kaufmann Publishers Inc,; 2011.

Rehman SU, Asghar S, Fong S, Sarasvady S. DBSCAN: Past, present and
future. The Fifth International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2014) (FEBRUARY 2014).
2014232-238. https://doi.org/10.1109/ICADIWT.2014.6814687.
Garofalakis M, Gehrke J, Rastogi R. Querying and Mining Data Streams:
You Only Get One Look a Tutorial. In: Proceedings of the 2002 ACM
SIGMOD International Conference on Management of Data, SIGMOD '02.
New York: ACM; 2002. p. 635. https://doi.org/10.1145/564691.564794.
HeY, TanH, LuoW, Mao H, Ma D, Feng S, Fan J. MR-DBSCAN: An
Efficient Parallel Density-Based Clustering Algorithm Using MapReduce.
In: Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International
Conference On; 2011. p.473-80. https://doi.org/10.1109/ICPADS.2011.83.
Zheng K, ZhengV, Jing Yuan N, Shang S, Zhou X. Online Discovery of
Gathering Patterns over Trajectories. IEEE Trans Knowl Discov Data Eng.
2014;26(8):1974-88.

Luckham D, Schulte R. Event Processing Glossary - Version 2.0. 2011.
Accessed 08 Dec 2016. http://www.complexevents.com/2011/08/23/
event-processing-glossary-version-2/. Accessed 08 Dec 2015.

Arasu A, Babu S, Widom J. The CQL continuous query language:
semantic foundations and query execution. VLDB J. 2005;15(2):121-42.
https://doi.org/10.1007/500778-004-0147-z.

EsperTech. Esper - Complex Event Processing. 2014. http://www.
espertech.com/esper/. Accessed 26 Apr 2014.

Matysiak M. Data Stream Mining: Basic Methods and Techniques,
Technical report: Rheinisch-Westfalische Technische Hochschule Aachen;
2012. http://dme.rwth-aachen.de/en/system/files/file_upload/course/12/
elementary-data-mining-techniques/proseminar.pdf.

Boutsis |, KalogerakiV, Gunopulos D. Efficient Event Detection by
Exploiting Crowds. In: Proceedings of the 7th ACM International

http://commons.apache.org/proper/commons-math/userguide/ml.html
http://commons.apache.org/proper/commons-math/userguide/ml.html
https://doi.org/10.1057/palgrave.ivs.9500182
https://doi.org/10.1057/palgrave.ivs.9500182
https://doi.org/10.1007/s11390-014-1416-y
https://doi.org/10.1007/s11390-014-1416-y
https://doi.org/10.1145/1835804.1835812
https://doi.org/10.1145/1555816.1555838
https://doi.org/10.1145/2629592
https://doi.org/10.1145/2522968.2522981
http://www.iaeng.org/publication/IMECS2010/
http://www.iaeng.org/publication/IMECS2010/
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1137/1.9781611972764.29
https://doi.org/10.1145/1552303.1552305
https://doi.org/10.1145/1552303.1552305
https://doi.org/10.1007/s10115-010-0342-8
https://doi.org/10.1109/CC.2013.6623510
https://doi.org/10.1109/CC.2013.6623510
https://doi.org/10.1016/B978-012722442-8/50016-1
https://doi.org/10.1016/B978-012722442-8/50016-1
http://dl.acm.org/citation.cfm?id=3001460.3001507
http://dl.acm.org/citation.cfm?id=3001460.3001507
https://doi.org/10.1016/j.jss.2016.06.011
https://doi.org/10.1016/j.is.2015.12.003
https://doi.org/10.1007/978-3-319-43946-4_9
https://doi.org/10.1007/978-3-319-43946-4_9
https://doi.org/10.1145/1281192.1281210
https://doi.org/10.1109/ICDE.2006.179
https://doi.org/10.1109/ICDE.2006.179
https://doi.org/10.1109/ICDE.2007.368965
https://doi.org/10.1109/ICDE.2007.368965
https://doi.org/10.1109/ICADIWT.2014.6814687
https://doi.org/10.1145/564691.564794
https://doi.org/10.1109/ICPADS.2011.83
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2/
https://doi.org/10.1007/s00778-004-0147-z
http://www.espertech.com/esper/
http://www.espertech.com/esper/
http://dme.rwth-aachen.de/en/system/files/file_upload/course/12/elementary-data-mining-techniques/proseminar.pdf
http://dme.rwth-aachen.de/en/system/files/file_upload/course/12/elementary-data-mining-techniques/proseminar.pdf

Roriz Junior et al. Journal of Internet Services and Applications

34.

35.

36.

37.

38.

39.

40.

41.

(2019) 10:8

Conference on Distributed Event-based Systems, DEBS "13. New York:
ACM; 2013. p. 123-34. https://doi.org/10.1145/2488222.2488264.http://
doi.acm.org/10.1145/2488222.2488264.

Jensen CS, Lin D, Ooi BC. Continuous Clustering of Moving Objects.
Knowl! Data Eng IEEE Trans. 2007;19(9):1161-74. https://doi.org/10.1109/
TKDE.2007.1054.

Amini A, Ying W. DENGRIS-Stream: A density-grid based clustering
algorithm for evolving data streams over sliding window. In: Proc.
International Conference on Data Mining and Computer Engineering.
Planetary Scientific Research Center Proceeding; 2012. p. 206-10.

Jeung H, Shen HT, Zhou X. Mining Trajectory Patterns Using Hidden
Markov Models. In: Song IY, Eder J, Nguyen TM, editors. Data
Warehousing and Knowledge Discovery. Berlin, Heidelberg: Springer;
2007. p.470-80. Chap. Mining Tra. https://doi.org/10.1007/978-3-540-
74553-2_44.

Manning CD, Raghavan P, Schitze H. Introduction to Information
Retrieval. New York: Cambridge University Press; 2008.

David L, Vasconcelos R, Alves L, André R, Endler M. A DDS-based
middleware for scalable tracking, communication and collaboration of
mobile nodes. J Internet Serv Appl (JISA). 2013;4(1):1-15. https://doi.org/
10.1186/1869-0238-4-16.

Lécué F, Tucker R, Tallevi-Diotallevi S, Nair R, Gkoufas Y, Liguori G,
Borioni M, Rademaker A, Barbosa L. Semantic traffic diagnosis with
star-city: Architecture and lessons learned from deployment in dublin,
bologna, miami and rio. In: Mika P, Tudorache T, Bernstein A, Welty C,
Knoblock C, Vrandeci¢ D, Groth P, Noy N, Janowicz K, Goble C, editors.
The Semantic Web — ISWC 2014. Cham: Springer; 2014. p. 292-307.
Roman A. 2018 Top 100 Transit Bus Fleets Survey. 2018. http://www.
metro-magazine.com/bus/article/725410/top-100-bus-fleets-survey-
exploring-new-options-technologies-to-be-part-of-multim. Accessed 10
Dec 2016.

Spiliopoulou M, Ntoutsil, Theodoridis Y, Schult R. MONIC: Modeling and
Monitoring Cluster Transitions. In: Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD
'06. New York: ACM; 2006. p. 706-11. https://doi.org/10.1145/1150402.
1150491. http://doi.acm.org/10.1145/1150402.1150491.

Page 28 of 28

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com

https://doi.org/10.1145/2488222.2488264
http://doi.acm.org/10.1145/2488222.2488264
http://doi.acm.org/10.1145/2488222.2488264
https://doi.org/10.1109/TKDE.2007.1054
https://doi.org/10.1109/TKDE.2007.1054
https://doi.org/10.1007/978-3-540-74553-2_44
https://doi.org/10.1007/978-3-540-74553-2_44
https://doi.org/10.1186/1869-0238-4-16
https://doi.org/10.1186/1869-0238-4-16
http://www.metro-magazine.com/bus/article/725410/top-100-bus-fleets-survey-exploring-new-options-technologies-to-be-part-of-multim
http://www.metro-magazine.com/bus/article/725410/top-100-bus-fleets-survey-exploring-new-options-technologies-to-be-part-of-multim
http://www.metro-magazine.com/bus/article/725410/top-100-bus-fleets-survey-exploring-new-options-technologies-to-be-part-of-multim
https://doi.org/10.1145/1150402.1150491
https://doi.org/10.1145/1150402.1150491
http://doi.acm.org/10.1145/1150402.1150491

	Abstract
	Keywords

	Introduction
	Fundamental concepts
	Spatial clustering
	Complex event processing

	Related work
	Sampling
	Micro-clustering
	Grid-based

	Density-grid clustering using complex event processing
	Stream receiver EPN
	Cell EPN
	Dense cell discovery
	Sparse cell discovery

	Grid EPN
	Grid add, update, and merge
	Grid disperse

	Discussion
	Limitations

	Answer loss heuristic
	Transient heuristic
	Usage and limitations

	Evaluation
	Implementation
	Data stream
	Answer loss
	Experiment parameters
	Experiment setup
	Result and analysis

	Elapsed time
	Experiment parameters
	Experiment setup
	Results and analysis
	Evolution

	Similarity
	Experiment parameters
	Experiment setup
	Results and analysis

	Conclusion
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

