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five state-of-the-art predictors.

The ubiquitous connectivity of Location-Based Systems (LBS) allows people to share individual location-related data
anytime. In this sense, Location-Based Social Networks (LBSN) provides valuable information to be available in
large-scale and low-cost fashion via traditional data collection methods. Moreover, this data contains spatial, temporal,
and social features of user activity, enabling a system to predict user mobility. In this sense, mobility prediction plays
crucial roles in urban planning, traffic forecasting, advertising, and recommendations, and has thus attracted lots of
attention in the past decade. In this article, we introduce the Ensemble Random Forest-Markov (ERFM) mobility
prediction model, a two-layer ensemble learner approach, in which the base learners are also ensemble learning
models. In the inner layer, ERFM considers the Markovian property (memoryless) to build trajectories of different
lengths, and the Random Forest algorithm to predict the user's next location for each trajectory set. In the outer layer,
the outputs from the first layer are aggregated based on the classification performance of each weak learner. The
experimental results on the real user trajectory dataset highlight a higher accuracy and f1-score of ERFM compared to
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1 Introduction

Over the past decade, an overwhelming number of
location-aware services and applications have profoundly
changed the way people live [1]. The ubiquitous con-
nectivity of Location-Based Systems (LBS) allows people
to share individual location-related data anytime [2]. In
this sense, Location-Based Social Networks (LBSN) [3],
such as Foursquare and Instagram, became popular to
provide public data capable of mapping people through
status, check-ins, and photos shared online, leading to a
new urban computing era [4]. The availability of massive
human location tracking datasets was enabled by mobile
technologies, such as big-data technologies in mobile
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telecommunication networks and large scale deployment
of GPS technologies. In this context, LBSNs users stopped
being only consumers to become data producers, offering
various research opportunities, such as mobility predic-
tion and recommendation systems [5]. Hence, location
data bridges the gap between the physical and digital
worlds, enabling a deeper understanding of users’ prefer-
ences and behavior.

LBSN data distinguish from traditional GPS data and
Call Data Records (CDR) mainly in social, spatial, and
temporal resolutions, which can be used to model move-
ment patterns and infer similar movements [6]. LBSN
provides valuable information that is currently available in
large-scale and low-cost fashion via any traditional data
collection methods [7]. In this sense, social media is an
important tool in urban computing to provide urban data
with social features, such as the user’s preferences and
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routine. It allows us to understand user patterns, city
dynamics, and social, economic, and cultural aspects [8].
For instance, LBSN data can be used for extracting user
mobility patterns to understand when and where a user
commonly goes (location prediction). Also, it can capture
user preferences and location profiles to investigate where
and when a user wants to explore (location recommenda-
tion).

In this context, mobility prediction plays important
roles in urban planning, traffic forecasting, advertising,
and recommendations, and has thus attracted lots of
attention in the past decade [9]. For example, it can be
used to improve Device-to-Device (D2D) communica-
tions in Opportunistic Networks, where user location is
required to make mobile data offloading. Besides, mobility
prediction can be applied to proactive caching, alleviating
back-haul traffic, and mitigating latency caused by han-
dovers [10]. On the other hand, due to cold start and
sparsity problems, LBSN imposes some challenges when
predicting user mobility, requiring more complex data
mining techniques compared to other mobility data, such
as GPS and CDR.

The study of human movement patterns shows that
people’s actions are repetitive since they visit specific loca-
tions at a relatively fixed time every day [11]. Also, people
tend to visit the same places that their friends visited,
enabling the investigation of social features [12]. In con-
trast, social information is less effective in predicting a
user’s repetitive mobility behavior compared to spatial and
temporal information, since a user’s repetitive mobility
behavior is more affected by his interests than his friends’
preferences [6]. On the other hand, social correlation,
called user similarity, can be considered to assist spa-
tial and temporal information for mobility prediction. For
instance, a user’s trajectory can be in some way correlated
with the trajectory of other users. Therefore, mobility pre-
diction can be made considering the combination of all
possible locations of both users.

Several methods have been proposed for mobility pre-
diction based on mobility data, where most of them use
the historical trajectories to identify user and group move-
ment patterns [13]. For instance, Markov models are
widely used in prediction algorithms, due to their effi-
ciency, simplicity, and low computing costs. For example,
a Markov Chain (MC) predictor considers the sequence of
last locations visited by a user to predict his next location.
The length & of that sequence of locations represents the
order of the Markov chain, and we refer to this model as
an order-k Markov Chain model. In this sense, the model
assumes that the prediction is based on the location tran-
sitions, computing the number of times the user moved
from alocation to another. For instance, in the order-1 MC
(1-MC), in which sequence length k = 1, the next loca-
tion of a given user is only influenced by his last visited
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location. In contrast, in the order-2 MC (2-MC), the next
location is not only dependent on the last visited location
but also on the previous one.

Due to the advance of technologies and the big chal-
lenges faced by mobility prediction problems, several
Machine Learning (ML) methods have been used to pre-
dict the user’s next location [14—16]. In this context,
aggregated models, also known as Ensemble predictors,
have become popular as long as they have shown excel-
lent results. For instance, suppose you pose a complex
question to thousands of random people, then aggregate
their answers. In many cases, you will find that the aggre-
gated answer is better than an expert’s answer. Similarly,
if one aggregates the predictions of a group of predic-
tors, he will get, in most cases, better predictions than
with the best individual predictor [17]. Hence, a com-
bination of several models tends to improve mobility
prediction.

In this article, we extend the previous work [18] by intro-
ducing an Ensemble Random Forest-Markov predictor,
called ERFM. In [18], we propose the TEmporal Markov
Mobility predictor based on User Similarity (TEMMUS),
a Markov-Chain mobility predictor which leverages the
days of the week and the user similarity to predict the next
location. On the other hand, ERFM is a two-layer ensem-
ble predictor and ranks a set of possible locations that a
given user could be by combining Random Forest (RF)
models based on the trajectory of different lengths. Based
on the Markov property, also known as memoryless prop-
erty, it assumes that the user’s next location depends only
on the last locations he visited. Moreover, ERFM consid-
ers the locations coordinates (latitude and longitude), the
bearing angles, and the distances between the locations
for each trajectory to predict the next location. Besides,
we also introduced an extended evaluation in a more chal-
lenging and realistic user mobility scenario, consisting of
more than 400 thousand users’ records over a period of 22
months.

The contributions of this work can be summarized as
follows:

i) Two-layer Ensemble mobility predictor using the
combination of Random Forest models based on
sequences of locations of different lengths.

ii) Extended evaluation in a more realistic scenario, new
metrics, and evaluated models.

The remainder of this article is organized as follows. In
Section 2, we review relevant related work about mobility
prediction. In Section 3, we introduce the proposed ERFM
mobility predictor and describe our data collection pro-
cedures and evaluation metrics. In Section 4, we describe
the results. In Section 5, we introduce the conclusion,
limitations, and future work of this article.
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2 Related work

To identify the important locations of the target user from
trajectory data, Wang et al. [19] proposed a novel divi-
sion method for pre-processing trajectory data. Also, to
predict the next location of mobile users, the authors
proposed a multi-order fusion Markov model based on
the Adaboost algorithm. The model order k is adaptively
determined, and the weight coefficients of the 1-to-k
order models are given by the Adaboost algorithm accord-
ing to the importance of various order models. As a result,
a multi-order fusion Markov model is generated to predict
the next important location of the user. According to the
authors, experimental results on the real user trajectory
data set Geolife, prove that the proposed method over-
comes the prediction accuracy of the low-order Markov
model and the high sparse rate of the high-order Markov
model to some extent, and makes full use of the user’s
prefix trajectory information.

Gebrie et al. [16] performed a comparative analysis of
four mobility predictors: Deep Neural Network, Extreme
Gradient Boosting Trees, Semi-Markov, and Support Vec-
tor Machines (SVM). The authors evaluated the effective-
ness of each model not only based on the model’s ability
to predict the future location of mobile users but also
the time each algorithm takes to be fully trained and per-
form such prediction. Their investigation was based on
a realistic synthetic dataset of eighty-four mobile users
generated through a realistic Self-similar Least Action
Walk (SLAW) mobility model. Their experimental results
prove the Extreme Gradient Boost Trees algorithm stands
out as a clear winner among all predictors considered.
Besides, its high prediction accuracy enables high energy
saving gain of above 80% when it is employed for driving
proactive energy Self-Organizing Networks solution.

Abani et al. [10] proposed a proactive caching strategy
for reducing the latency of retrieving predictable content
requests in a vehicular network. This proposal considers
the individual strategy for mobility prediction since it is
based on the history of the object itself. However, this
approach is limited by the locations visited by the node,
failing in predicting future locations of non-systematic
objects due to the individuality of each object. Nguyen
et al. [20] proposed a prediction-based routing algorithm,
which considers both spatial and temporal contact dimen-
sions. In this sense, the source knows when and where to
start the routing process, which minimizes the network
delay and overhead.

Existing mobility prediction models consider the histor-
ical record of users. For instance, Jiang et al. [21] proposed
a method to extract the Region-of-Interest (ROI) from
the historical data location. On the other hand, other
authors consider not only the history of the user but
also the spatial-temporal context to improve the accu-
racy of the mobility prediction model. For instance, Wang
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et al. [1] modeled the spatial and temporal activity pref-
erences separately and combined them for preference
inference. Gao et al. [22] proposed a general framework to
exploit and model temporal cyclic patterns and their rela-
tionships with spatial and social data. The experimental
results on two real-world LBSN data-sets that validate the
importance of temporal effects in capturing user mobile
behavior.

Some researchers study the social property on LBSNs
to extract user movement and preference patterns. Cheng
et al. [23] included the social information, and combined
the geographical influence into a generalized matrix fac-
torization framework to provide more accurate and effi-
cient Points Of Interests (POI) recommendation. Silveira
et al. [12] proposed a model to predict human mobility,
called MobDatU, which considers data from mobile calls
and LBSN data. MobDataU includes social interactions
between users as an important factor to predict the next
region. Munjal et al. [24] proposed SMOOTH, which is
a simple and realistic model that leverages several known
features of human movement to model human mobility.
Dong et al. [25] introduced Leap Graph, which considers
base station location information available in a CDR to a
service provider to perform mobility prediction.

Markov Model is one of the statistical models used
in predictive analytics. In this way, Chen et al. [13]
introduced three Markov-based models, namely, Personal
Markov Model (PMM), General Markov Model (GMM),
and Next Location Predictor with Markov Modeling
(NLPMM). PMM considers only the mobility of a spe-
cific user, i.e., its past trajectories, to build the mobility
prediction model. On the other hand, GMM takes into
account the collective aspects of the mobility, i.e., consid-
ering not only the movement of a specific node but of all
the nodes since they often share similar movement pat-
terns. NLPMM combines PMM and GMM models using
linear regression to explore the individual and collective
aspects of mobility.

In our previous work [18], we proposed TEMMUS, a
Markov-Chain-based mobility predictor. It considers the
day of the week (weekday or weekend) and the user
similarity to enhance the user’s next location predic-
tion. Moreover, TEMMUS considers a Fallback-Markov
approach, in which the order of the trajectory is reduced
if the user transition does not exist in the Markov-Chain
(e.g, the user has never made this trajectory). It is impor-
tant to notice that while ERFM and TEMMUS are based
on the Markov property (memoryless property), the for-
mer is not a Markov-Chain model. Table 1 summarizes
the analyzed mobility predictors.

3 Ensemble random forest-Markov
In this section, we provide the mobility problem formal-
ization, the main concepts related to it, and introduce
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Table 1 Summary of Mobility Prediction Models

Characteristics

Factors Data Type Collected/Generated From

Temporal Spatial Social Real Synthetic  Location-Based Social Network  Call Data Record  Other
Wang et al. [19] v v v
Gebrie et al. [16] v v v v
Abanietal. [10] v v v
Nguyenetal. [20] v v v v
Jiang etal. [21] v v v v
Wang et al. [1] v v v v
Gao etal. [22] v v v v v
Cheng et al. [23] v v v v
Silveira et al. [12] v v v v v
Munjal et al. [24] v v v
Dong et al. [25] v v v
Chenetal. [13] v v v v
Felipe et al. [18] v v v v v
ERFM v v v v v

the Ensemble Random Forest-Markov predictor (ERFM).
It mainly consists of the following steps, each of them is
detailed in the following subsections.

1 Data Acquisition/Preparation: In the first step, we
collect data and split it into two subsets: train and test.

2 Features Engineering: In the second step, we build
trajectories of different lengths based on the model
order k. Also, extract features from the data, such as
bearing and Haversine distance between every two
locations.

3 Model Building/Training/Aggregation: It is the
main. Here, we build the base models for the
ensemble predictor, tune the hyperparameters for
each model based on the Grid Search approach, train
each model using the selected parameters, and
aggregate them based on the Out-Of-Bag error.

4 Model Evaluation: In the last step, we evaluate the
ensemble predictor (ERFM).

3.1 System model

In this article, we introduce an ensemble model based on
LBSN data to predict the user’s next location. Therefore,
for a better understanding, we provide a brief definition of
the principal concepts related to it, including the mobility
prediction problem formalization.

Definition 1 (check-ins) The check-in is defined as a 5-
tuple ¢ = {id, lat, lon, loc, t}, where ‘id’ represents the user
id; ‘lat’ and ‘Ing’ denotes the location coordinates and is
defined by latitude and longitude, respectively, ‘loc’ is the
location id and ‘t’ represents the timestamp. We denote the

set of check-ins of all users as C and the set of check-ins for
a specific user as C;;, where the index is the user id. For
instance, C; is the check-ins set for the user i.

Definition 2 (trajectory) The trajectory try, (i) is defined
as the m-th time-ordered sequence of locations that the
user i’ just passed. For instance, for a sequence of length
three (k = 3), tri(u) = {loc1,locy, loc3} is the frist tra-
jectory of user ‘u; indicating he just checked-in at these
locations in such order. The set of all trajectories of all users
is defined as T while the set of all trajectories of a specific
user is defined as T4, where the index is the user id.

Definition 3 (mobility prediction) We formalize the
mobility prediction problem as follows. Given a user u
whose current check-in is ¢ = {u, lat, lon, t}, we aim to rank
the set of possible locations so that the next location to be
visited will be ranked at the highest possible position in the
list. Therefore, the mobility prediction problem is essen-
tially a ranking task, where we compute a ranking score for
all venues in L.

3.2 Data acquisition/preparation

We used the United States region from Global-scale
Check-in Dataset [26]. It has over 12 million check-ins
by about 400 thousand users at about 2 million loca-
tions over a period of 22 months (from Apr. 2012 to Jan.
2014). This dataset consists of the following fields: (i)
User ID (anonymized); (ii) Latitude; (iii) Longitude; (iv)
Timestamp/DateTime; (v) Location ID; (vi) category. Even
though this dataset has a high number of users, only a few
(< 1%) was used. It occurs due to the number of check-
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ins per location or the total number of check-ins per user.
In this sense, we considered only users that checked-in at
least 10 different locations and 5 times on each. Also, we
filtered users with a total of check-ins of less than 500.

Figure 1 illustrates ERFM pipeline, in which the first
process is the data splitting. There are many ways to split
the data into training and testing sets. The most common
approach is to use some version of random sampling since
it is a straightforward strategy to implement and usu-
ally protects the process from being biased towards any
characteristic of the data. However, this approach can be
problematic when the response is not evenly distributed
across the outcome. In this context, a less risky splitting
strategy would be to use a stratified random sample based
on the outcome. Therefore, for classification models, this
is accomplished by randomly selecting samples within
each class. It ensures that the frequency distribution of the
outcome is approximately equal within the training and
test sets.

Also, the data can be sliced sequentially, in which the
first p% data is the training set and the remainder data is
the testing set. However, sequential data such as mobil-
ity trajectories is subjected to auto-correlation, where the
assumption made by the currently splitting approaches
of i.i.d observations does not hold. Therefore, techniques
such as random sampling are not applied to time series
data, since they do not consider its main aspect: time.
Moreover, for large datasets, such as Global-scale Check-
in, splitting the whole data sequentially is not a good
option, since the testing set may not be correlated with the
training set. In this sense, ERFM is based on the Block-
rolling Time Series split (BRTS). It leverages the time
dependence by splitting the data into N small partitions
(folds), and for each one, it applies a sequential split given
a training and testing data proportion (see Fig. 1, item 1).

3.3 Features engineering
In many cases, the assumption that “the next place that
is going to be visited is only dependent on the current
location” becomes unsuitable or even false because it can
be not enough to extract the patterns. For instance, the
mobility pattern may be associated with several consecu-
tive user movements than low-order transitions. On the
other hand, building higher-order transitions may lead to
long trajectories that are not directly related to the user’s
next location and a reduced number of samples, making
the mobility prediction difficult. In this context, we used a
varied-order approach, where for a defined model order k,
we build trajectories ranging from size 1 to k. For instance,
for a k = 5, we also build trajectories of sizes from 1 to 4,
totaling trajectories of different sizes, each responsible for
extracting a different pattern.

In this sense, the user trajectories were built based on
two aspects: (i) Individual and (ii) General. The former
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assumes that user mobility is only influenced by his behav-
ior while the general aspect assumes that behaviors of
different users can be someway correlated. Firstly, we clus-
ter the sequence of locations according to the day of the
week. Then, for each cluster, we group the check-ins based
on the timestamp difference between two consecutive
check-ins from the same user. If it is lower or equal than
a threshold B, we just add to the same group, otherwise,
we create a new one. After that, assuming the memoryless
property and the maximum trajectory length k, we iter-
ate the groups up to k times using an overlapping rolling
window with variable size (from 2 to k + 1). It is impor-
tant to notice that the rolling window length is fixed for
each iteration. As a result, we split each group into other
overlapping subgroups of size from 2 to k + 1, where the
first locations are the trajectory and the last location is the
destination.

In the context of general aspect, it is also categorized
into other two classes: (i) Collective and (ii) Hybrid. In the
collective approach, all the individual trajectories set are
merged into unique collective trajectories set. Hence, it
assumes that the trajectories are the same for all users.
For instance, let T; and T; be the individual trajectories
set for the users i and j, the collective trajectories set is
given by T = T;UT;. The main advantage of this approach
compared to the individual one is the number of possi-
ble next locations. For instance, Markov-based algorithms
fail to correctly predict future movements if the new loca-
tion has never been visited by a user. On the other hand,
in the collective approach, the chances of the location has
never been visited is lower. In contrast, this approach may
lead to incorrect predictions, since it does not take into
account the individuality movement of each user.

In the hybrid approach, user similarity enhances the
spatial and temporal information for mobility prediction
since the mobility from a user could be correlated with
some user but not all. In this way, we find users with
similar routines for mobility prediction. As in Araujo et
al. [18], we computed the similarity based on the spatial
factor. Therefore, first, we calculated the normalized fre-
quency (f) for each user based on the number of times he
visited each location. Hence, the normalized frequency is
given by Eq. (1):

# user wuid visited loc

.= v lOC
Juia total visits of user uid

el (1)

where uid is the user, loc is the location, and LL is the loca-
tions set. After that, since the output of the normalized
frequency of each user uid is a probability distribution,
we computed the similarity between any two users i and
j (i # j) , denoted as SRE (i, j), based on Kullback-Leibler
divergene (Dgg), more specifically on Jensen-Shannon
divergence (D]S). In this context, both measures (Dgz, and
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Dys) are usually used to measure the divergence (or sim-
ilarity) between any two probability distributions. How-
ever, differently from Dy, Jensen-Shannon is symmetric
and has a normalized value (ranges from 0 to 1). There-
fore, we considered similar users those whose SRE metric
was above a given threshold y, where y = 0.7. We com-
puted the threshold y by rouding the average of all SRE
values. The user similarity is given by Eq. (2):

SRE (i,j) = 1 — Dys (fi. f;) 2)
D M)+ D M
Dis (fnﬁ) _ Pk ) 42- kL i ) 3)
Dxa (i,)) = |:Zfi,loc log ({Li“)} (4)
loc Jhoc

where M = 0.5 (ﬁ + f]) while f; joc and f; ;. are the nor-
malized frequencies of the users i and j, respectively, for
the location Joc. Therefore, in the hybrid approach, there
will be a trajectory set for each user as in the individual
approach. However, each hybrid trajectory set contains
own user’s individual trajectories and trajectories from the
similar users.

Figure 1 (item 2) illustrates the process of extracting
features. Hence, in order to build a more sophisticated
ML model, besides the coordinates of the sequence of
locations, we added two more features for every two sub-
sequent locations: bearing and the distance. The bearing
feature (0) is the angle measured clockwise from the north
direction from a location to another and the calculation is
given by the Eq. (5). The distance feature is the geodesic
distance in kilometers between two locations and it is
given by the Haversine formula, since we are working with
latitude and longitude values and it is usually used for
computing the distance. Therefore, for trajectories with
length k > 2 the features are extracted. For instance, for a
trajectory with length k = 3, two bearing features and two
distance features are added, each representing the angle
and distance of each user movement.

A =sin AL - cos ¢
B = cos ) -singy — sin @) - cos gy - cos AA
6 = arctan (4, B) (5)

3.4 Model building/training/aggregation

Ensemble learning is an ML technique where multiple
predictors (often called “weak learners” or “basic models”)
are trained to solve the same problem and combined to
get better results [17]. These basics models often perform
not so well by themselves either because they have a high
bias, such as low degree of freedom models or because
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they have too much variance (e.g., a high degree of free-
dom models). Then, the idea of ensemble methods is to
try reducing bias and/or variance of such weak learners by
combining several of them to create an aggregated learner
(or ensemble model) that achieves better performances.

Traditional ensemble learning approaches only have one
layer, i.e., they use ensemble learning once. In this article,
we propose ERFM, a two-layer ensemble learning model,
in which the weak learners are ensemble learning mod-
els. Therefore, in the inner layer, we combine collections
of Decision Trees (DT) to create Random Forest mod-
els, each of which is based on a different trajectory set
according to the trajectory length k. Hence, for an order-
k model, there will be k different Random Forest models.
In the outer layer, the outputs from the previous layer
are aggregated based on the classification performance of
each weak learner.

RF performs better than an individual DT on two
aspects: overfitting and anomaly isolation. During the RF
training process, the outliers are in some of the trees but
not in all of them, and thus the aggregation system guar-
antees the anomalies will be isolated. Also, RF uses the
Bagging (Bootstrap Aggregation) approach, which allows
each tree to randomly sample from the training dataset
with replacement (bootstrap sample), resulting in differ-
ent trees. Therefore, the voting system minimizes the
effect of overfitting concerning the individual decision
tree. Also, since each DT takes a different set of train-
ing data as input, the deviations in the original training
dataset do not impact the final result obtained from
the aggregation of DT. Therefore, bagging as a concept
reduces variance without changing the bias of the com-
plete ensemble. Moreover, Random Forest can be evalu-
ated using the Out-Of-Bag error (OOB). In this sense, the
OOB error is the average error for each training sample
z; calculated using predictions from the trees that do not
contain z; in their respective bootstrap sample.

In the context of hyperparameters optimization, we
used a Grid Search approach. Therefore, we split the
training set using BRTS strategy into two equally sub-
sets: training and validation and for a given parameter, it
chooses the best parameters for a model based on the val-
idation classification performance (see Fig. 1, item 3). In
this article, we used the following parameters:

n_estimator: It specifies the number of trees in the
forest of the model. The list of values used was

[ 20,50, 100].

max_depth: It specifies the maximum depth of each
tree. The list of values used was [ 5, 10, 20, 50]

After the Grid Search, each RF is trained with the
best parameters using the full training dataset (Fig. 1,
item 4). Then, ERFM combines all RFs using a weighted
average method, where the weight of each base predictor
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is inversely proportional to the OOB error rate (Fig. 1,
item 5). Therefore, RFs with a high rate of error receive a
low weight value. In the end, we normalize the predictions
using the output probabilities. Also, we rank the results
from the highest possible location to the lowest one.

3.5 Model evaluation

We can distinguish models according to the type: clas-
sification or regression. In the first one, the output is a
categorical class label. On the other hand, in the regres-
sion problem, the model learns a continuous function. It
is common for classification models to predict a continu-
ous value as the probability of a given example belonging
to each output class. The probabilities can be interpreted
as the likelihood or confidence of a given example belong-
ing to each class. A predicted probability can be converted
into a class value by selecting the class label that has
the highest probability. In this article, we return a vector
containing the highest predicted probabilities. Finally, we
select the location with the highest probability.

In order to evaluate the classification performance, we
compare different ML methods using two metrics based
on the testing set (see Fig. 1, item 6): accuracy and f1-score
(see Egs. (6) and (7)). The former measures the num-
ber of correct predictions among the predictions made.
F1-score is the harmonic mean of Precision and Recall,
where the first is the ratio of correctly predicted positive

observations to the total predicted positive observations
while the second is the ratio of correctly predicted positive
to the total number of actually positive observations.

# correctly predicted

a acy = 6
conracy # predictions (©)
Fl—2x pVECl:SlIO}’l X recall 7
precision + recall
4 Results

ERFM can be built based on the personal or general aspect
of user behavior. Therefore, we evaluated the ERFM
model based on the three types of trajectories: individual,
collective, and hybrid. Also, we used two maximum tra-
jectory lengths: k = 2 and k = 3, as shown in Figs. 2 and 3
respectively. Moreover, instead of taking the entire dataset
to evaluate the ERFMs, we randomly selected 50% of the
users. In this sense, ERFM-CT had the worst performance
with a low accuracy ratio and f1 score (below 0.17) for
both maximum lengths (2 and 3). This worst performance
occurs because the model is based on the trajectories of all
users to predict the next location Therefore, for a specific
trajectory and user, there will be a high number of possible
locations that other users visited, which turns difficult to
predict correctly. For instance, the higher the number of
transitions of a user to alocation from a specific trajectory,

ERFM-IN ERFM-CT ERFM-HB
1.00
0.75
s 0.58
8 0.51
» 080 0.37 0.41
o
0.25 0.17 013
0.00 5 3
Trajectory order
Fig. 3 Validation F1 Score based on different user behaviors: individual, collective and hybrid
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the higher the probability of ERFM predict this location
for other users if they move from the same trajectory.

On the other hand, ERFM-IN outperforms (absolute
value) the collective-based model by 0.22, 0.32 (accuracy),
0.20, 0.28 (fl-score) for k = 2 and k = 3 respec-
tively. It occurs because, for each user, is trained an
ERFM-IN model using their mobility history, enabling the
individual-based model to extract individual patterns. On
the other hand, ERFM-IN is limited to predict locations
that the user never visited, hence, accuracy still low. In
contrast, ERFM-HB had the best accuracy (up to 0.64 for
k = 3) and fl-score (up to 0.58 for k = 3) highlight-
ing that the user similarity can be used to enhance ERFM
performance.

In this context, since ERFM-HB had the best valida-
tion performance, we evaluated it using the full testing
set for all users against our previous algorithm TEMMUS
[18] and other ML predictors: Adaboost, SVC, Gradient
Boosting, and Random Forest. Moreover, all the models
use the hybrid trajectories sets as ERFM-HB. Also, they
followed the same procedures used in ERFB to train and
test. The main difference is on the trajectory length k.
While all models (except ERFM-HB and TEMMUS) use
a fixed trajectory length, ERFM-HB and TEMMUS use a
variable-order approach. The former builds RFs for each
order-i trajectories set (trajectories with i sequence of
locations), where i ranges from 1 to k, and the last uses
a Fallback-Markov Chain, in which decreases the Markov
order if a given trajectory is not found on the Markov
Chain.The following items detail each model and their
associated parameters.

Adaptive Boosting (Adaboost): It is an ensemble pre-
dictor that focuses on incorrect predictions. It begins by
fitting a classifier on the original dataset and then fits
additional copies of the classifier on the same dataset
but where the weights of incorrectly classified instances
are adjusted such that subsequent classifiers focus more

(2020) 11:7
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on these cases. We used Decision Stumps (one level
Decision Tree) as base estimators (weak learners) with
n_estimator = 120

Support Vector Classifier (SVC): It is based on the
Support Vector Machine. Given a set of features, it relies
on finding the decision boundaries between every two
classes.

Gradient Boosting: Similar to Adaboost but differs
from it in certain aspects. It is based on the error residu-
als and a loss function. At each step, we add another weak
learner to increase the performance and build a strong
learner. This reduces the loss of the loss function. Hence,
we iteratively add each model and compute the loss and
the predictions are updated to minimize the residuals
using this loss value.

RandomForest: It is an ensemble model based on
Decision Trees and the bagging approach. While ERFM
extracts different patterns by aggregating different RFs
based on k value, it uses a fixed k value. In other words, it is
equivalent to a simple model from the first layer of ERFM.
The parameters used for RandomForest is n_estimator =
120 and max_depth = 50, which are the maximum values
used for the tinning the ERFM hyperparameters.

TEMMUS: It is a Markov-based model that leverages
the user similarity to predict the next location. Also, it
considers trajectories of different sizes using a Fallback
Markov-order approach.

Figure 4 illustrates the accuracy metric based on the
maximum trajectory length. EREM-HB had the best accu-
racy (0.71 and 0.83; k = 2 and k = 3), followed by Random
Forest (0.64 and 0.66; k = 2 and k = 3), TEMMUS (0.58
and 0.63; k = 2 and k = 3), Gradient Boosting (0.57 and
0.48; k = 2 and k = 3), SVC (0.48 and 0.39; k = 2 and
k = 3), and Adaboost (0.36 and 0.21; k = 2 and k = 3).
In the same way, Fig. 5 illustrates the f1-score based on
the maximum trajectory length. ERFM-HB had the best
fl-score (0.72 and 0.76; k = 2 and k = 3), Random For-

B Adaboost s TEMMUS Il RandomForest
ERFM-HB SvVC GradientBoosting
1.00
0.83
0.75 0.71
0.64 0.63 0.66

3 0.58 0.57
©
5 050 0.48 0.48
é(‘-} 0.36 0.39

0.25 0.21

0.00 3

Trajectory order
Fig. 4 Accuracy according to the trajectory order
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1.00
0.75 0.72 0.69 076 0.72
0.64 . 0.63
g 0.53 0.56
O
&» 050 030 0.41
o
0.28
0.25 0.19
0.00 5 3
Trajectory order
Fig. 5 F1 Score according to the trajectory order

est (0.69 and 0.72; k = 2 and k = 3), TEMMUS (0.64 and
0.63; k = 2 and k = 3), Gradient Boosting (0.56 and 0.41;
k =2and k = 3), SVC (0.53 and 0.39; k = 2 and k = 3),
and Adaboost (0.28 and 0.19; k = 2 and k = 3).

The performance of ERFM-HB occurs because it lever-
ages trajectories of lengths. For instance, for the ERFM-
HB algorithm, & is the maximum trajectory order since
it creates other trajectories ranging from size 1 to k — 1,
extracting a different pattern form each. In contrast, the
trajectory length is fixed for the other models (except
TEMMUS). Moreover, the ERFM-HB outperformance is
due to its power to identify individual and collective pat-
terns as well as TEMMUS. Also, since RFs are weighted
based on the OOB error, it helps in minimizing incorrect
predictions. For instance, RFs with high OOB error scores
receive a low weight value while RFs with a low OOB error
receive a high weight value.

5 Conclusion

In the article, we introduced a two-layer ensemble model
based on the Random Forest algorithm and Markovian
property, called ERFM. In the inner layer, we combine col-
lections of Decision Trees to create Random Forest mod-
els. In the outer layer, the outputs from the previous layer
are aggregated based on the classification performance. It
predicts human mobility by exploiting user similarity into
a ranking-classification approach, based on historical vis-
iting information and by combining trajectories of differ-
ent lengths using a weighted average aggregation method
inversely proportional to the OOB error rate. Moreover,
we used the bearing angle as well as Haversine dis-
tance between the locations to build a more sophisticated
model and extract spatial patterns (direction and dis-
tance). We optimized the hyper-parameters using a Grid
Search approach based on the parameters n_estimator
and max_depth. ERFM-HB inherited the benefits of the
methods, exhibiting high accuracy and f1-score in a chal-
lenging and realistic scenario (United States). Therefore,

from the results, we can conclude ERFM is a promising
solution for predicting human mobility in high-density
scenarios.

On the other hand, ERFM has some limitations, such
as the cold start problem and memory size. For instance,
to extract different patterns, it requires a large dataset,
with a high number of check-ins for each user. Hence, it
can not be used in low-density scenarios. Moreover, since
ERFM is a non-sequential ensemble model, it can build
each base model in a parallel way. In contrast, it requires a
large volume of memory to create trajectories of different
sizes. In future work, we intend to explore new base mod-
els, features, and a better approach to overcome ERFM
limitations.
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