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Abstract
Wireless sensor networks (WSNs) are an important means of collecting data in a variety
of situations, such as the monitoring of large or hazardous areas. The retrieval of WSN
data can yield better results through the use of unmanned aerial vehicles (UAVs), for
example, concerning the increase in the amount of data collected and the decrease in
the time between the collection and use of the data. In particular, disaster areas may be
left without communication resources and with high residual risk to humans, at which
point a WSN can be quickly launched by air to collect relevant data until other
measures can be established. The set of rules of each problem’s component (e.g.,
number of UAVs, UAVs dislocation control, sensors, communication) is considered the
approaches to solve the problem. In this meaning, some studies present approaches
for the use of UAVs for the collection of WSN data, focusing primarily on optimizing the
path to be covered by a single UAV and relying on long-range communication that is
always available; these studies do not explore the possibility of using several UAVs or
the limitations on the range of communication. This work describes DADCA, a
distributed scalable approach capable of coordinating groups of UAVs in WSN data
collection with restricted communication range and without the use of optimization
techniques. The results reveal that the amount of data collected by DADCA is similar or
superior to path optimization approaches by up to 1%. In our proposed approach, the
delay in receiving sensor messages is up to 46% shorter than in other approaches, and
the required processing onboard UAVs can reach less than 75% of those using
optimization-based algorithms. The results indicate that the DADCA can match and
even surpass other presented approaches, since the path optimization is not a focus,
while also incorporating the advantages of a distributed approach.
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1 Introduction
This work extends and details a distributed approach for coordinating multiple
unmanned aerial vehicles (UAVs) for collecting data from wireless sensor networks
(WSNs). Wireless sensor networks are deployed to collect environmental data for various
applications (e.g., seismic monitoring, wildlife tracking, soil, air condition control, etc.).
Data collection and transmission are the fundamental operations of WSNs [1]. However,
in scenarios in which no infrastructure or regions lack communication, the data collection
from sensors of the WSN encounters serious difficulties [2]. Extensive research has been
conducted on several types of mobile agents that serve as data collectors for WSNs [3].
The use of UAVs as suchmobile agents can enhance theWSN data collection in areas that
are difficult to reach due to hazardous conditions or communication limitations. Thus, in
many applications, UAVs are well suited as mobile agents for collecting data from aWSN,
thus increasing the network’s capacity and flexibility [4].
The coordination of UAVs in a distributed manner is a complex task [5] because there

is no central node that can have a consistent view of the state of all the UAVs (i.e., the
instantaneous position, velocity, residual battery level); furthermore, the ad-hoc com-
munication topology limits consensus on deciding how to perform a task sharing of
a global mission. This work applies the term ad-hoc communication in the meaning
of non-constant communication based on a certain level of proximity. Therefore, such
coordination requires effective algorithms to overcome these constraints. Providing a
guarantee of effectiveness could threaten the efficiency regarding the amount of col-
lected data or the delay in collecting data fromWSNs by UAVs. Unmanned aerial vehicles
have exhibited tremendous growth, in both research and applied use [6]. Concerning the
swarm of UAVs, the most common model for using UAVs relies on the use of a single
ground controller to control one or more UAVs [7]. Regarding the control of UAVs, the
first issue to resolve is the path plan; for this purpose, the traveling salesman problem
(TSP) is widely considered [3]. Most of these studies focus on the use of a single UAV
in an optimized tour or split the role problem into a smaller set of the same problem to
be solved in the same manner. It remains challenging to develop cooperative UAVs on
area coverage tasks and energy-efficient UAV communication technology [8]. Moreover,
as we aim to employ a fully distributed approach, path planning should be computed in
the UAVs regarding its computational constraints.
To address these issues, this work investigates whether it is possible to implement a

distributed algorithm to coordinate several fully autonomous UAVs (i.e., non-human-
controlled) collecting data from a WSN without centralized control or knowledge of
internal UAV states and relying on only ad-hoc communication. In response to these
questions, we previously proposed the DADCA core idea in [9] and some better formu-
lations in [10]. DADCA is a distributed algorithm that combines well-known algorithms
of path planning with a cooperative and oscillatory behavior that relies on only the
exchange of all payload data from pairs of UAVs’ (whenever they approach) decision
making.
The main contributions of this work are as follows:

• Extends and details a proposal of a distributed approach that coordinates the flight
movement of UAVs for the collection of WSN data, assuming that the positions of
the CHs to be visited are known in advance;
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• Provides an extensive discussion of the experimental results and analysis of trade-offs
based on the selected criteria and other approaches presented.

The use of unmanned aerial vehicles (UAVs), otherwise known as drones, has sig-
nificantly increased in the past decade for several purposes [11]. Unmanned aerial
vehicles offer agile and cost-effective solutions for many demanding civilian applica-
tions [12] and have drawn significant research interest in recent years due to their wide
range of applications, including surveillance and monitoring, footage in movies, sporting
events, inventory verification and inspection, cargo delivery, communication platforms,
rural environment inspection, and disaster response and emergency relief [13, 14]. Such
widespread applicability is primarily due to the vast capabilities of aerial vehicles in terms
of mobility, autonomy, communication, and processing, in addition to the relatively low
cost [11].
The emergence of WSNs has become an active research area in a broad range of criti-

cal applications [15]. However, in many cases, it is difficult or even impossible to connect
WSNs directly to their data destination. Typical UAV applications may involve the relay-
ing of time-critical data generated from WSNs on the ground to remote ground stations
connected to the internet [16]. Unmanned aerial vehicles can function as mobile data
collectors, such as connection nodes in WSNs [17]. In such cases, UAVs can provide
these connections by visiting the WSNs periodically and relaying or carrying the data to
the proper destination. Recently, interest has grown in data collection through groups of
collaborative UAVs [18, 19].
One important application of UAVs is in emergency and rescue (such as earthquakes or

nuclear explosions), in which emergency teams can benefit from a rapid and comprehen-
sive monitoring solution as soon as possible and until proper operation can be organized.
To support such monitoring, a WSN can be spread across the incident area and have its
data collected by a single UAV. Using multiple UAVs to fulfill a mission can be consid-
ered advantageous compared with using only one UAV [20] due to the typical large size
of the geographic area and the demand to haul sensor data in a timely fashion. However,
while the use of several UAVs can improve the data collection rate, multiple-UAV oper-
ations also introduce some challenges [21]. The approaches most commonly applied in
these cases are derivatives of the traveling salesman problem (TSP) and vehicular routing
problem (VRP).
A reliable communication infrastructure among UAVs in collaboration is critical in

maintaining this connected network for data-relaying tasks [16]. Thus, reliable communi-
cation requires a radio base station close to the site; however, in some cases, implementing
such infrastructure to provide long-range UAV communication is not possible (e.g., in
emergency response and relief situations). Some emergencies, such as earthquakes, could
destroy existing communication infrastructure. In such cases, the location of the incident
may be uncertain, and obtaining temporary infrastructure equipment (such as a mobile
cellphone radio station) may not be immediately possible. These reasons make it impossi-
ble to use vehicle-to-infrastructure (V2I) solutions in such circumstances. In these cases,
ad-hoc communication plays an important role.
With the goal of controlling several UAVs in a distributed manner, relying on only

vehicle-to-vehicle (V2V) communication, we propose an approach that can be used as
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a first-time emergency response approach for repetitive visitation of WSN sensors dur-
ing a T period. In an early phase of this work [10], we introduced an early version of the
Distributed Algorithm for Aerial Data Collection (DADCA), a distributed algorithm that
coordinates groups of UAVs collecting data from WSNs. DADCA yields superior results
to those of the TSP in specific scenarios. It does not rely on central control and runs in a
distributed manner, with all processing performed only in the UAVs. This algorithm con-
siders the fact that the number of working UAVs can change during the cyclic visitation
period T due to UAV malfunctions or replacements, or expand the set of UAVs during
its execution without synchronization. In this work, we extend this concept and pro-
pose new distributed approaches based on DADCA for aerial data collection. These new
approaches focus on the use of various path planning techniques that aim to yield better
results in distinct metrics. Furthermore, we evaluate these new metrics and implement
other authors’ most recent approaches to provide better comparisons.We also analyze the
trade-offs between distinct approaches to planning the path to collect data fromWSNs.
For example, we present the following scenario: After a nuclear accident at a nuclear

plant, some rescue tasks must be executed as soon as possible. For a defined period
after the accident—72 hours, for instance—it is crucial to maintain continuous awareness
about radiation reads throughout the vast and affected areas by the radiation. For exam-
ple, several radiation sensors may be placed around the plant, while UAVs can be used to
collect data from the sensors or cluster heads (CHs).
This work is organized as follows. In the next section, we present and discuss the main

related works that address the aforementioned problems. Section 3 further elaborates
the underlying problem and presents criteria for comparison of the approaches: collected
data tax, message delays, and processing time in UAVs. Afterward, Section 4 presents
the proposed algorithm, DADCA, and related work used as a benchmark. Section 5
then presents the evaluation setup, simulating two real scenarios with possible nuclear
issues. Section 6 presents the simulation results and comparisons between the proposed
approaches. Finally, Section 7 presents the concluding remarks concerning the proposed
approach and presents suggestions for future work.

2 Related work
This section presents several recent approaches toWSN data collection by UAVs. Overall,
they can be classified according to their main investigation focus: UAV and WSN inter-
action, UAV tour planning for data collection and communication concerns. Sections 2.1
to 2.3, respectively, briefly discuss the these studies.

2.1 Air-to-ground communication

InWSNs, data can be gathered through the use of the following: (1) the classical approach,
including a network with infrastructure; (2) mobile elements, such as ground robots or
UAVs [22]. We focus on studies regarding aerial data collection fromWSNs with UAVs as
the mobile elements.
Regarding data collection fromWSNs, it is typical to cluster their sensors to save energy.

The low-energy adaptive clustering hierarchy (LEACH) is commonly used to select clus-
ter heads (CHs) for the purpose of conserving energy [23]. Unmanned aerial vehicles can
collect data from CHs in the same manner that a data collector can navigate from sensor
to sensor in a WSN; both scenarios require a tour plan. The study by Dios et al. is one of
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the seminal works on WSN data collection with UAVs [24]. The authors propose the use
of UAVs to collect data from several areas with multiple sensors. Their work includes no
inter-UAV cooperation, different from the present research. Instead, each UAV relies on
the same TSP tour to arrange its designed WSN areas in order of visitation.
Some related works, such as [25] and [26], divide the entire set of CHs based on the

number of available UAVs and send a single UAV for the subset of CHs. Their approach
may decrease the delay in the UAVs’ data collection, but their work does not address the
central point-of-failure problem induced by the use of a single UAV for each cluster, since
a single UAV is dispatched to distinct areas. The use of several UAVs for each set of CHs
could address this failure issue. Regarding the use of distinct UAVs for subsets of CHs,
the present research addresses the problem of data collection from the perspective of a
single set of CHs. We aim to investigate the aerial data collection from the perspective of
a non-divisible set.
Regarding the use of multiple UAVs working in the same context, frameworks exist that

aim to enable multi-UAV control [27–29]; these rely on hardware enablers through the
Robot Operating System (ROS) [30]. However, these frameworks provide no distributed
coordination investigations. Mazayev et al. have conducted research that considers
multiple-UAV data collection [22] but focuses on a heuristic to optimize the UAV buffer
size and speed constraints using a centralized approach. Several UAVs working within a
WSN are considered by Sharma et al. [31], who also study multiple UAVs working with a
WSN, but their work focuses on data dissemination and energy efficiency inside WSNs.
Indeed, the study by Qadori et al. [15] identifies a lack of research on collaboration

approaches among agents for collecting and summarizing data. The studies they cite
investigate multiple agents working side by side independently (as the UAVs in [24])
rather than in collaboration [15]. This study draws an analogy between agents navigating
through a WSN and UAVs navigating among CHs in terms of collaboration.

2.2 UAV tour planning

Research on sensor data collection with UAVs has developed various tour-planning tech-
niques. Some works suggest the straight use of conventional techniques based on the TSP
or VRP variations [5, 32, 33]. Other works focus on optimization to solve the TSP by
applying genetic algorithm (GA) optimization, as in [34, 35], and [26]. Yet others employ
particle swarm optimization (PSO), as in [36] and [37]. Considering the radio range as
neighborhoods [38], some works discuss TSP-like heuristics, such as [18] and [36]. How-
ever, all of these works consider only a single UAV collecting data and focus on optimizing
the tour. This study uses well-established tour planning techniques and does not aim to
contribute to research on optimization techniques. In contrast to the TSP and VRP opti-
mization approaches, Wang et al. [26] study a scenario with a large set of sensors, which
is hard to solve with the aforementioned optimization approaches. They suggest a sort-
based tour-planning process, enabling a vast number of CHs to collect data. The research
byWang et al. [26] is one of the benchmarks to which this work’s proposed algorithms are
compared.

2.3 Air-to-air communication

Data collection problems in sensor network nodes can follow many different approaches.
Similar to the Google project Loon [39], Facebook project Aquila [40], and the project
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Absolute [41], the work of Zhang et al. [42] focuses on enabling ground communication
through the use of several UAVs. In this work, the UAVs function as mobile sink nodes
with large throughput and long-range radios. Specifically, in [42], the proposed solution
focuses on coverage modeled as a mixed-integer non-convex optimization problem. This
work employs UAVs as a mobile base station for enabling aerial data collection as in
[43, 44], and [45] for UAVs acting as flying 5G base stations. The authors in [46] discuss
how UAVs are constrained by limited resources, including communication. Our work
differs in that our approach does not rely on long-range radios in the UAVs.
Yanmaz et al. [47] suggest a high-level architectural design for a collaborative aerial

system, which consists of UAVs with onboard sensors and embedded processing, coordi-
nation, and networking capabilities. Their work utilizes the aforementioned ROS [30] and
relies on IEEE 802.11s mesh communication to provide proof of work. The research by
Yanmaz et al. is similar to the present work in that it relies on only ad-hoc communication.
However, in [47], the data collection is related not to WSN but to UAV onboard censor-
ing, and the distributed decision-making structure focuses on only UAV collisions [47].
The survey by Gupta et al. [48] brings together several studies regarding UAV networks.
The most frequently cited network type relies on a backbone that provides long-range
communication, as presented in [49] for cloud-assisted data collection. However, in data
collection and search-and-rescue scenarios, it is reasonable to use flying ad-hoc networks
(FANET) [48], a specific type of mobile ad-hoc network (MANET) [50].
There are exist other lines of inquiry regarding data collection with UAVs beyond tour-

planning techniques. Some works focus on opportunistic sensor data collection with
UAVs, as discussed in [51], yet still rely on a single UAV. Regardless of the UAV tour plan-
ning, some works investigate a low-level communication approach, as described in [52],
which provides medium access control (MAC) protocols dedicated to UAVs collecting
data fromWSNs [53]. Other works focus on UAV orWSN energy efficiency, as discussed
in [8, 54, 55], and [56]. Berrahal et al. describe another approach, in which multiple sen-
sors comprise the structure for aWSN that specializes in border surveillance [57], but the
UAVs have no collaboration or knowledge of the other UAVs.

2.4 Comparison overview

The Table 1 presents an overview view of major related works. The column WSN rela-
tion presents directly related works regarding data collection and some works presenting
highly similar studies. The column Work & tour approach presents the main challenge
and the tour-planning approach of each work. The column Comm. Approach indicates
how the UAVs communicate, including V2I (vehicle to infrastructure) in cases where UAV
long-range radios or other infrastructure is in place, or ad-hoc in cases where each UAV
relies only on short-range radios. In ad-hoc communication scenarios, UAV just exchange
data upon some kind ofmeeting if the other communication part is another UAV or a base
station. The columnMulti-UAV indicates whether the related work takes into considera-
tion more than one UAV operating at the same time. The column Coordination describes
how the UAVs are controlled.
The works cited above do not provide approaches for multi-UAV distributed coordina-

tion inWSN data collection. Instead, they either do not use multiple UAVs or use them in
isolation. As discussed in [15], further research is required onmulti-collector approaches,
particularly regarding cooperation among them.
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To the best of our knowledge, most related works in this area of research only con-
sider data collection in a single moment, meaning that at some point a single UAV passes
through every cluster to collect data once [60, 61]. However, as discussed above, cer-
tain situations may require data to be collected for a period T, such as search-and-rescue
missions or monitoring.
This work explores collaboration among UAVs performing data collection and com-

pares our approach and algorithm to the aforementioned studies in the case of multiple
UAVs. The collaboration among UAVs involves dynamically resizing each UAV tour upon
a UAVmalfunction or reinforcement. This resizing process prevents uncovered CHs after
a UAV leaves the data collection system. It also prevents variable delivery delays. The col-
laboration is also responsible for forwarding messages between UAVs to reach the ground
station (GS) without the necessity of a UAV displacement to the GS to deliver its collected
data.

3 Aerial data collection
We investigate how to use several UAVs for such data collection by testing various strate-
gies to collect data from a ground-deployed WSN using multiple UAVs. Chapter 4 then
presents two strategies for collecting data from the WSN with UAVs based on related
works and proposes a distributed approach to achieve this objective. In this section, we
define the application architecture and metrics used to compare approaches with distinct
strategies in such data collection.
There exist different types of sensors for reading the data that will be consumed in dif-

ferent ways. For example, there are sensors as cameras, for which it is sensible to consume
the data in the FIFO (first in first out) perspective in a sense to follow the images’ evolu-
tion. In another perspective, there exist radiation sensors for which it is sensible to acquire
the newer sensor data as quickly as possible, so a LIFO (last in first out) data collection
makes more sense.

3.1 Scenario overview

A possible scenario in which collectingWSN data with UAVsmight be useful is an unfore-
seen problem or accident in an wireless networks spread over an uncovered area. As an
example, we present the Fukushima accident [62], in which a nuclear accident led to the
evacuation of an area totaling 160km2. This area needed to remain under monitoring for
nuclear hazards and other possible accidents due to the tsunami for an initial period of T
until proper countermeasures were put into place. To perform this monitoring, we pro-
pose the use of a WSN and UAVs. A WSN provides remote sensing, and UAVs provide
access to the site avoiding human contact with hazardous conditions. More examples are
listed in [24].
The problem presented can be characterized as a coverage problem but without cen-

tralized control or processing. We aim to use autonomous UAVs without central control
or supervision. Central processing point can bring single points of failure or even pro-
cessing limitation regarding the single point capabilities while a fully distributed system
can work without a single point of failure or limitations regarding the number of UAVs.
TheUAV’smobile capabilities are equivalent to a VTOLUAV. AVTOL (vertical take-off

and landing) aircraft is one that can hover, take off, and land vertically. A VTOL aircraft
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can act as a quadcopter and a fixed-wing aircraft. Our scenarios assume that each UAV is
capable of avoiding collisions.

3.2 System overview

Ourmodel assumes that each UAV, sensor, and CH, as well as mobile ground station (GS),
has a short-range radio with R range for communication. Communication occurs only
when two nodes are within range R. We assume that the sensors and CHs have a static
position on a R3 surface and their number is always larger than the set of UAVs.
We divide the solution to the role problem of aerial data collection by UAVs into two

phases: a preparation phase and a collection phase. This work focuses on the second
phase, but for background information, we briefly describe the preparation phase in Fig. 1.
As an additional note, we consider the area of interest to be unknown until the accident
occurs, so no WSN is put into place.
When an accident occurs (Fig. 1a), the sensors are spread over the area by air using

a larger UAV or manned aircraft (Fig. 1b). As noted in Fig. 1c, these sensors are then
able to form into clusters and will be accessible by the CH. In order to identify the CH
coordinates, a UAV can be launched to fly over the entire area in a Zamboni pattern [63]
and detect the coordinates of each CH. For more simple sensors that do not have GPS, a
heuristic such as that presented by Mazayev et al. [22] may be applied.
As indicated in Fig. 2e above, the UAVs keep on collecting data for a period of time T.

We illustrate a snapshot the entire scenario in Fig. 3, which presents an area of interest
after an accident.
A CH remains in passivemode waiting for a UAV flyover. Figure 4 illustrates the dynam-

ics of UAV-CH message exchange. Each UAV flies with a constant velocity V and altitude
H. Each UAV, after reaching a distance of less than 1.1*R to the CH locations, begins send-
ing a field of view message (FOV). When a CH receives a FOV, it prepares the exchange
data transfer process with the UAV. That role situation remain in place until the CH stops
receiving FOVs. Figure 4 illustrates a UAV collecting data from a CH during its stay within
a distance S, with S < R. In Fig. 5, we explain the reason that distance S is smaller than
radio range R. Due to the UAV flight altitude H, it cannot travel beyond a distance of 2*R
and continue exchanging data with the CH as ilustraed in Figure . As indicated, the choice

Fig. 1 Figure illustrating actions from the accident to the CH coordinates discover
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Fig. 2 Figure illustrating the problem from the GS perspective. Figure 1d information is used here from item
(c). Item (e) presents the cyclic data collection

of H directly impacts the period of time available for a UAV to collect data from a single
CH.
To organize the set of UAVs collecting data from CHs and delivering data to the GS, a

set of rules must be followed, which we consider a strategy. This work presents various
strategies for organizing the data collection, all of which incorporate certain assumptions:
(1) All communication is executed through short-range radios in ad-hoc mode; (2) the GS
does not act as a controller node, only as a relay node; (3) CH coordinates are available
from the step presented in Fig. 1d.
During the data collection period T, some UAVs can fail temporarily or permanently

without notice. For example, a UAV’s batteries can be depleted. In such cases, the UAV
returns to the GS to recharge and then resumes collecting data under the rules set in
place. This communication model is not perfect and the radio range R is not constant and
messages can fail, which is presented in evaluation section.

Fig. 3 Figure presenting the interest area with sensors, CH, GS and UAVs flying around
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Fig. 4 The Figure presents a UAV before and after the feasible exchange horizontal distance S with the
constrain of S ≤ 2

√
H2 − R2. R is measured on the ground, H is upright from ground and S is parallel to R

Fig. 5 A UAV inside the range of message exchange with a CH. The images simplify the radio range as a
uniform disc, but our simulation does not as present in next chapters
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3.3 Metrics formalization

We aim to compare our fully distributed approach with state-of-the-art approaches which
are centralized. To compare strategies for collecting data from a WSN using UAVs, it
is necessary to select certain metrics. All metrics and comparisons are related to the
period of interest T. Three metrics were chosen in this study for the following aspects: the
amount of data collected, the average data transfer message delay, and the UAV embedded
processing time.
The first metric is the total amount of sensors’ collected data, initially measured in

kilobytes, then presented as a rate-related amount of data that arrives at the GS.
During period T, the set of pCHs generates an amount of data presented in (1) and each

single CH i has its own data rate generation Ci. Thus, CT
i represents the amount of data

generated after a T period by a i-nth CH. So, the CT
p is the total amount of generated data

from all CH.

CT
p =

∫ T

0

p∑
0

Cidt (1)

For each instant t of T that a single CH i is exchanging data with a UAV, a value CT
i is

accumulated in the Ci rate as in (2). A transmission rate ρ is multiplied by CT
i , indicating

the total amount of transmitted data by a CH i during a period T. Only data that arrives
at the GS is taken into consideration in CT

i . The rate ρ is the radio transmission rate in
bytes per second.

CT
i =

∫ T

0

p∑
0

Ci ∗ ρ dt (2)

Furthermore, when T is reached, the rate of collected data TDT (3) is obtained by
dividing the collected data CT

i by the sum of the generated data CT
i of all CHs p. TDT

represents the percentage of collected data in the evaluation graphs.

TDT =
p∑
0

CT
i

CT
i

(3)

The second metric is the data delivery delay. It is the time between a message be sent by
a CH and received at GS. For each messagemi sent by a CH to a UAV, the UAV receives a
timestamp with its payload. The setMT

i represents all delays of nmessages sent by a CH
that reach the GS during the period T, as illustrated in (4). In (5) we calculate the average
delay as the sum of all delays divided by the number of messages. This metric is presented
in seconds.

MT
n =

∫ T

0

n∑
0

delayOf (mi) dt (4)

DT
n = MT

n
n

(5)

The third metric is the total time PT spent by a UAV from the moment it receives the
CH locations to the instant it completes its tour. This metric is calculated in seconds.



Olivieri de Souza and Endler Journal of Internet Services and Applications            (2020) 11:4 Page 13 of 44

Fig. 6 Scene view with CHs and GS. Each strategy determines how UAVs will visit CHs to collect data to
deliver to GS

4 Strategies for aerial data collection
This chapter discusses the strategies used to address the way of UAVs can effectively col-
lect data from CHs. Figure 6 illustrates a possible arrangement of CHs that would need to
be visited by UAVs to obtain CH’s data during a period T.
As only short-range communication is assumed to be available, all CHs must be visited

by at least one UAV during the collection period T. The set of CHs can be interpreted as
points of interest, and a path must be set for each UAV. We call the ordered path that a
UAV navigates to visit a set of CHs a "tour". Thus, from the perspective of the CHs, this
can be treated as a coverage problem and reduced straight to problems as the TSP and
the VRP (vehicular routing problem). As any UAV can move from one CH to another in
any order, it is a complete graph.
The edges of Fig. 6 are discretized as a complete graph, which illustrates a possible

arrangement of CHs during a period T. CH A represents the GS. The cost of moving from
one CH to another can be interpreted as distance or as more complex cost (e.g. composite
costs combiningmore than one value, such as distance and barriers) as presented in Fig. 6.
The following subsections describe the most recent and advanced approaches that

use UAVs to collect data from WSNs, in addition to our approach to a fully distributed
UAV application. For all of the following strategies, the time to compute the tours is not
discussed until Section 6.

4.1 Optimization approachs (TSP-based)

Similar to the strategy presented by Burman et al. [64] and Ho et al. [65], this strategy
includes visits to all CHs by way of the best possible tour. This strategy directly maps to
the TSP problem. Accordingly, the best tour is the result of a minimization function. For
future reference, we named this approach the TSP-based strategy.
This TSP-based strategy represents several up-to-date optimization approaches for col-

lecting data with UAVs [18, 22, 32, 38, 53][90-93]. On the complete graph G(V ,E), the
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vertices V are CHs, and the edges E represent the cost of a UAV flight between two ver-
tices V. Obstacles and prohibited flight zones are represented in the costs attached to the
edges.
In the studies discussed in the related works section, it is typical to use a single UAV.

However, as previously mentioned, this method introduces a single point of failure. More-
over, this approach requires relevant computational effort to compute the best tour in a
centralized manner. In our scenario, we implement this strategy by using several UAVs on
the same tour. In most works, on the best tour computed, all UAVs fly keeping an equal
distance from each other and perform their data collection following aHamiltonian Cycle,
as shown in Fig. 7.When eachUAV passes near the GS, it delivers its collected data. As the
collection takes into consideration a complete graph, it is obviously difficult to compute
the best tour with a large number of CHs, because TSP is an NP-hard problem.
Although this approach is not a distributed strategy but a centralized one with UAVs,

we present this strategy as a benchmark to be used as a comparative baseline.

4.2 FPPWR algorithm

Fast Path Planning with Rules (FPPWR) is a solution proposed by Wang et al. [26] to
address the computational effort necessary to solve the optimization problems in a TSP-
based strategy when collecting WSN data with UAVs. This strategy relies on the FPPWR
routine to compute the tour, which we explain in next paragraphs. Once the FPPWR tour
is computed by the GS, all UAVs are sent to collect the data. We apply this strategy by
programming all the UAVs to fly at an equal distance from each other and perform their
data collection following a Hamiltonian Cycle, as in the TSP-based strategy described
above. Then, as shown, each UAV delivers its data when it passes near the GS.
In the FPPWR strategy, tours are calculated by splitting the area into smaller geometric

clusters, as illustrated by the dotted lines in Fig. 8. These clusters are calculated using
the radio range of UAV and CHs. FPPWR then performs a sort-based computation on
the CH positions. This sort-based tour computation runs on each cluster, taking into

Fig. 7 A possible tour generated by TSP-based strategy



Olivieri de Souza and Endler Journal of Internet Services and Applications            (2020) 11:4 Page 15 of 44

Fig. 8 Clusters distribution and computation order for tour creation by FPPWR strategy

consideration the most recent cluster processed. All clusters are analyzed in the order
indicated by the arrows in Fig. 8. Figure 9 illustrates a possible tour generated by FPPWR.
The algorithm complexity is O(p log p) [26] (as p denoting the number of CHs). How-

ever, the fixed time to split the clusters cannot be neglected. This issue is discussed in the
evaluation section. As in the previous strategy, this is not originally a distributed strategy
but a centralized one, using several UAVs in a straightforward manner. To the best of our
knowledge, this is the only other approach that proposes an alternative to optimization
strategies, besides our own.

4.3 DADCA

The Distributed Algorithm for Aerial Data Collection (DADCA) is an algorithm [10] that
maintains the sensor data collection by UAVs during a period of time T (measured in

Fig. 9 A possible tour generated by FPPWR strategy
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hours). This strategy is our approach to enable a distributed data collection with several
UAVs.We do not claim to get better results than optimization approaches, but we propose
DADCA as a viable alternative to centralized approaches. An early version of this method
and some essential details were introduced in [9], with improvements and further details
presented in [10].
In order to present DADCA in details, we divide its presentation into two phases as

follows. In Fig. 10 DADCA’s main architecture is presented: (1) Figure 10a indicates
the computation responsible for planning the tour that the UAVs will follow and (2)
Figure 10b is the strategy for using the computed tour in Fig. 10a.
From this point on, the tour computed in Fig. 10a will be called the Original Tour. Each

UAV plan itsOriginal Tour and, as all UAVs start working near fromGS, all Original Tours
are the same. The Original Tour is not computed again during the period of time T and
all UAVs will have the same Original Tour. The Original Tour is a simple path that passes
by each CH only once and does not return to GS. Instead of doing the Hamiltonian Cycle
the UAVs will use the Original Tour moving forward and backward meeting each other
on the same tour.
We begin with DADCA tour computation explanations and then all DADCA variations

share the same UAV behavior that will be explained on Section 4.3.1. The main character-
istics of the tours used in the first phase of the DADCAmethod, as illustrated in Fig. 10a,
are the following:

1. UAVs do not compute a Hamiltonian Cycle. The tours used by DADCA are
defined by a single path leaving the GS and passing close to each CH exactly once
without returning to the GS. Therefore, there is no round-trip using DADCA, as
opposed to the TSP-based and FPPWR methods;

2. The DADCA tours are computed without any optimization techniques. DADCA
enables processing time to be predictable based on the size of the CH set, enabling
the processing unit present in UAV to execute the processing. Furthermore,
DADCA is suitable for use distinct tour planning tecniques with its individual
advantages and its restrictions of each tour planning characteristics.

From Sections 4.3.6 to 4.3.9, we present four distinct tour computation methods that
generate non-optimized tours used in Fig. 10a. In Section 4.3.1, we explore the approach
used in Fig. 10b.

Fig. 10 DADCA phases
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4.3.1 DADCA - tour coverage

In short, all UAVs have the same behavior: They go from one extreme to the other extreme
of a tour and return, such tour passes only once through all CHs; UAVs collect data from
CHs and deliver to GS based on UAVs passages over that. When there is more than
one UAV in operation, the UAVs try to divide the workload by the number of UAVs in
operation. This division of the workload only occurs with the meeting of UAVs in pairs.

4.3.2 DADCA - initialization

Once any of the DADCA algorithms from Sections 4.3.6 to 4.3.9 creates a tour, the next
phase begins (as indicated in Fig. 10b). This second phase extends and adapts the algo-
rithm originally proposed by Kingston et al. [66]. Their algorithm controls a set of UAVs
surveilling a linear path in R

2 that represents a boundary, such as a frontier or a pipeline.
The path in [66] cannot cross itself.

The first step of DADCA is the initialization of GSand UAVs, as presented in
Algorithm 1. The GS begins informing each UAV of the CHs’ geographic locations and
flagging the UAV flag free as false. The flag free is used by each UAV to control their
(re)entrance in a data collection activity that has already begun.
At the initialization of each UAV in Algorithm 1, its variables are initialized. Function

RunStrategy() is responsible for calling one of the planned tour from the algorithms pre-
sented in Sections 4.3.6 to 4.3.9. What we call Original Tour is the first tour computed by
a UAV from a setOfCH. Once the DADCA tours form a single line that pass through all
CHs, we call the first limit of the Original Tour our left limit and the end the right limit.
Furthermore, the variables rightNeighbors, leftNeighbors, and totalNeighbors begin at

zero. We use these variables to control the number of other UAVs that each UAV knows
are working at the moment t of T. The variable leftNeighbors of a UAVA denotes the
number of UAVs working properly between UAVA and the left limit, while rightNeigh-
bors denotes the number of UAVs working properly between UAVA and the right limit.
These variables are updated when a rendezvous occurs between twoUAVs or when a UAV
reaches one of the tour limits.

4.3.3 DADCA - behaviour

When a UAV is launched, it acts as it would working in isolation, no matter how many
UAVs the GS is launching. This UAV acting in isolation will use itsOriginal Tour to collect
data from all CHs. Figure 11 illustrates the UAVA traveling from the left limit (A) to the
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Fig. 11 A possible solution of presented graph by DADCA with a single UAV collection data from all CH. The
logical segment above CHs represents the UAV tour from A to E

right limit (E) and collecting data. When UAVA reaches any limit, it returns from the
opposite direction.
Every time a UAV passes over the GS, it delivers the collected data. Adding the GS to

the tour in all four planning algorithm allows for this passage over the GS. In the example
of Fig. 11, GS could be illustrated by A to E varying of the tour planning being in use.
The UAVA remain in that situation until T ends or a rendezvous occurs with another
UAV. Each UAV is controlled by Algorithm 2 and Algorithm 3, which we describe in the
following paragraphs.
Eventually, other UAVs perform their collection, as illustrated in Fig. 12. Two UAVsmay

also fly close enough to be within radio range of each other, and at this point both perform
a rendezvous.
DADCA only performs rendezvous in pairs, whichmeans that if three ormore UAVs are

close enough to perform a rendezvous, each UAV will ignore any UAV after the first UAV
it discovers from a logical point of view. For instance, UAVA, UAVB and UAVC may all be
close enough to each other to perform a rendezvous. There are six possible scenarios of

Fig. 12 Two UAVs flying far from each other
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mutual discovery among the three UAVs, but these scenarios can illustrated in just two
cases:

1. Not feasible: UAVA discovers UAVB before discovering any other UAV, UAVB
discovers UAVC before discovering any other UAV, and UAVC discovers UAVA
before discovering any other UAV. In these scenarios, no pair is available to
perform a valid rendezvous. In this case, all three UAVs will ignore each other.

2. Feasible: UAVA discovers UAVB before discovering any other UAV, UAVB
discovers UAVA before discovering any other UAV, and UAVC discovers either
UAV before discovering the other UAV. In this case, UAVA and UAVB will
perform a DADCA rendezvous.

Apart from the requisite logical pairing described above, we introduce another restric-
tion to enable a valid rendezvous: two UAVs can only perform a rendezvous if and only if
UAVA’s origin CH is UAVB’s destination CH and vice versa. This requirement extends the
original idea presented in [66] of a linear non-crossing path in R

2 enabling tours in R
3.

WhenUAVs follow the logical meeting order, it is possible that tours will cross themselves.

4.3.4 DADCA - rendezvous

If more than one UAV is active and two UAVs are moving in opposite directions on the
Original Tour, they will eventually be within radio range, as shown in Fig. 13. This meeting
is what we call a rendezvous—at this moment, the UAVs exchange current information
about other known UAVs, the data they’ve collected, and then adjust their sub-tours
accordingly. These rendezvous runs are presented in Algorithm 2 and in Algorithm 3.
To explain this rendezvous, let UAVA be the first UAV sent and let UAVB be the second.

When UAVA begins collecting data, its tour is from A to E; when it reaches E, it begins its
return. At some point, UAVB begins the same Original Tour, as shown in Fig. 12.
Figure 14 presents two UAV performing a rendezvous. They exchange their metadata,

and are capable of understanding which UAV originates from the nearest side of the GS.
This UAV is called the left UAV and the other is the right UAV. Both UAVs update each
other on the number of working UAVs that they’re aware of by using the other UAV

Fig. 13 Two UAVs a moment before a rendezvous. Each one with an independent tour and no references
about other UAVs until this moment
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Fig. 14 Two UAVs running DADCA a moment during a rendezvous. Each one updating its data with data
from the other

to update their information in the opposite direction. This protocol means that right-
Neighbors and leftNeighbors are updated based on the information relayed during the
rendezvous. Thus, the left UAV (UAVB) receives the other UAV’s data to deliver to the GS
because it is closer, and the right UAV (UAVA) changes its direction.
Both UAVs compute new sub-tours to take into account the ideal division of the

Original Tour with known available UAVs working at that moment. Therefore, both
UAVs compute the same SharedBorder, which refers to the theoretical point where both
sub-tours meet regarding the number of CHs. As a result, both UAVs navigate to the
SharedBorder and turn in opposite directions, as presented in Fig. 15. At this point, both
UAVs update their metadata and one UAV transfers its collected data.
The UAVs remain in such a pattern until they reach a tour limit, rendezvous with other

UAVs, encounter a malfunction, or the period T ends. As discussed above, it is important

Fig. 15 Two UAV running DADCA after defined the shared border for the last rendezvous. Is this case, cluster
head C. Both go to C and then go to opposite sides. Logical Left UAV carries data from Right UAV
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to note that whenever a UAV passes within range of the GS, it delivers all the data in its
possession.

4.3.5 DADCA - algorithm

In order to better describe DADCA in Algorithm 2, we present four possible rendezvous
cases from the perspective of the left UAV which is presented as vleft . Each UAV have
some internal control variables:

• free: stands for the UAV in (re)entrance;
• next : stands for the ID of next CH to visit;
• last : stands for the ID of last CH visited;
• leftNeighbors: known number of UAVs from left;
• rightNeighbors: known number of UAVs from right;
• tour: actual tour;
• setOfCHs: whole set of CHs;
• originalTour: first tour computed.

Line 2 to line 6 filters cases in which two UAVs have already begun their data collection,
otherwise the scenarios start from line 7 which at least one of the UAVs are (re)entering.
Line 3 shows cases in which both UAVs are effectively coming from opposite directions.

If both UAVs are close enough to perform a balance but are not on consecutive sub-
tours, then the rendezvous is ignored, as in the case of line 6. It is necessary to ignore
this rendezvous for crossing tours—an option that was not possible in Kingston’s original
proposal [66].
In Algorithm 2 line 7, the cases is presented where at least one UAV is (re)entering

activity. If two (re)entering UAVs attempt to perform a rendezvous, then the shared infor-
mation becomes ignored. A (re)entering UAV therefore acts in isolation until it finds an
older UAV collecting data.
A UAV (re)entering a data collection that has already begun must meet another

UAV in activity. Line 8 indicates cases when only one UAV is (re)entering activity
and both UAVs perform the rendezvous. The free UAV will use the metadata from
the older one in order to function as a working UAV. Therefore, both UAVs perform
a regular rendezvous. Lines 18 and 21 represent cases when the UAVs are updated
as they reach the first or last CH from the original tour. Line 25 refers to a case in
which a UAV reinforces data collection, which can occur when a new UAV is sent
to collect data or a temporarily disabled UAV returns to work at any point of the
Original Tour.
The algorithm 3 in its routine Rendezvous is responsible for rebalancing and recalcu-

lating a UAV sub-tour. During the period T, all UAVs perform their balancing function
to (re)establish the whole system balance. Each UAV reuses the Original Tour length and
divides it by the updated number of known working UAVs upon a rendezvous. Subse-
quently, each UAV generates its segments Sleft and Sright and its theoretical intersection b
(Sleft ∩ Sright). In this work, the RecalculateBalancedSegments() is the rounded median of
the number of CHs in the tour.
Given the research of Kingston et al., this visitation model has been adapted from their

research. However, the UAVs did not know their tour before commencing their flight. In
consequence, the model does not use a linear path, but instead creates a path by visiting
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CHs. In DADCA each UAV receives an unordered list of CHs from the GS and creates
their tours without any GS processing. Our extension is capable of (re)calculating their
tours in R

3 with tour intersections.
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Finally, in terms of resilience andmalfunctions, we can receive newUAVs at any point in
the tour, rather than only the beginning and end of the tour, as in [66]. It is remarkable that
is not necessary that UAVs have the same processing capabilities. Each UAV can compute
the result of theOriginal Tour at distinct moments, and allOriginal Tour will be the same.
Furthermore, each UAV can begin its data collection at distinct moments, and the entire
system will adjust its behavior.

4.3.6 DADCA-greedy

In this DADCA variation, we generate the Original Tour with a greedy algorithm, which
is polynomial and deterministic and runs at θ(p2) (as p denoting the number of CHs) and
searches for the nearest CH not included in the tour and addes it to the tour. Algorithm 4
demonstrates the DADCA-greedy first phase, with line 1 presenting the function Navite-
Tour(), which is the tour planning of DADCA-greedy. From the GS to the final CH in the
setOfCH, the nearest CH is obtained through the GetNearestNotTaggedCH() function in
line 6.
DADCA-greedy does not necessarily create the best tour. Instead, it creates the tour

in a straightforward manner. DADCA-greedy can provide a shorter tour than the best
tour, which contains a Hamiltonian cycle, due to the reduced number of edges. Function
GreedyTour() creates a tour with one edge less than the TSP solution. Nevertheless, as the
FunctionGreedyTour() checks the nearest CH from the CH added last, it can also provide
a much larger tour than a TSP tour optimization. This is the original DADCA approach
presented in [9].
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Fig. 16 DADCA-Parted set of CH being splitted based on their coordinates

4.3.7 DADCA-parted

In this DADCA variation, we create the Original Tour in two steps, as presented in Algo-
rithm 5, which is polynomial and deterministic. First, the coverage area is split into two
geographic parts, as we illustrate in Fig. 16. Lines 6 to 10 in Algorithm 5 represent the
creation of two sets of CHs based on their coordinates. (Fig. 17)
After the two geographic sets of CHs are created, we perform the DADCA-greedy

method in both sets. Thus, we merge both sets in the following lines (11 to 16) and cre-
ate the Original Tour of DADCA-parted, as illustrated in Fig. 16. The main idea of this
variation of DADCA is to roughly place the GS in the center of the tour without any tour
analysis. The role computation remains at a complexity of θ(p2).

Fig. 17 DADCA-Parted tour scheme
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Fig. 18 A sample tour that could be provided by DADCA-LKH

4.3.8 DADCA-LKH

DADCA-LKH is another variation to DADCA tour planning. For the best of our knowl-
edge, the best method of computing solutions for the TSP problem in polynomial time
is the Lin-Kernighan-Helsgaun (LKH) algorithm. The LKH algorithm is approximate and
non-deterministic, but optimal solutions for TSP are produced with high frequency, and
it currently holds the record for all instances with unknown optima1. Its complexity is
O(p2.2) [26, 67].
In DADCA-LKH, LKH is used to compute the best tour that closes a Hamiltonian Cycle

in polynomial time, as presented in Algorithm 6, but the tour obtained may not be neces-
sarily the best tour that a TSP heuristic can find. Once this tour is found, DADCA-LKH
removes the last edge before the GS to create a tour as exemplified in Fig. 18.

1https://goo.gl/RDYjFS

https://goo.gl/RDYjFS
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It is reasonable to assume that DADCA-LKH can produce a smaller tour than a TSP-
based strategy, because LKH is likely to find the same tour generated by a TSP-based
strategy, and DADCA-LKH removes one edge, making the final tour smaller. The main
goals of this strategy are to maintain low processing complexity for the UAV and to
improve the DADCA tour.

4.3.9 DADCA-LKH-cut

Finally, we propose another variation on DADCA named DADCA-LKH-Cut, which is
described in Algorithm 7. This version computes its tour using the LKH algorithm
but does not remove the final tour edge as in DADCA-LKH. Instead, DADCA-LKH-
Cut removes the edge roughly in the middle of the Hamiltonian Cycle, as shown in
Fig. 19. DADCA-LKH-Cut is very similar to DADCA-LKH, but the data reaches the GS
more often, once GS is not in one of the tour’s extremities. This DADCA variation is
non-deterministic as its also based on LKH.
A pertinent question regarding this specific strategy would relate to which edge we

remove. For example, instead of themiddle edge, we could remove the biggest edge, which
would increase the chances of the tour be smaller than the one created through the TSP
solution for such a set of CHs. However, we do not aim to produce a smaller tour but

Fig. 19 A tour computed by LKH without a middle edge to be used on DADCA-LKH-cut
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instead maintain the GS roughly in the middle of the tour. In addition, this algorithm
produces more straightforward results regarding message delays.

5 Evaluation setup
This section presents the tests used to obtain the results presented in the next section.
In order to test and compare the strategies mentioned in the last chapter, we imple-
mented them in Sinalgo [68], a distributed algorithm simulation tool. The reason for
using Sinalgo is that it provides support to implement the UAV movement and ad-
hoc communication layers. All data generated were treated and analyzed in Python
dataframes (Pandas) and reported using MatplotLIB [69] standards. Details for each
set of simulation items are presented below. Table 2 summarizes all the variables
used and their values. In this context, flight endurance stands for the UAV flight time
capability.

5.1 Simulation model

For each simulation the same macro steps were used in an identical manner:

Table 2 Notation used in this work

Symbol Definition Used Values Symbol Definition Used Values

p Number of CH 70, 140 & 700 s UAV speed 20m/s

v Number of UAVs 2, 4, 8 & 16 T Period of Data Collection 72 hours

A CH Distribution Area 700km2 pt UAV (re)preparation time 10 min

h Flight height 50 meters B UAV flight endurance 16 hours

R Radio range 100 meters MP Message payload 72 bytes

S Radio range path segment 71 meters ρ Radio transmition rate 250Kb/s

q QUDG 10% FT UAV failTax 10%

c Connection probability 90% MBTF UAV failPeriod MTBF 20 hours

α SINR alfa 2 Ci Data creation tax 1B/seg

β SINR beta 0.7 γ SINR noise 0.1
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1. The GS arrives near the accident area and sends UAVs to collect data;
2. Every time a UAV is in radio range of the GS, it delivers its data;
3. Every time a UAV is runs out of flight endurance B, it flies to the GS and remains

for a period of pt to charge its battery. After pt the UAV starts again as a new UAV
leaving the GS;

4. The role process remains for a period T;

5.2 UAVs

In order to set a reasonable baseline for our simulations, we choose a UAVmodel capable
of a flight endurance B of 16 hours. This period is much higher than actual experiments
with off-the-shelf UAVs (i.e., drones). However, this choice is reasonable when com-
pared to academic and professional equipment, which can have a flight time of up to 81
hours[70] of flight endurance, as presented by [71].
Apart from reaching the limit of its flight endurance, any UAV can stop working at any

time due to a malfunction. To simulate this issue, we adopted the concept of Mean Time
Between Failures (MTBF) for the role simulation. We applied a failrate for each simula-
tion. The UAV’s mobility characteristics are the same as Dubin’s Car and are represented
as a VTOL UAV. All UAVs fly at a constant speed s. We used four sets of UAVs in our
simulations: 2, 4, 8, and 16 UAVs. The UAV’s buffers are big enough to handle all data
necessary for all flying time.

5.3 Radio

All radios were conceived as an 802.15.4 implementation XBee S1 [72], which has a radio
range proximity of 100 meters. The message payload is 72 bytes at a rate of 250kb/s. The
radio’s energy consumption is negligible in these simulations. This radio was selected for
this scenario due to two main factors: (1) it is light to carry onboard and (2) it consumes
very little power.

5.4 Communication

The communication was not set as perfect in the simulations. Figure 5 illustrates a per-
fect scenario of data collection. However, more realistic details were introduced in the
simulations. First, we selected a connectivity model that defines when two nodes are in
communication range. The best-known examples are the unit disk graph (UDG) and the
quasiUDG (QUDG). A QUDG percentage was set to reduce the radio range R, which
signifies that the radio ranges were not perfect.
Second, we introduced interference situations using the signal-to-interference-plus-

noise ratio (SINR), which assumes that the signal decays exponentially in relation to the
Euclidean distance to the sender. Roughly speaking, SINR drops a message if the signal
of the message at the receiver is below the sum of all interfering signals times a given
constant. The QUDG and SINR allows the theoretical radio range R to be a statistically
feasible range r, which may vary during the flight.
It is assumed that during a valid encounter of two UAVs the time which both will be

within the radio range of each other will be enough so that all the data collected from one
UAV can be transmitted to the other UAV that will load it on.
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5.5 Solvers

The TSP solution is provided by the use of the Concorde solver [73]. To provide the LKH
tour, we also used the original LKH implementation [74].

5.6 Simulated area

The physical simulated area A is set to 700km2, the size of the evacuated zone in the
Fukushima accident. That area also is roughly the same as the Angra dos Reis evacuation
area analyzed in the study of Silva et al. [75].

5.7 Datasets

The distribution of CHs ensures that there is at least a distance R between any two CHs.
We adopt three different densities to evaluate the data collection strategies: a sparse, a
dense and a full distribution. As the area does not vary, the densities are the element which
varies the number of CHS. Sparse distributions have 1CH/10km2, dense distributions
have 1CH/5km2, and full distributions have 1CH/1km2. For each density, we used 200
different distributions of CHs and ran each onewith every set of UAVs in order to generate
the simulation data for our evaluations (two sets of distribution densities times 200 maps
times 4 sets of UAVs for each strategy).

6 Results and discussions
In this section, we discuss the results of the various experiments, comparing the strategies
described in Section 4. The data sets for all the experiments are presented in Section 5.7.
In Section 5.7, we present the various tour sizes computed with each of the strategies for
the same configuration of CHs on a map. Subsequently, in Section 6.1, we analyze the
amount of collected data (TDT ) that each strategy can retrieve during the period T. This
section includes an analysis of variation in the number of UAVs and DADCA efficiency.
The delay in message retrieval (DT

n ) and whether it is impacted by increasing the num-
ber of UAVs are analyzed in Section 6.2. The resources required in the tour planning of
each strategy, in terms of hardware comparable with that available in UAVs, is presented
in Section 6.3. The Section 6.4 discusses energy issues.

6.1 Collected data - TDT

In this evaluation, we present TDT , formalized as Eq. (3) in Section 3.3. The UAVs are
sent to collect data before the end of the period T, and when period T ends, TDT is
measured. Section 6.1.2 discusses the results from a normalized perspective, without the
outlier values (i.e., a value that lies an abnormal distance from other values in the results).
Section 6.1.3 analyzes the impact of varying the number of UAVs on the results by pre-
senting the average of all found values. To conclude this section, we summarize these
results in subsection 6.1.4.

6.1.1 Experiment parameters

The results in this section were obtained through simulations, the data sets analyzed in
Section 5.7, and the three CHs densities (sparse, dense, and full). In addition, the simula-
tions were performed using different sets of UAVs (2, 4, 8, and 16), and the other variables
were set according to Table 2. In total, 14,400 simulations were performed.
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6.1.2 Analysis of TDT

For this subsection (6.1.2), the results account for a single set of UAVs (eight UAVs). All
the results, save for the outliers (0.2% of the results), are presented in boxplot charts;
therefore, 99.8% of the results are included in the charts. The results appear in Fig. 20,
grouped based on strategy and the density of CHs.
The vertical axis represents TDT , while the horizontal axis indicates the various strate-

gies. All charts are ordered based on the series’ medians, from left to right; thus, farther
right a strategy is placed in the charts, the higher are the TDT results.
Based on the charts displayed in Fig. 20, it is possible to cluster the series into

three groups. This group formation is more evident in the full scenario, as dis-
played in Fig. 20c. The FPPWR strategy produces isolated results, with the worst
positions in all density scenarios across the charts. The DADCA-Naive and DADCA-
Parted strategies form the second group achieve significantly better results than
FPPWR. The DADCA-LKH, DADCA-LKH-Cut and TSP-based strategies, which aim
to create shorter tours, comprise the third group with the best results. The strategy
DADCA-LKH achieves the best results because it has shorter tours than the other
strategies.
The DADCA-LKH-Cut strategy produces better results than the TSP-based strategy

in the sparse scenario, whereas the TSP-based strategy produces the second-best results
in the dense and full scenarios. These results are due to the efficiency of the DADCA
variations in the use of the generated tours. More specifically, the DADCA-LKH-Cut
strategy has shorter subtours than the DADCA-LKH strategy and worse results than the
TSP-based strategy.
The DADCA-LKH strategy yields a 1% improvement in terms of TDT than the TSP-

based strategy. Despite the median results, the bottom results indicate that DADCA-LKH
performs 4% better regarding TDT than does TSP. The DADCA-LKH-Cut strategy varies
between better and worse results with a 1% difference.

6.1.3 Impact of the number of uAVs on TDT

In this subsection, we present the same experiments from the previous subsection and
include different numbers of UAVs and outlier results. For all charts in Fig. 21, there is a
series with the results of a running strategy. Each point in a series represents the average
from all executions in that density of CHs for all maps from the data set.
For each series in the charts depicted in Fig. 21, one notices that an increase in the

number of UAVs results in a direct increase in TDT for each experiment. This linear
dependency is created because across all strategies, the UAVs collect data by flying over
CHs at a constant speed in a computed tour, and therefore, the more aircraft that fly, the
more data is collected.

6.1.4 Experiment summary

In general scenarios, the DADCA variation results in nearly the same or even more
TDT than do the other strategies. Indeed, the individual analysis of each case in which
DADCA versions was less efficient than TSP indicated that this was due to the two
UAVs flying side by side, resulting in the UAVs being unable to obtain from CH at the
same time.
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Fig. 20 TDT of all strategies series divided by charts of map densities. The series is crescent ordered by its
medians. a TDT on sparsemaps (b) TDT on densemaps (c)TDT on full maps
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Fig. 21 TDT averages with all results. a TDT averages on sparsemaps (b) TDT averages on densemaps (c)
TDT averages on full maps
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6.2 Messages delay - DT
n

In this section, we explore the DT
n results (i.e., the mean delay of all message collected

from each CH, as formalized in Section 3.3) (5). The delays analyzed are sub-products of
the experiment discussed in the previous Section (6.1). After presenting the results, we
analyze the effects of varying the number the UAVs on each of the strategies.

6.2.1 Analysis of DT
n

Figure 22 presents all the strategies and the DT
n of the retrieved messages that reach the

GS. Each point in the charts represents the average of 200 maps from the data set. The
horizontal axis represents the number of UAVs, while the vertical axis represents DT

n ;
smaller values on the vertical axis indicate better results.
Due to the tour length being larger in denser scenarios, as the density (sparse, dense,

and full) increases, the delays increase. The FPPWR strategy produces the worst results
in all scenarios in the analysis because its tours are significantly longer than those of the
other strategies. While the results do not indicate that the TSP-based strategy is the best,
it does produce satisfactory results in all scenarios.
Figure 23 contain the chart of delays of 16 UAVs collecting data from 700 CHs. The best

results for DT
n are obtained using DADCA-LKH-Cut and DADCA-Parted. Without loss

of generality, we assume that the GS is roughly positioned in the middle of the tours of
DADCA-LKH-Cut and DADCA-Parted so that the distance required to deliver the data
is significantly lowered.
The chart in Fig. 23 clearly displays the advantages of DADCA-LKH-Cut and DADCA-

Parted over the other strategies. DADCA-LKH-Cut had 32% shorter delays and DADCA-
Parted had 20% shorter delays than the TSP-based strategy when comparing the medians
and the maximum values.
DADCA presents superior delays because the strategies that follow a Hamiltonian cycle

have constant delays (FPPWR and any TSP-based strategy), while variations of DADCA
take advantage of the increase in the number of UAVs, thus decreasing themessage delays.
More specifically, in the cases of DADCA-LKH-Cut and DADCA-Parted, the positioning
of the GS roughly in the middle of the tour increases the frequency with which the UAVs
deliver their collected messages.

6.2.2 Experiment summary

With a small number of UAVs, the DADCA variations present similar or worse results
than the TSP-based strategy, and this inefficiency occurs due to the path overlapping
when two UAVs are flying together, which explains the limitations of DADCA.
However, when more UAVs are used, the performance of the DADCA variations signif-

icantly improves. In all evaluated scenarios, the DADCA-LKH-Cut and DADCA-Parted
strategies yielded better results than the TSP-based strategy due to the more frequent
connections to GS. These points are presented in Fig. 22.

6.3 Tour planning time

This section analyzes the computational effort required for the various strategies to create
their tours. As previously mentioned, the complexity of DADCA-Naive and DADCA-
Parted is �(n2), the complexity of DADCA-LKH and DADCA-LKH-Cut is O(n2.2), and
the complexity of FPPWR isO(n log n); the TSP-based strategy is an NP-hard problem.
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Fig. 22 DT
n - average delays of each strategy for each density and distinc number of UAVs. a DT

n on sparse
maps (b)DT

n on densemaps (c)DT
n on full maps
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Fig. 23 DT
n - delays of each strategy in full density and 16 UAVs as in Fig. 22c

An analysis of the algorithm’s complexity provides helpful estimates regarding the theo-
retical processing time requirements of each strategy; however, the algorithm complexity
does not provide a complete comparison of the tour planning timing of each algorithm.
Thus, we present each strategy’s planning time in a real UAV processing system. The UAV
processing system contains only the necessary components to control the flight, namely
the flight controllers.
Unmanned aerial vehicles generally rely on only flight controllers with processors such

as the ARM Cortex-M (with 32bits and clocks of 200MHz). Typically, a UAV’s flight con-
trollers rely on processing systems that are light and spend as little energy as possible.
Moreover, due to security issues, it is not recommended to run arbitrary applications on
the flight controllers. Similar technical specifications are found in the commonly used
PixHawk flight controllers family2.
To run application-level programs in UAVs, it is generally necessary to install a ded-

icated processing unit for the application. The most-used configuration is to adopt
single-board computers, which naturally comply with weight and energy-consumption
requirements. Indeed, the frameworks for platforms such as FlytOS [28] and Dronecode
[76] are based on this architecture.
The cited projects [28, 76] rely on single-board main computers, such as RaspBerry

Pi, BeagleBone, and Intel Edison. To evaluate the proposed strategies, we selected the
RaspBerry Pi 3 as the hardware given its high availability in the market.

6.3.1 Experiment parameters

This experiment demonstrates the time spent for each strategy to compute its tour
using the same hardware. The Raspberry Pi 3 relies on a quad-core processor, the
ARM Cortex A53 (ARMv8). The ARM cores run at 1.2 GHz, with a GPU core that
runs at 400 MHz. The data set and densities used are the same as in the previous
experiments.

2https://pixhawk.org/

https://pixhawk.org/


Olivieri de Souza and Endler Journal of Internet Services and Applications            (2020) 11:4 Page 36 of 44

6.3.2 Analysis tour planning time

Figure 24 presents the average results of each strategy’s tour processing time. The hor-
izontal axis represents the maps, while the vertical axis represents the processing time;
smaller values along the vertical axis are better.
The first result noticed is that the TSP-based strategy demands significantly more time

than any other strategy. In fact, the results of the TSP-based strategy create difficulty in
analyzing the other strategies in the same chart because TSP-based results mislead the
scale of results. Accordingly, in Fig. 24, the same results are grouped together, and the
average is presented. It becomes clearer that TSP-based results have a complete other
scale.
To provide a clearer analysis, we present only the full series in the charts in Figs. 25, 26,

and 27, which do not contain outliers and are presented as boxplots. In Fig. 25, all the
results are presented. The outliers were removed because some results of the TSP-based
strategy differed largely from the average results. In all charts, the vertical axis represents
the processing time, in which lower values along the vertical axis are faster.
In Fig. 26, the three strategies that yielded the best results in the previous two experi-

ments produced the worst results, in terms of computing the best tour while consuming
computational resources. Even without outliers, at least 25% of the TSP-based strat-
egy’s tours require more than 29 minutes of computing time. In addition, at least 75%
of the TSP-based strategy’s tours require more computing time than those of the other
strategies. While DADCA-LKH and DADCA-LKH-Cut produce better results than the
TSP-based strategy, the results of both are still far worse than the others.
In Fig. 27, we present the three best results of the FPPWR, DADCA-Naive, and

DADCA-Parted strategies. DADCA-Parted produced the best results in this experiment,
computing its tours in less time than the others.
DADCA-Parted achieved its results by splitting the original set of CHs into two sub-

sets to compute its tour. For this reason, its results are significantly better than those of
DADCA-Naive.

Fig. 24 Average processing time in diverse distributions
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Fig. 25 Processing planning of full distribuions in a boxplot view

Despite the FPPWR results, the overall results reasonably could have been expected
because they are directly proportional to the efforts of each strategy for computing its
tour. Optimization heuristics are expected to be more difficult to solve, followed by
polynomial heuristics that deal with optimization problems. Finally, purely polynomial
strategies tend to be less costly. It is reasonable to expect that at some number of CHs,
the FPPWR strategy would produce the best results, but this did not occur in preliminary
tests up to 1,000 CHs.

6.3.3 Experiment limitations

In this subsection, we discuss three experimental limitations related to the following
areas: memory utilization, possible process parallelization, and other issues that might
have influenced the processing time.

Fig. 26 Presenting selected worst results. Processing planning of full distribuions in a boxplot view
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Fig. 27 Presenting selected best results. Processing planning of full distribuions in a boxplot view

Memory In the preliminary tests involving up to 1,000 CHs, none of the strategies
reached 128 Mb of memory utilization. As the evaluated hardware has 1 Gb of RAM, this
work does not delve further into memory evaluation.

Parallel Processing The processing time evaluation ran without parallel optimizations
or GPU usage on the Raspberry Pi 3. All evaluations ran as a single execution thread.

Processing time The tour processing time presented in this subsection was not con-
sidered in the previous section, indicating that the amount of collected data TDT and
delay DT

n were evaluated as though the processing time of each strategy were zero. It is
reasonable to expect that the TSP-based strategy could produce significantly different
results if the UAVs waited to begin their data collection until after the TSP-based strategy
computed the tour.

6.4 Energy constraints

In this section, we introduce two energy issues pertaining to UAVs. Section 6.4.1 explores
the UAVs’ inversion of flight direction (U-turn) after a valid rendezvous. The tour
planning aboard UAVs may consume significant energy and is explored in Section 6.4.2.

6.4.1 DADCA rendezvous energy impacts

As previously mentioned, the systemmodel does not consider energy consumption in the
alteration of the UAVs’ trajectories. The angle of a UAV’s turns on a tour does not affect
that UAV’s energy consumption model in any of the strategies.
In all DADCA variations, the standard behavior of the UAVs is to change direction by a

180◦angle (i.e., perform a U-turn). It is reasonable to expect that this behavior would con-
sume energy. Such energy consumption could result in a need for more frequent battery
recharges, and more frequent visits to the GS could increase the SE.
Figure 28 consists of three charts containing the number of U-turns performed by the

UAVs during the experiments. The number of UAVs considered in this Figure is 16 UAVs.
It can be noted that the DADCA-Naive and DADCA-Parted tours include fewer U-turns
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Fig. 28 Number of UAVs U-turns during the period of T. a UAVs U-turns on sparse distribution. b UAVs
U-turns on dense distribution. c UAVs U-turns on full distribution
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Fig. 29 Amount of energy spent by each strategy for each distribution. a Energy spenty by strategies to
planning its tour for sparse distributions. b Energy spenty by strategies to planning its tour for dense
distributions. c Energy spenty by strategies to planning its tour for full distributions
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than the tours of the other strategies because both strategies produce longer tours. The
tours of DADCA-LKH and DADCA-LKH-Cut incorporate more U-turns than do the
other strategies because the same number of UAVs collect the data on these shorter tours.
Among those two, DADCA-LKH-Cut executions have fewer U-turns than DADCA-LKH
executions because DADCA-LKH-Cut produces a larger SE; when flying in pairs, both
UAVs ignore other UAVs during a rendezvous. As a result, DADCA-LKH-Cut tours have
fewer rendezvous than those of DADCA-LKH.

6.4.2 Tour planning energy consumption

As proposed, the tour shall be computed using each UAV. In Section 6.3, the processing
time of each strategy is presented, with some results taking hours to be processed. In this
experiment, we measured the energy consumed by the hardware discussed in Section 6.3
to provide an estimate of the effects that tour planning could have on the energy con-
sumption of the UAVs. To do so, we logged the energy consumption of the Raspberry Pi
3 for one hour under full-time processing of the tour.
The measurement was taken using an inline ammeter during the hour. The ammeter

used was a Keweisi model KWS-V20, with an accuracy of 0.4% in current measurements.
In idle processing, the Rapberry Pi spent 75 mAh with 5.23 volts per hour. In tour pro-
cessing tasks, the measurement experiment resulted in 362 mAh with 5.13 volts per hour.
This result was divided by 3,600 seconds to obtain 0.1 mAh with 5.13 volts per sec-
ond. The results of the energy consumption were used in conjunction with the results
from Section 6.3 to present the energy necessary for each strategy to compute a tour, as
demonstrated in Fig. 29.
It is important to note that mAh is not a measure of energy; rather, it is a measure of

current flow integrated across time, and deriving the energy value requires the voltage,
as well. We present the charts in joules, in which smaller values along the vertical axis
are better. The charts in Fig. 29 display the straight application of the tour planning time
presented in Section 6.3. Figure 29 presents the TSP-based strategy as the worst strategy,
spending disproportionate energy with respect to the other tested strategies. DADCA-
Parted yielded the best results, followed by DADCA-Greedy.

7 Conclusions
Typically, research on WSN data collection with UAVs focuses on the use of only a sin-
gle UAV. Through a brief literature review, this work illustrates the lack of research on
collaboration among UAVs in data collection tasks.
Given this context, it was proposed that distributed approaches can be equally or even

more efficient than centralized approaches in terms of particular issues in UAV data
collection. Accordingly, a distributed approach—DADCA—was proposed and evaluated
against other strategies (FPPWR and TSP-based approaches).
In addition, we evaluated the performance of DADCA variations against conventional

strategies with optimized tour approaches. The results of the simulations indicated better
results than those obtained using other strategies.
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