
Journal of Internet Services
and Applications

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1
https://doi.org/10.1186/s13174-020-0122-y

RESEARCH Open Access

A brief survey on replica consistency in
cloud environments
Robson A. Campêlo1, Marco A. Casanova2, Dorgival O. Guedes1 and Alberto H. F. Laender1*

Abstract

Cloud computing is a general term that involves delivering hosted services over the Internet. With the accelerated
growth of the volume of data used by applications, many organizations have moved their data into cloud servers to
provide scalable, reliable and highly available services. A particularly challenging issue that arises in the context of
cloud storage systems with geographically-distributed data replication is how to reach a consistent state for all
replicas. This survey reviews major aspects related to consistency issues in cloud data storage systems, categorizing
recently proposed methods into three categories: (1) fixed consistency methods, (2) configurable consistency
methods and (3) consistency monitoring methods.

Keywords: Replica consistency, Cloud environments, Storage systems, Consistency models

1 Introduction
Cloud computing is a general term that includes the idea
of delivering hosted services over the Internet. The term
“cloud” is an abstraction of this newmodel that arose from
a common representation of a network: since the partic-
ular location of a service is not relevant, it means that
services and data providers are seen as existing “in the
network cloud”.
In recent years, cloud computing has emerged as a

paradigm that attracts the interest of organizations and
users due to its potential for cost savings, unlimited scala-
bility and elasticity in data management. In that paradigm,
users acquire computing and storage resources in a pric-
ing model that is known as pay-as-you-go [8]. According
to such a model, IT resources are offered in an unlim-
ited way and the payment is made according to the actual
resources used for a certain period, similarly to the tradi-
tional home utilities model.
Depending on the kind of resource offered to the users,

cloud services tend to be grouped in the following three
basic models: Software as a Service (SaaS) [30], Platform
as a Service (PaaS) [13] and Infrastructure as a Service
(IaaS) [16]. As an extension of this classification, when
the service refers to a database, the model is known as

*Correspondence: laender@dcc.ufmg.br
1Department of Computer Science, Universidade Federal de Minas Gerais,
31270-901 Belo Horizonte, MG, Brazil
Full list of author information is available at the end of the article

Database as a Service (DBaaS) [27], which is the focus
of this survey. Such a model provides transparent mech-
anisms to create, store, access and update databases.
Moreover, the database service provider takes full respon-
sibility for the database administration, thus guaranteeing
backup, reorganization and version updates.
The use of DBaaS solutions enables service providers to

replicate and customize their data over multiple servers,
which can be physically separated, even placed in differ-
ent datacenters [62]. By doing so, they can meet grow-
ing demands by directing users to the nearest or most
recently accessed server. In that way, replication allows
them to achieve features such as fast access, improved
performance and higher availability. Thus, replication has
become an essential feature of this storage model and is
extensively exploited in cloud environments [21, 41].
A particularly challenging issue that arises in the context

of cloud storage systems with geographically-distributed
data replication is how to reach a consistent state in
all replicas. Enforcing synchronous replication to ensure
strong consistency in such an environment incurs in sig-
nificant performance overheads due to the increased net-
work latency between datacenters [38] and the fact that
network partitions may lead to service unavailability [19].
As a consequence, specific models have been proposed to
offer weaker or relaxed consistency guarantees [60].
Several cloud storage services choose to ensure avail-

ability and performance even in the presence of network

© The Author(s). 2020 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-020-0122-y&domain=pdf
http://orcid.org/0000-0001-5032-2233
mailto: laender@dcc.ufmg.br
http://creativecommons.org/licenses/by/4.0/

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 2 of 13

partitions rather than to offer a stronger consistency
model. NoSQL-based data storage environments pro-
vide consistency properties in eventual mode [60], which
means that all changes to a replicated piece of data even-
tually reach all its replicas. However, using this type of
consistency increases the probability of reading obso-
lete data, since the replicas being accessed may not have
received the most recent writes. This led to the devel-
opment of adaptive consistency solutions, which allow
adjusting the level of consistency at run-time in order to
improve performance or reduce costs, while maintaining
the percentage of obsolete reads at low levels [23, 32, 57].
A consistency model in distributed environments deter-

mines which guarantees can be expected for an update
operation, as well as for accessing an updated object.
Obtaining the correct balance between higher levels of
consistency and availability is one of the open chal-
lenges in cloud computing [31]. In this survey, we focus
on state-of-the-art methods for consistency in cloud
environments. Considering the different solutions, we
categorize such methods into three distinct categories:
(1) fixed consistency methods, (2) configurable consis-
tency methods and (3) consistency monitoring methods.
Other surveys on distinct issues related to replica con-
sistency have been recently published [6, 17, 59]. We
refer the reader to them for further considerations on
this topic.
The remainder of this survey is organized as follows. In

Section 2, we present general concepts related to cloud
database management. In Section 3, we approach the
main consistency models adopted by existing distributed
storage systems. In Section 4, we first propose a taxonomy
to categorize the most prominent consistency methods
found in the literature and then present an overview
of the main approaches adopted to implement them. In
Section 5, we provide a sum-up discussion emphasiz-
ing the main aspects of the surveyed methods. Finally,
in Section 6, we conclude the survey by summarizing its
major issues and providing some final remarks.

2 Cloud databasemanagement
In this section, we present general concepts related to
cloud database management in order to provide a better
understanding of the key issues that affect replica con-
sistency in cloud environments. Initially, we highlight the
cloud storage infrastructure requirements and describe
the ACID properties [40]. Then, we introduce the CAP
Theorem [19] and discuss its trade-offs.

2.1 Cloud data storage requirements
A trustworthy and appropriate data storage infrastructure
is a key aspect to provide an adequate cloud data storage
infrastructure, so that all resources can be efficiently used
and shared to reduce consistency issues. Next we list

some crucial requirements that must be considered by a
shared infrastructure model [54].

Automation. The data storage must be automated to be
able to quickly execute infrastructure changes required to
maintain replica consistency with no human intervention.
Availability. The data storage must ensure that data

continues to be available at a required level of perfor-
mance in situations ranging from normal to adverse.
Elasticity. Not only must the data storage be able to

scale with increasing load, but it must also be able to adjust
to reductions in load by releasing cloud resources, while
guaranteeing compliance with a Service Level Agreement
(SLA).
Fault tolerance. The data storage must be able to

recover in case of failure, e.g., by providing a backup
instance of the application that will be ready to take over
without disruption.
Low latency. The data storage must handle latency

issues by measuring and testing the network latency,
before it saves the data that an application changed and
before it makes such data available to other applications.
Partition tolerance. The data storage must be tolerant

to network partitions, i.e., the system must continue to
operate despite them.
Performance. The data storage must provide an infras-

tructure that supports fast and robust data access, update
and recovery.
Reliability. The data storage must ensure that the data

can be recovered in case a disaster occurs.
Scalability. The data storage needs to quickly scale

to meet workload demands, thus providing horizontal
and vertical scalability. Horizontal scalability refers to the
ability to increase capacity by adding more machines or
setting up a new cluster or a new distributed environ-
ment. Vertical scalability, on the other hand, refers to
the increase of capacity by adding more resources to a
machine (e.g., more memory or an additional CPU).

2.2 The ACID properties
Data Base Management Systems must conform to four
transaction properties - Atomicity, Consistency, Isolation
andDurability - known as the ACID properties [40]. How-
ever, it is non-trivial to ensure the ACID properties in a
cloud data storage, exactly because data is replicated over
multiple servers.
Despite this difficulty, strategies have been proposed

to attempt to emulate the ACID properties for web
application transactions. For instance, atomicity might
be guaranteed by implementing the two-phase commit
(2PC) protocol [39], whereas isolation can be obtained
by a multi-version concurrency control or by a global
timestamp, and durability by applying queuing strategies
such as FIFO (First-In, First-Out) to concurrent write

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 3 of 13

Fig. 1 Consistency vs. Availability in Replicated Systems

transactions, so that old updates do not override the latest
ones [61]. However, replication represents an important
obstacle to guarantee consistency [4]. Thus, maintaining a
replicated database in a mutually consistent state implies
that, in all replicas, each of their data items must have
identical values [52]. Therefore, strategies for data update
and propagation must be implemented to ensure that, if a
copy is updated, all others must also be updated [56].

2.3 The CAP theorem
The CAP Theorem was proposed by Brewer1 as a con-
jecture and subsequently proved (in a restricted form)
by Gilbert and Lynch [36]. Since then it has become an
important concept in cloud systems [19]. It establishes
that, when considering the desirable properties of Consis-
tency, Availability and Partition tolerance in distributed
systems, at most two of them can be simultaneously
achieved.
It is evident that the CAP Theorem introduces conflicts

and imposes several challenges to distributed systems
and service providers. Among the conflicts, considering
that network partitions are inevitable in a geographically
distributed scenario, we highlight the trade-off between
Consistency and Availability [37]. To illustrate this situ-
ation, in Fig. 1 we observe that User 2 performs a read
request for data item D1 in replica R3 (Datacenter 2), after
User 1 has updated data item D1 in replica R1 (Datacen-
ter 1) in the presence of a network partition that isolates

1“Towards Robust Distributed Systems”, invited presentation at the 19th
Annual ACM Symposium on Principles of Distributed Computing, Portland,
Oregon, July 16–19, 2000.

the two datacenters. Considering that the network parti-
tion means that the update made by User 1 has not been
propagated to replica R3, there are two possible scenarios:
the replicas may be available and User 2 will read obso-
lete data, thereby violating consistency, or User 2 must
wait until the network partition is fixed and the update has
been propagated to replica R3, thus violating availability.
The trade-offs caused by the CAP Theorem led to the

proliferation of non-ACID systems for building cloud-
based applications, known as BASE [34] (systems that are
basically available, rely on the maintenance of a soft-state
that can be rebuilt in case of failures and are only even-
tually consistent to be able to survive network partitions).
Such not-ACID systems offer distinct consistency models,
which are discussed next.

3 Consistencymodels
A consistency modelmay be defined as a contract between
a data storage system and the data processes that access
it [56], thus defining strategies that support consistency
within a distributed data storage system. However, trade-
offs due to the CAP theorem require choosing from a
range of models to address different consistency levels,
which may vary from a relaxed model to a strict one
[14]. In this context, there are two distinct perspectives
to be considered in a distributed data storage system
with respect to consistency [56]: data-centric and client-
centric. From the data-centric perspective, the distributed
data storage system synchronizes the data access oper-
ations from all processes to guarantee correct results.
From the client-centric perspective, the system only syn-
chronizes the data access operations of the same process,

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 4 of 13

independently from the other ones, to guarantee their
consistency. This perspective is justified because it is often
the case that shared updates are rare and access mostly
private data.

3.1 Data-centric consistency models
In this perspective, the consistency models seek to ensure
that the data access operations follow certain rules that
guarantee that the storage system works correctly. These
rules are based on the definition of the results that are
expected after read and write operations, even consid-
ering that those operations are concurrently performed.
However, the absence of a global clock makes the identi-
fication of the last write operation a difficult task, which
requires some restrictions on the data values that can be
returned by a read operation, thus leading to a range of
consistency models. The consistency models that fall in
this category are [56]: weak consistency, PRAM consis-
tency, causal consistency, sequential consistency and strict
consistency.
Weak consistency. As its name indicates, weak consis-

tency offers the lowest possible ordering guarantee, since
it allows data to be written across multiple nodes and
always returns the version that the system first finds. This
means that there is no guarantee that the system will
eventually become consistent.
PRAM consistency. PRAM (Pipelined Random Access

Memory) consistency, also known as FIFO consistency, is
a model in which write operations from a single process
are seen by the other processes in the same order that
they were issued, whereas writes from different processes
may be seen in a different order by different processes. In
other words, there is no guarantee on the order in which
the writes are seen by different processes, although writes
from a single source must keep their order as if they were
in a pipeline [45, 56].
Causal consistency. Causal consistency is a model in

which a sequential ordering is maintained only between
requests that have a causal dependency. Two requests A
and B have a causal dependency if at least one of the fol-
lowing two conditions is achieved: (1) both A and B are
executed on a single thread and the execution of one pre-
cedes the other in time; (2) B reads a value that has been
written by A. Moreover, this dependency is transitive, in
the sense that, if A and B have a causal dependency, and
B and C have a causal dependency, then A and C also
have a causal dependency [56, 60]. Thus, in a scenario of
an always-available storage system in which requests have
causal dependencies, a consistency level stricter than that
provided by the causal model cannot be achieved due to
trade-offs of the CAP Theorem [5, 48].
Sequential consistency. Sequential consistency is a

stricter model that requires that: (1) all operations be
serialized in the same order in all replicas; and (2) all

operations from the same process be executed in the order
that the storage system received them [56].
Strict consistency. Strict consistency is a model that

provides the strongest consistency level. It states that,
if a write operation is performed on a data item, the
result needs to be instantaneously visible to all processes,
regardless of the replica over which the write operation
was executed. To achieve that, an absolute global time
order must be maintained [56].

3.2 Client-centric consistency models
In this perspective, a distributed data store is charac-
terized by a relative absence of simultaneous updates.
The emphasis is then to maintain a consistent view of
data items for an individual client process that is cur-
rently operating on the data store. The consistencymodels
that fall in this category are [56]: eventual consistency,
monotonic reads consistency, monotonic writes consistency,
read-your-writes consistency and writes-follow-reads con-
sistency.
Eventual consistency. This model states that all

updates will propagate through the system and all repli-
cas will gradually become consistent, after all updates
have stopped for some time [56, 60]. Although this model
does not provide concrete consistency guarantees, it is
advocated as a solution for many practical situations
[10–12, 24, 60] and has been implemented by several
distributed storage systems [21, 28, 35, 43].
Monotonic read consistency. This model guarantees

that if a process reads a version of a data item d at time
t, it will never see an older version of d at a later time.
In a scenario where data visibility is not guaranteed to
be instantaneous, at least the versions of a data item will
become visible in chronological order [56, 60].
Monotonic write consistency. This model guarantees

that a data store must serialize two writesw1 andw2 in the
same order that they were sent by the same client [56, 60].
For instance, if the initial write operation w1 is delayed, it
is not allowed for a subsequent write w2 to overwrite that
data item before w1 completes.
Read-your-writes consistency. This model is closely

related to the monotonic read model. It guarantees that
once a write operation is performed on a data item d, its
effect will be seen by any successive read operation per-
formed on d by the same process [56, 60]. This means
that if a client has written a version v of a data item
d, it will always be able to read a version at least as
new as v.
Writes-follow-reads consistency. This model guaran-

tees that if a write operation w is requested by a process
on a data item d, but there has been a previous read oper-
ation r on d by the same process, then it is guaranteed that
w will only be executed on the same or more recent value
of d previously read [56].

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 5 of 13

4 Replica consistencymethods
In this section, we present an overview of state-of-the-art
methods for replica consistency in cloud environments.
This overview includes those methods that we consid-
ered to be among the most representative in the literature.
Based on the similarities of their core ideas, we classi-
fied these methods into three distinct categories: (1) fixed
consistency methods; (2) configurable consistency meth-
ods; and (3) consistency monitoring methods. In what
follows, we first describe the generic characteristics of
each category and then present an overview of its specific
methods.

4.1 Fixed consistency methods
This category includes those methods that provide pre-
defined, fixed consistency guarantees in cloud storage
systems. Representative methods in this category are of
two types: Event Sequencing-based Consistency and Clock-
based Strict Consistency. They are described next.

4.1.1 Event sequencing-based consistency
Event sequencing-based consistency methods aim at hid-
ing replication complexity based on the fact that transac-
tion serializability is costly and often unnecessary in web
applications [11]. Thus, they provide a simple, but inmany
situations, effective consistency guarantee solution.
The most representative system that implements this

type of method is PNUTS [25], a massively parallel and
geographically distributed DBMS developed by Yahoo!.
Since Yahoo!’s web applications must provide a high
degree of availability for their users and must be able to
read data in the presence of failures, PNUTS not only
provides these features but it also supports a high degree
of fault tolerance, including network partitions. PNUTS
architecture is divided into regions, which contain a com-
plete copy of each table. Thus, multiple regions containing
replicated data provides additional reliability. Further-
more, PNUTS stores structured metadata in directories,
which implies that users can leverage on PNUTS scal-
ability and low latency to ensure high performance for
metadata operations, such as file creation, deletion and
renaming. In short, PNUTS properly manages metadata
without sacrificing scalability.
PNUTS developers observed that web applications typ-

ically manipulate one record at a time, whereas different
records may be located in different geographic localities.
Hence, an event sequencing-based consistency method
establishes that all replicas of a given record receive all
updates applied to that record in the same order. This
strategy is implemented by designating one of the replicas
as the master for each record, so that this master receives
all writes sent to that record by the other replicas. If a
record has the majority of its writes sent to a particular
replica, this replica becomes the master for that record.

4.1.2 Clock-based strict consistency
Clock-based strict consistency methods are characterized
by the use of clock-based mechanisms to control times-
tamps to enforce strict consistency [26, 29]. They offer
the guarantee that arbitrary objects in the data store
are accessed atomically and isolated from concurrent
accesses. The approach behind this consistency method is
based on the ability of a system to provide a timestamp log
to track the order in which operations occur. According to
Bravo et al. [18], this type of technique is implemented by
the data storage systems themselves and might impact the
consistency guarantees that they provide.
Spanner [26] and Clock-SI [29] are representative sys-

tems that implement this type of consistency method.
Spanner is a scalable, globally-distributed NewSQL
database service designed, built and deployed by Google.
Spanner combines and extends ideas from two research
communities: the database community and the systems
community. From this last one, scalability and fault tol-
erance are the most representative features provided by
Spanner. Since replication is used for global availabil-
ity and geographic locality, applications can use Spanner
for high availability, even in the face of wide-area natu-
ral disasters. Spanner allows different applications’ data
to be partitioned across different sets of servers in the
same datacenter. For this reason, partition tolerance is
an important requirement in Spanner. In addition, Span-
ner provides constraints for controlling read and write
latency. Spanner also assigns globally-meaningful com-
mit timestamps that reflect the serialization order of the
transactions, which may be distributed. Moreover, Span-
ner enforces that if a transaction T2 begins after the
commit of a transaction T1, then the commit timestamp
of T2 must be greater than the commit timestamp of T1.
On the other hand, Clock-SI provides a fully distributed

protocol for partitioned data stores that supports avail-
ability and scalability, bringing performance benefits. It
also avoids a “single point of failure” and, therefore, a
potential performance bottleneck, thus improving trans-
action latency and throughput. Clock-SI implements the
so called snapshot isolation replication, which is a consis-
tency criterion for partitioned data storage. In this strat-
egy, read-only operations read from a consistent snapshot
and other operations perform a commit if no objects writ-
ten by these transactions were concurrently written. The
local physical clock is used by each transaction to identify
its read timestamp.
Another example of a system that implements snapshot

isolation replication is Vela [55], which is a system for run-
ning off-the-shelf relational databases on the cloud. Vela
provides a primary master and two secondary replicas,
which are synchronously replicated, thereby offering fault
tolerance. In addition, Vela relies on hardware virtualiza-
tion to improve performance by reducing complexity with

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 6 of 13

a minimal cost in resources. Instead of using data replica-
tion for durability, Vela uses this technique for improving
latency, decoupling the update and the read-only work-
loads. Moreover, Vela provides elasticity, by monitoring
the CPU idle time percentage, and scalability, by adding
new replicas according to its workload.

4.2 Configurable consistency methods
Themethods included in this category implement mecha-
nisms that provide configurable levels of consistency, such
as self-adaptive or flexible consistency guarantees, which
allow the selection or specification of the desired con-
sistency level at any given point. These methods are of
two types, Automated and Self-adaptive Consistency and
Flexible Consistency, and are described next.

4.2.1 Automated and self-adaptive consistency
Automated and self-adaptive consistency methods aim at
dynamically enforcing multiple consistency degrees over
distinct data objects. Three main approaches have been
adopted to implement them.
Stale reads estimation. This approach is based on

an estimation of the rate of read operations that return
instances of data objects that have already been updated
to newer values - the stale reads [47]. Once the estima-
tion model is computed, it is possible to identify the key
parameter that affects the stale reads and then to scale
up/down the number of replicas. This approach is mainly
implemented by Harmony [23], which is a cloud storage
system that automatically identifies the key parameters
affecting the stale reads, such as system states and applica-
tion requirements. Harmony adds minimal latency while
reducing the stale data reads by almost 80%. Its goal is to
gradual and dynamically tune the consistency level at run
time according to the applications’ consistency require-
ments, in order to provide adequate tradeoffs between
consistency and both performance and availability. An
intelligent estimationmodel of stale reads is the key aspect
of Harmony. Its mechanism of elastically scaling up/down
the number of replicas maintains a minimal tolerable frac-
tion of stale reads, which results on meeting the required
level of consistency while achieving good performance.
Divergence bounds enforcement. This approach

allows the evaluation and enforcement of divergence
bounds over data objects (table/row/column), thus pro-
viding consistency levels that can be automatically
adjusted based on statistical information [53]. The eval-
uation takes place on a divergence vector every time an
update request is received, although it is necessary to
identify the affected data objects. If any limit is exceeded,
all updates since the last replication are placed in a
FIFO-like queue to be propagated and executed on the
other replicas. Themost representative system that imple-
ments this approach is VFC3 (Versatile Framework for

Consistency in Cloud Computing) [32], which adopts a
consistency model for replicated data across datacenters.
The VFC3 model considers the different data semantics
and automatically adjusts the consistency levels based on
statistical information. Its main goal is to offer control
over consistency to provide high-availability without com-
promising performance. Furthermore, VFC3 targets cloud
tabular data stores, offering rationalization of resources
and improvement of Quality-of-Service (QoS), thereby
reducing latency.
Dynamic allocation. This approach dynamically selects

to which server (or even a set of servers) each read of
a data item must be directed, so that the best service
is delivered given the current configuration and system
conditions. Hence, this approach is adaptable to distinct
configurations of replicas and users, as well as to changing
conditions, such as variations on the network perfor-
mance or server load. Another important aspect of this
approach is the fact that it allows application developers
to provide a Service Level Agreement (SLA) that specifies
the applications’ consistency/latency desires in a declar-
ative manner. Pileus [57] is a key-value storage system
that implements this approach by providing a diversity
of consistency guarantee options for globally distributed
and replicated data environments. In fact, Pileus allows
several systems or clients of a system to achieve different
consistency degrees, even when they share the same data.
Moreover, Pileus supports availability and performance by
limiting the set of suitable servers, whereby strong reads
must be directed to the primary site and eventual reads
can be answered by any replica. A large table can be split
into one or more smaller tables in order to achieve scal-
ability. In Pileus, users perform operations to access data
that is partitioned and replicated among distinct servers,
thus it must support partition tolerance and reliability.

4.2.2 Flexible consistency
Flexible consistency methods cover distinct approaches
that adapt to predefined consistency models in a flexible
way. There are four main approaches that implement such
methods.
Invariants-based. This approach strengthens eventual

consistency, thus allowing the applications to specify con-
sistency rules, or invariants, that must be maintained
by the system. Once those invariants are defined, it is
possible to identify the operations that are potentially
unsafe under concurrent execution, thus allowing one to
select either a violation-avoidance or an invariant-repair
technique. Indigo [12] is a middleware system that imple-
ments this approach. It supports an alternative consis-
tency method built on top of a geo-replicated and parti-
tioned key-value data store. In addition, Indigo guarantees
strong application invariants, while providing low latency
to an eventually-consistent system. Indigo builds on the

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 7 of 13

fault tolerance of the underlying storage system, thereby
the failure of a machine inside a datacenter does not lead
to any data loss.
Linearizable/eventual. This approach supports

updates with a choice of linearizable and eventual con-
sistency. GEO [15] is an open-source geo-distributed
actor2 system that implements this approach. It supports
both replicated and single-instance coherence protocols.
Replication can provide fast, always-available reads and
updates. GEO also improves performance by caching
actor states in one or more datacenters. Furthermore, the
geo-distributed actor system can reduce access latencies
by exploiting locality, since the caching policy for each
actor can be declared as single-instance or multi-instance.
Caching multiple instances can reduce the access latency
for actors without locality. In GEO, an actor may be
declared as volatile or persistent. In the first case, the
latest version resides in memory and may be lost when
servers fail, whereas in the second case the latest version
resides in the storage layer. In case a user requests lin-
earizability, GEO guarantees true linearizability in real
time, between call and return.
Requirements-based. This approach supports the

applications’ consistency requirements. The discussion
that follows adopts the notion of service (requested by an
application) as a generalization of the read and write oper-
ations used thus far. The trade-off between consistency
and scalability requirements is handled by introducing
the notion of consistency regions and service-delivery-
oriented consistency policies. A consistency region is
defined as a logical unit that represents the application
state-level requirements for consistency and scalability.
This concept is used to define consistency boundaries that
separate each group of services that need to be ordered.
Hence, services that need to be kept consistent must be
associated to a certain region. The definition of what
region a service belongs to and which services that can
be concurrently delivered is set by the system adminis-
trators. Scalable Service Oriented Replication (SSOR) [22]
is a middleware that implements this approach. SSOR
presents a Region-based Election Protocol (REP) that pro-
vides a mechanism to balance the workload amongst
sequencers, thereby efficiently improving elasticity in the
cloud. Replication is used by SSOR to provide end-to-end
fault tolerance between end clients and cloud services.
In order to ensure reliability, SSOR implements solutions
that tolerate sequencers and nonsequencers crashes, and
introduces the concept of region distribution synchrony
for handling simultaneous node crashing. A better per-
formance is also achieved by reducing the load on the

2Service applications can use actors to provide a programming model to
simplify synchronization, fault-tolerance and scalability. It represents a useful
abstraction for the middle tier of scalable service applications that run on a
virtualized cloud infrastructure in a datacenter [15].

sequencer, extending the Multi-fixed Sequencers Protocol
(MSP).
SSOR covers three distinct types of consistency region:

(1) Conflict Region (CR), which is a region composed
by services that have conflicting requirements for con-
sistency regardless of the session; (2) Sessional Conflict
Region (SCR), which is a region that includes services of
a particular session with conflicting consistency require-
ments; and (3) Non-Conflict Region (NCR), which is a
region that does not impose any consistency constraints
or requirements.
Adaptable. This approach handles unpredictable work-

loads by allowing the system to be tuned for capacity
in an elastic and flexible way. Due to this characteristic,
it allows applications to perform eventually or strongly
consistent reads as needed. Amazon DynamoDB3 [2] is
a highly reliable and cost-effective NoSQL database ser-
vice that implements this approach. DynamoDB provides
high availability and high throughput at very low latency.
It has been designed to be scalable and to achieve high
performance even at high scale. It was built based on the
experience with its predecessor Dynamo [28]. DynamoDB
adopts eventual consistency as its default model, which
does not guarantee that an eventually consistent read will
always reflect the result of a recently completed write.
On the other hand, when adopting a stronger consistency
model, it returns a result that reflects all writes that have
received a successful response prior to that read.

4.3 Consistency monitoringmethods
Alternatively, instead of directly handling data consistency
issues, some methods focus on providing mechanisms
that allow data owners to detect the occurrence of con-
sistency violations in the cloud storage. This means that
clients might audit their own data and make decisions
based on how the Cloud Service Provider (CSP) stores and
manages their replicas according to the consistency level
that has been agreed upon in the service level contract.
Themethods in this category are of two types,Consistency
Verification and Consistency Auditing, and are described
next.

4.3.1 Consistency verification
Consistency verification methods are based on two
approaches, namely protocol-based and contract-based.
Protocol-based. This approach is based on a proto-

col that enables a group of mutually trusting clients to
detect consistency violations on a cloud storage. It is
adopted by VICOS (Verification of Integrity and Consis-
tency for Cloud Object Storage) [17]. VICOS supports
the concept of fork-linearizability, which captures the
strongest achievable notion of consistency in multi-client

3https://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 8 of 13

models. The method may guarantee this notion by regis-
tering the causal evolution of the user’s views into their
interaction with the server. When the server creates only
a single discrepancy between the views of two clients,
it is ensured that these clients will never observe each
other’s operations afterwards. That is, if these users later
communicate and the server lies to them, the violation
will be immediately discovered. Thus, users can verify a
large number of past transactions by performing a single
check.
Contract-based. This approach provides a verification

scheme that allows data owners to ensure whether the
CSP complies with the SLA for storing data in multi-
ple replicas. It is implemented by DMR-PDP (Dynamic
Multi-Replica Provable Data Possession) [51]. The context
addressed by this scheme is that whenever data owners
ask the CSP to replicate data at different servers, they are
charged for this. Hence, data owners need to be strongly
persuaded that the CSP stores all data copies that are
agreed upon in the service level contract, as well as that
all remotely stored copies correctly execute the updates
requested by the users. This approach deals with such
problems by preventing the CSP from cheating the data
storage, for instance, by maintaining fewer copies than
paid for. Such scheme is based on a technique called
Provable Data Possession [9], which is used to audit and
validate the integrity and consistency of data stored on
remote servers.

4.3.2 Consistency auditing
This type of method is based on an architecture that
consists of a large data cloud maintained by a CSP and
multiple small audit clouds composed of a group of users
that cooperate on a specific job (e.g., revising a docu-
ment or writing a program). The required level of con-
sistency that should be provided by the data cloud is
stipulated by an SLA involving the audit cloud and the
data cloud. Once the SLA is defined, the audit cloud can
verify whether the data cloud violates it, thus quantify-
ing, in monetary terms or otherwise, the severity of the
violation.
Consistency as a Service (CaaS) [46, 49] implements

this method. It relies on a two-level auditing struc-
ture, namely: local auditing and global auditing. Local
auditing allows each user to independently perform
local tracing operations, focusing on monotonic read
and read-your-write consistencies. Global auditing, on
the other hand, requires that an auditor be periodi-
cally elected from the audit cloud to perform global
tracing operations, focusing on causal consistency. This
method is supported by constructing a directed graph
of operations, called the precedence graph. If the
graph is acyclic, the required level of consistency is
preserved [46].

5 Discussion
As proposed in Section 4, replica consistency methods
can be grouped in three categories: fixed consistency
methods, configurable consistency methods and consis-
tency monitoring methods. Fixed consistency methods
are mostly based on versioning of events. They capture
the idea of event ordering by means of control strate-
gies such as a sequence number that represents a data
object version or clock-based mechanisms which are well-
understood concepts in distributed systems [33, 44, 50].
The idea of an event happening before another repre-
sents a causal relationship and the total ordering of events
among the replicas has been shown quite useful for solv-
ing synchronization issues related to data consistency.
Thus, consistency methods in this category extend this
concept on specific scenarios.
Configurable consistency methods, in turn, generally

aim at providing mechanisms that automatically adjust
the degree of consistency. This is an important feature for
applications that have temporal characteristics, as well as
for real-time workload cloud storage systems. Specifically,
configurable consistency methods are suitable to address
applications’ consistency requirements that need to adapt
to predefined consistency models.
On the other hand, consistency monitoring methods do

not provide specific guarantees, but focus on detecting
the occurrence of consistency violations in the cloud data
storage. Despite that, these methods offer significant con-
tributions that are suitable for scenarios where multiple
clients cooperate on remotely stored data in a potentially
misbehaving service and need to rely on the CSP to guar-
antee their correctness. Furthermore, those clients need
to verify if the requested data updates were correctly exe-
cuted on all remotely stored copies, while maintaining the
required consistency level.
Table 1 summarizes the surveyed methods. In partic-

ular, the description column briefly relates the consis-
tency models of Section 3 with the methods addressed in
Section 4 (keyword terms shown in boldface). The reader
is thereby implicitly invited to compare themethods based
on the characteristics of the consistency models they sup-
port. The relationships are not entirely crispy, though,
since somemethods are flexible with respect to the consis-
tency model they follow, whereas others are application-
dependent, based on a contract or service level agreement
between the application and the system.
Table 2 summarizes the storage requirements supported

by the systems that we have addressed in order to stress
what are the main consistency trade-offs they consider,
in the broad perspective of the CAP Theorem. Note that
in Table 2 we only address those systems that imple-
ment a specific consistency method, since consistency
monitoring methods only focus on detecting consistency
violations.

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 9 of 13

Table 1 Summary of the Surveyed Replica Consistency Methods

Category Method Brief description

Fixed Consistency Event Sequencing-based
Consistency [25]

Establishes that all replicas of a given record apply all updates to a record in the
same order and is, therefore, related to sequential consistency.

Clock-based Strict Consistency
[26, 29, 55]

Uses clock-based mechanisms to control timestamps to enforce strict
consistency.

Configurable Consistency Automated and Self-Adaptive
Consistency [23, 32, 57]

Provides a gradually and dynamically tunable consistency at runtime
according to the applications’ consistency requirements. Enforces increasing
degrees of consistency for different types of data, based on their semantics.

Flexible Consistency
Guarantees [2, 12, 15, 22]

Allows applications to specify consistency rules, or invariants, that must be
maintained by the system. Supports updates with a choice between
linearizable consistency and eventual consistency. Supports the
applications’ consistency requirements and flexibly adapt to predefined
consistencymodels. Allows applications to perform eventually or strongly
consistent reads as needed.

Consistency Monitoring Consistency Verification [17, 51] Enables a group of mutually trusting clients to detect data-integrity and
consistency violations. Allows the data owner to ensure that the Cloud
Service Provider stores all data copies that are agreed upon in the service level
contract.

Consistency Auditing [46, 49] Implements a Local and Global Auditing structure to allow a group of clients to
detect consistency violations.

As previously mentioned in Section 2.3, the existing
trade-off determined by the CAP Theorem implies that
applications must sacrifice consistency to be able to sat-
isfy other application requirements. Thus, Table 2 shows
Availability and Partition Tolerance as storage require-
ments, which are related to the CAP Theorem. In regard
to the remaining requirements in Table 2, they are not
directly related to the CAP Theorem, but have some
impact on the consistency methods (See Section 2.1).
Table 2 shows that PNUTS [25], Spanner [26], Clock-

SI [29], DynamoDB [2] and Pileus [57] guarantee at the
same time Availability and Partition Tolerance, thus pro-
viding a weaker type of consistency. Therefore, these sys-
tems address the CAP Theorem trade-offs by sacrificing
consistency.
PNUTS, Spanner and Clock-SI implement fixed consis-

tency methods, which means that the consistency criteria
these systems adopt are not flexible. On the other hand,
DynamoDB and Pileus implement configurable consis-
tency methods, thereby tuning the consistency level is not
a problem under certain scenarios. For the remaining sys-
tems, consistency is not impacted by the CAP Theorem
trade-offs. Vela [55], GEO [15], Harmony [23] and VFC
[32] do not guarantee partition tolerance, meaning that
availability and consistency are likely to be achieved. Sim-
ilarly, Indigo [12] does not guarantee availability, thus
achieving consistency and partition tolerance. Finally,
SSOR [22] does not guarantee availability and partition
tolerance, which means that its method concerns only in
providing consistency.
Although the CAP theorem addresses an important

issue in distributed systems, there are other consistency-
related tradeoffs that have a direct impact on modern dis-
tributed database management systems (DDBMS). These

tradeoffs are particularly related to performance, scalabil-
ity and latency, as described next.
Consistency vs. performance. As stressed by Brewer,

twelve years after proposing his CAP theorem [19], the
tradeoff between consistency and performance is even
more relevant. He argues that partitions are rare, so that
a DDBMS should consider the tradeoff consistency ver-
sus availability only when partition tolerance is required.
However, the tradeoff between consistency and perfor-
mance is permanent.
Consistency vs. scalability. A scalable system, in turn,

is non-trivially achieved when consistency is required,
since this can be very expensive. Thus, in order to improve
scalability a relaxed consistency state is often provided by
some systems. However, the price is that the state of each
replica may not be always the same [22].
Consistency vs. latency. According to Abadi [5], there

is a connection between latency (understood as the
time to initiate an operation) and availability. A system
becomes unavailable in the presence of high latency. On
the other hand, if latency decreases, the system becomes
more available. However, despite this apparently obvi-
ous implication, a system may be available, but might
exhibit high latency rates. Hence, he argues that the con-
sistency versus latency and consistency versus availabil-
ity tradeoffs are connected and exist beyond the CAP
theorem.
In this context, Table 2 also shows the surveyed sys-

tems in the perspective of the above tradeoffs. As we can
see, performance, scalability and low latency are impor-
tant requirements supported by the fixed and configurable
consistency methods. However, there are relevant differ-
ences about how the respective methods handle these
requirements.

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 10 of 13

Ta
b
le

2
St
or
ag
e
Re
qu

ire
m
en

ts
Su
pp

or
te
d
by

th
e
Fi
xe
d
an
d
C
on

fig
ur
ab

le
Re
pl
ic
a
C
on

si
st
en

cy
M
et
ho

ds

C
at
eg

or
y

Re
pr
es
en

ta
tiv
e

sy
st
em

s
St
or
ag
e
re
qu

ire
m
en

ts
[1
9,
60
]

A
ut
om

at
io
n

A
va
ila
bi
lit
y

El
as
tic
ity

Fa
ul
t

To
le
ra
nc
e

Lo
w
La
te
nc
y

Pa
rt
iti
on

To
le
ra
nc
e

Pe
rfo

rm
an
ce

Re
lia
bi
lit
y

Sc
al
ab

ili
ty

Fi
xe
d

C
on

si
st
en

cy
M
et
ho

ds

PN
U
TS

[2
5]

�
�

�
�

�
�

�
Sp

an
ne

r[
26
]

�
�

�
�

�
C
lo
ck
-S
I[
29
]

�
�

�
�

�
Ve
la
[5
5]

�
�

�
�

�

C
on

fig
ur
ab

le
C
on

si
st
en

cy
M
et
ho

ds

In
di
go

[1
2]

�
�

�
G
EO

[1
5]

�
�

�
�

�
SS
O
R
[2
2]

�
�

�
�

�
H
ar
m
on

y
[2
3]

�
�

�
�

�
VF
C
[3
2]

�
�

�
�

D
yn
am

oD
B
[2
]

�
�

�
�

�
�

Pi
le
us

[5
7]

�
�

�
�

�
�

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 11 of 13

Configurable consistency methods focus in general on
tuning the consistency level or offering control in order
to provide consistency without affecting other require-
ments. For instance, the stale reads estimation approach
(Section 4.2.1) reduces the probability of stale reads
caused by the cloud system dynamicity and the appli-
cation’s demands. Once the number of replicas involved
in read operations is elastically scaled up/down to main-
tain a low (or zero) tolerable fraction of stale reads, this
automated and self-adaptive approach provides an appro-
priate balance between consistency, performance and
availability.
In turn, for those systems that implement fixed consis-

tency methods, performance, scalability and latency can
be achieved by using techniques such as synchronous
replication. For instance, Vela uses snapshot isolation
replication for achieving performance and scalability
without sacrificing consistency [55]. However, the system
relies on a weaker consistency level to avoid trade-offs
between consistency and performance/scalability. Much
the same way, although PNUTS provides an asynchrony
model of current requests for achieving low latency, thus
relying on a relaxed consistency model that avoids a trade-
off with latency, it prevents increasing the consistency
level [25]. Therefore, configurable consistency methods
are more convenient for applications that require flexible
consistency levels on demand, but that at the same time
try to avoid impacting storage requirements.

6 Conclusions
In this survey we have reviewed several methods proposed
in the literature to ensure replica consistency in dis-
tributed cloud data storage systems. Ensuring consistency
in replicated databases is an important research topic that
offersmany challenges in the sense that such systemsmust
provide a consistent state of all replicas, despite the occur-
rence of concurrent transactions. In other words, such
systems must provide a suite of strategies for data update
and propagation to guarantee that, if one copy is updated,
all others must be updated as well. The taxonomy pre-
sented in Section 4 provides researchers and developers
with a framework to better understand the current main
ideas and challenges in this area.
This brief survey, by necessity, does not exhaust all top-

ics related to replica consistency in distributed cloud data
storage systems. As examples, we conclude with remarks
about two topics not addressed in the survey, consistency
recovery and trust.
Consistency recovery. This topic refers to the ques-

tion of how to recover from a consistency violation and
is therefore directly related to the focus of the survey. An
approach to address this issue in traditional systems is to
introduce compensatory actions that restore consistency.
This approach leads to the concept of long transactions

or sagas, that is, sequences of transactions that, together,
preserve consistency. A long transaction may accommo-
date consistency checks and compensatory actions among
its sub-transactions. A familiar example is how airlines
handle overbooking. The question then is if sagas can
be generalized, or adapted, to the context of a database
service provider. The IBM Cloud Functions with Action
Sequences [1] and AWS Step Functions [3], for example,
offer methods to connect multiple functions into a sin-
gle service, but they do not focus on replica consistency
issue [7].
Trust. This topic can be divided into three related ques-

tions: (1) May the clients of a database service provider
trust the service? (2) May the service trust a client?
(3) May a client trust the other clients of the database
service provider? The first question is indeed an issue
since a database service provider is a complex system,
with many layers, that may be vulnerable to integrity
and confidentiality threats. The second question is not
new, but it is again exacerbated in a database service
provider, given the complexity of the system. This issue is
addressed, for example, by Cachin and Ohrimenko [20],
as well as by Krahn et al. [42]. The third question is
closely related to the previous two, but somewhat more
subtle. Since a database service provider typically max-
imizes sharing its resources among multiple clients, the
service must guarantee that malicious clients will not tem-
per with data of the other clients. Ideally, the database
service provider should maximize the number of concur-
rent clients, irrespectively of their level of trustworthiness.
Furthermore, it should differentiate between trusted and
malicious users, and assign data resources in such a way
that clients in one class do not share data resources with
clients in the other. This question was addressed, for
example, by Thakur and Bresli [58] for Cloud service
providers in general, but it remains an issue that database
service providers should specifically address, perhaps
by re-interpreting some concepts motivated by the
replica consistency problem, such as region and snapshot
isolation.

Acknowledgements
The authors would like to thank the anonymous referees for many valuable
comments that helped improving this survey.

Authors’ contributions
The authors equally contributed to the elaboration of this survey. All authors
read and approved the final manuscript.

Funding
This research was funded by the authors’ individual grants from CAPES, CNPq,
FAPEMIG and FAPERJ.

Availability of data andmaterials
This research was based on an extensive bibliography review and did not
involved the use of any public or private dataset.

Competing interests
The authors declare that they have no competing interests.

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 12 of 13

Author details
1Department of Computer Science, Universidade Federal de Minas Gerais,
31270-901 Belo Horizonte, MG, Brazil. 2Department of Informatics,
Universidade Católica do Rio de Janeiro, 22451-900 Rio de Janeiro, RJ, Brazil.

Received: 8 April 2019 Accepted: 20 January 2020

References
1. Cloud Functions - Overview - IBM Cloud. https://www.ibm.com/cloud/

functions. Accessed 30 Sept 2019.
2. Amazon DynamoDB Developer Guide. 2012. https://docs.aws.amazon.

com/amazondynamodb/latest/developerguide/dynamodb-dg.pdf#
Introduction. Accessed 30 Sept 2019.

3. AWS Step Functions Developer Guide. 2019. https://docs.aws.amazon.
com/step-functions/latest/dg/step-functions-dg.pdf#welcome.
Accessed 30 Sept 2019.

4. Abadi DJ. Data Management in the Cloud: Limitations and Opportunities.
IEEE Data Eng Bull. 2009;32:3–12.

5. Abadi DJ. Consistency Tradeoffs in Modern Distributed Database System
Design: CAP is Only Part of the Story. IEEE Comput. 2012;45(2):37–42.

6. Agrawal D, El Abbadi E, Salem K. A Taxonomy of Partitioned Replicated
Cloud-based Database Systems. IEEE Data Eng Bull. 2015;38(1):4–9.

7. Akkus IE, Chen R, Rimac I, Stein M, Satzke K, Beck A, Aditya P, Hilt V.
SAND: Towards High-performance Serverless Computing. In: Proceedings
of the 2018 USENIX Annual Technical Conference. Berkeley: USENIX
Association; 2018. p. 923–35.

8. Al-Roomi M, Al-Ebrahim S, Buqrais S, Ahmad I. Cloud Computing Pricing
Models: A Survey. Int J Grid Distrib Comput. 2013;6(5):93–106.

9. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson Z, Song
D. Provable Data Possession at Untrusted Stores. In: Proceedings of the
14th ACM Conference on Computer and Communications Security.
Alexandria; 2007. p. 598–609. https://doi.org/10.1145/1315245.1315318.

10. Bailis P, Venkataraman S, Franklin MJ, Hellerstein JM, Stoica I.
Probabilistically Bounded Staleness for Practical Partial Quorums. Proc
VLDB Endowment. 2012;5(8):776–87.

11. Bailis P, Venkataraman S, Franklin MJ, Hellerstein JM, Stoica I. Quantifying
Eventual Consistency with PBS. Commun ACM. 2014;57(8):93–102.

12. Balegas V, Duarte S, Ferreira C, Rodrigues R, Preguiça N, Najafzadeh M,
Shapiro M. Putting Consistency Back into Eventual Consistency. In:
Proceedings of the Tenth European Conference on Computer Systems.
Bordeaux; 2015. p. 6:1–6:16. https://doi.org/10.1145/2741948.2741972.

13. Beimborn D, Miletzki T, Wenzel DIS. Platform as a Service (PaaS).
Wirtschaftsinformatik. 2011;53(6):371–5.

14. Bermbach D, Kuhlenkamp J. Consistency in Distributed Storage Systems:
An Overview of Models, Metrics and Measurement Approaches. In:
Proceedings of the First International Conference on Networked Systems.
Marrakech; 2013. p. 175–89. https://doi.org/10.1007/978-3-642-40148-
0_13.

15. Bernstein PA, Burckhardt S, Bykov S, Crooks N, Faleiro JM, Kliot G,
Kumbhare A, Rahman MR, Shah V, Szekeres A, Thelin J. Geo-Distribution
of Actor-Based Services. Proc ACM Program Lang. 2017;1(26):1:107–1:107.

16. Bhardwaj S, Jain L, Jain S. Cloud computing: A study of infrastructure as a
service (IAAS). Int J Eng Inf Technol. 2010;2(1):60–3.

17. Brandenburger M, Cachin C, Knezevic N. Don’t Trust the Cloud, Verify:
Integrity and Consistency for Cloud Object Stores. ACM Trans Priv Secur.
2017;20:8:1–8:30.

18. BravoM, Diegues N, Zeng J, Romano P, Rodrigues L. On the use of Clocks
to Enforce Consistency in the Cloud. IEEE Data Eng Bull. 2015;38(1):18–31.

19. Brewer E. Pushing the CAP: Strategies for Consistency and Availability.
IEEE Comput. 2012;45(2):23–29.

20. Cachin C, Ohrimenko O. Verifying the consistency of remote untrusted
services with conflict-free operations. Inf Comput. 2018;260:72–88.

21. Chang F, Dean J, Ghemawat S, Hsieh WC, Wallach DA, Burrows M,
Chandra T, Fikes A, Gruber RE. Bigtable: A Distributed Storage System for
Structured Data. ACM Trans Comput Syst. 2008;26(2):4:1–4:14.

22. Chen T, Bahsoon R, Tawil AH. Scalable service-oriented replication with
flexible consistency guarantee in the cloud. Inf Sci. 2014;264:349–370.

23. Chihoub H, Ibrahim S, Antoniu G, Perez MS. Harmony: Towards
Automated Self-adaptive Consistency in Cloud Storage. In: Proceedings

of the 2012 IEEE International Conference on Cluster Computing. Beijing;
2012. p. 293–301. https://doi.org/10.1109/cluster.2012.56.

24. Chihoub H, Ibrahim S, Antoniu G, Pérez MS. Consistency Management
in Cloud Storage Systems. In: Gaber M, Sakr S, editors. Large Scale and
Big Data: Processing and Management. CRC Press; 2014. https://doi.org/
10.1201/b17112-11.

25. Cooper BF, Ramakrishnan R, Srivastava U, Silberstein A, Bohannon P,
Jacobsen H, Puz N, Weaver D, Yerneni R. PNUTS: Yahoo!’s Hosted Data
Serving Platform. Proc VLDB Endowment. 2008;1(2):1277–88.

26. Corbett JC, Dean J, Epstein M, et al. Spanner: Google’s Globally
Distributed Database. ACM Trans Comput Syst. 2013;31(3):8:1–8:22.

27. Curino C, Jones E, Popa R, Malviya N, Wu E, Madden S, Balakrishnan H,
Zeldovich N. Relational Cloud: A Database-as-a-Service for the Cloud.
In: Proceedings of the 5th Biennial Conference on Innovative Data
Systems Research. Asilomar; 2011. p. 235–240.

28. DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A, Pilchin
A, Sivasubramanian S, Vosshall P, Vogels W. Dynamo: Amazon’s Highly
Available Key-value Store. ACM SIGOPS Oper Syst Rev. 2007;41(6):205–20.

29. Du J, Elnikety S, Zwaenepoel W. Clock-SI: Snapshot Isolation for
Partitioned Data Stores Using Loosely Synchronized Clocks. In:
Proceedings of the IEEE 32nd International Symposium on Reliable
Distributed Systems. Braga; 2013. p. 173–84. https://doi.org/10.1109/srds.
2013.26.

30. Dubey A, Wagle D. Delivering software as a service. McKinsey Q. 2007;6:
1–7.

31. Elbushra MM, Lindström J. Eventual Consistent Databases: State of the
Art. Open J Databases. 2014;1(1):26–41.

32. Esteves S, Silva J, Veiga L. Quality-of-service for Consistency of Data
Geo-replication in Cloud Computing. In: Proceedings of the 18th
European Conference on Parallel Processing. Rhodes Island; 2012. p.
285–97. https://doi.org/10.1007/978-3-642-32820-6_29.

33. Fidge C. Logical Time in Distributed Computing Systems. IEEE Comput.
1991;24(8):28–33.

34. Fox A, Gribble SD, Chawathe Y, Brewer EA, Gauthier P. Cluster-based
Scalable Network Services. In: Proceedings of the 16th ACM Symposium
on Operating Systems Principles. New York; 1997. p. 78–91. https://doi.
org/10.1145/269005.266662.

35. Ghemawat S, Gobioff H, Leung S. The Google File System. ACM SIGOPS
Oper Syst Rev. 2003;37(5):29–43.

36. Gilbert S, Lynch N. Brewer’s Conjecture and the Feasibility of Consistent,
Available, Partition-tolerant Web Services. ACM SIGACT News. 2002;33(2):
51–9.

37. Gilbert S, Lynch N. Perspectives on the CAP theorem. IEEE Comput.
2012;45(2):30–6.

38. Goel S, Buyya R. Data replication strategies in wide-area distributed
systems. In: Qiu RG, editor. Enterprise Service Computing: From Concept
to Deployment. IGI Global; 2007. p. 211–41. https://doi.org/10.4018/978-
1-59904-180-3.ch009.

39. Gray J. Notes on Data Base Operating Systems. In: Operating Systems, An
Advanced Course. London: Springer-Verlag; 1978. p. 393–481.

40. Haerder T, Reuter A. Principles of Transaction-oriented Database
Recovery. ACM Comput Surv. 1983;15(4):287–317.

41. Ibrahim S, Jin H, Lu L, He B, Antoniu G, Wu S. Maestro: Replica-Aware
Map Scheduling for MapReduce. In: Proceedings of the 12th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing. Ottawa;
2012. p. 435–42. https://doi.org/10.1109/ccgrid.2012.122.

42. Krahn R, Trach B, Vahldiek-Oberwagner A, Knauth T, Bhatotia P, Fetzer C.
Pesos: Policy Enhanced Secure Object Store. In: Proceedings of the
Thirteenth EuroSys Conference. New York: ACM; 2018.

43. Lakshman A, Malik P. Cassandra: A Decentralized Structured Storage
System. ACM SIGOPS Oper Syst Rev. 2010;44(2):35–40.

44. Lamport L. Time, Clocks, and the Ordering of Events in a Distributed
System. Commun ACM. 1978;21(7):558–65.

45. Lipton RJ, Sandberg JS. PRAM: A Scalable Shared Memory. Tecnical Report
TR-180-88: Department of Computer Science, Princeton University; 1988.

46. Liu Q, Wang G, Wu J. Consistency as a Service: Auditing Cloud
Consistency. IEEE Trans Netw Serv Manag. 2014;11(1):25–35.

47. Lu H, Veeraraghavan K, Ajoux P, Hunt J, Song YJ, Tobagus W, Kumar S,
Lloyd W. Existential Consistency: Measuring and Understanding
Consistency at Facebook. In: Proceedings of the 25th Symposium on

https://www.ibm.com/cloud/functions
https://www.ibm.com/cloud/functions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/dynamodb-dg.pdf#Introduction
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/dynamodb-dg.pdf#Introduction
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/dynamodb-dg.pdf#Introduction
https://docs.aws.amazon.com/step-functions/latest/dg/step-functions-dg.pdf#welcome
https://docs.aws.amazon.com/step-functions/latest/dg/step-functions-dg.pdf#welcome
https://doi.org/10.1145/1315245.1315318
https://doi.org/10.1145/2741948.2741972
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1007/978-3-642-40148-0_13
https://doi.org/10.1109/cluster.2012.56
https://doi.org/10.1201/b17112-11
https://doi.org/10.1201/b17112-11
https://doi.org/10.1109/srds.2013.26
https://doi.org/10.1109/srds.2013.26
https://doi.org/10.1007/978-3-642-32820-6_29
https://doi.org/10.1145/269005.266662
https://doi.org/10.1145/269005.266662
https://doi.org/10.4018/978-1-59904-180-3.ch009
https://doi.org/10.4018/978-1-59904-180-3.ch009
https://doi.org/10.1109/ccgrid.2012.122

Campêlo et al. Journal of Internet Services and Applications (2020) 11:1 Page 13 of 13

Operating Systems Principles; 2015. p. 295–310. https://doi.org/10.1145/
2815400.2815426.

48. Mahajan P, Alvisi L, Dahlin M. Consistency, Availability, and Convergence.
Tecnical Report UTCS TR-11-22. Austin: Department of Computer Science,
The University of Texas; 2011.

49. Math NR, Biradar V. Consistency as a Service: Maintaining Cloud
Consistency Using Auditing. Int J Innov Sci Eng Technol. 2015;2(6):577–88.

50. Mattern F. Virtual Time and Global States of Distributed Systems. Parallel
Distrib Algoritm. 1989;1(23):215–26.

51. Mukundan R, Madria S, Linderman M. Replicated Data Integrity
Verification in Cloud. IEEE Data Eng Bull. 2012;35(4):55–64.

52. Özsu MT, Valduriez P. Principles of Distributed Database Systems, Third
Edition: Springer; 2011. https://doi.org/10.1007/978-1-4419-8834-8.

53. Phansalkar SP, Dani AR. Tunable consistency guarantees of selective data
consistency model. J Cloud Comput Adv Syst Appl. 2015;4(13):. https://
doi.org/10.1186/s13677-015-0038-4.

54. Rimal BP, Choi E, Lumb I. A Taxonomy and Survey of Cloud Computing
Systems. In: Proceedings of the 2009 Fifth International Joint Conference
on INC, IMS and IDC. Seoul; 2009. p. 44–51. https://doi.org/10.1109/ncm.
2009.218.

55. Salomie T, Alonso G. Scaling Off-the-Shelf Databases with Vela: An
Approach based on Virtualization and Replication. IEEE Data Eng Bull.
2015;38(1):58–72.

56. Tanenbaum AS, Steen MV. Distributed Systems: Principles and
Paradigms. Upper Saddle River, New Jersey: Prentice-Hall; 2007.

57. Terry DB, Prabhakaran V, Kotla R, et al. Consistency-based Service Level
Agreements for Cloud Storage. In: Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. New York; 2013.
p. 309–24. https://doi.org/10.1145/2517349.2522731.

58. Thakur S, Breslin JG. A robust reputation management mechanism in the
federated cloud. IEEE Trans Cloud Comput. 2019;7(1):625–37.

59. Viotti P, Vukolić M. Consistency in Non-transactional Distributed Storage
Systems. ACM Comput Surv. 2016;49(1):19.

60. Vogels W. Eventually Consistent. Commun ACM. 2009;52(1):40–4.
61. Wei Z, Pierre G, Chi-Hung C. Scalable Transactions for Web Applications in

the Cloud. In: Proceedings of the 15th International Euro-Par Conference
on Parallel Processing. The Netherlands: Delft; 2009. p. 442–453.

62. Xiong P, Chi Y, Zhu S, et al. Intelligent Management of Virtualized
Resources for Database Systems in Cloud Environment. In: Proceedings of
the 27th International Conference on Data Engineering. Washington, DC;
2011. p. 87–98. https://doi.org/10.1109/icde.2011.5767928.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

https://doi.org/10.1145/2815400.2815426
https://doi.org/10.1145/2815400.2815426
https://doi.org/10.1007/978-1-4419-8834-8
https://doi.org/10.1186/s13677-015-0038-4
https://doi.org/10.1186/s13677-015-0038-4
https://doi.org/10.1109/ncm.2009.218
https://doi.org/10.1109/ncm.2009.218
https://doi.org/10.1145/2517349.2522731
https://doi.org/10.1109/icde.2011.5767928

	Abstract
	Keywords

	Introduction
	Cloud database management
	Cloud data storage requirements
	The ACID properties
	The CAP theorem

	Consistency models
	Data-centric consistency models
	Client-centric consistency models

	Replica consistency methods
	Fixed consistency methods
	Event sequencing-based consistency
	Clock-based strict consistency

	Configurable consistency methods
	Automated and self-adaptive consistency
	Flexible consistency

	Consistency monitoring methods
	Consistency verification
	Consistency auditing

	Discussion
	Conclusions
	Acknowledgements
	Authors' contributions
	Funding
	Availability of data and materials
	Competing interests
	Author details
	References
	Publisher's Note

