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Abstract

Objective Quality of Experience (QoE) for Dynamic Adaptive Streaming over HTTP (DASH) video streaming has
received considerable attention in recent years. While there are a number of objective QoE models, a limitation of the
current models is that the QoE is provided after the entire video is delivered; also, the models are on a per client basis.
For content service providers, QoE observed is important to monitor to understand ensemble performance during
streaming such as for live events or concurrent streaming when multiple clients are streaming. For this purpose, we
proposeMoving QoE (MQoE, in short) models to measure QoE during periodically during video streaming for multiple
simultaneous clients. Our first model MQoE_RF is a nonlinear model considering the bitrate gain and sensitivity from
bitrate switching frequency. Our second model MQoE_SD is a linear model that focuses on capturing the standard
deviation in the bitrate switching magnitude among segments along with the bitrate gain. We then study the
effectiveness of both models in a multi-user mobile client environment, with the mobility patterns being based on
traces from a train, a car, or a ferry. We implemented the study on the GENI testbed. Our study shows that our MQoE
models are more accurate in capturing the QoE behavior during transmission than static QoE models. Furthermore,
our MQoE_RF model captures the sensitivity due to bitrate switching frequency more effectively while MQoE_SD
captures the sensitivity due to the magnitude of the bitrate switching. Either models are suitable for content service
providers for monitoring video streaming based on their preference.
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1 Introduction
The increasing demand for videos over the Internet with
the advent of the ubiquitous mobile devices has led to
video streaming being a significant part of Internet traf-
fic. By 2022 this volume is projected to be 82% of all the
Internet traffic [1].
Dynamic Adaptive Streaming over HTTP (DASH)

for video streaming has been standardized by MPEG
[2]. Video content providers have adopted DASH for
video streaming to the end users. Briefly, a video is
first made available in multiple video bitrate codecs or
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representations in DASH. Secondly, the video is divided
into small segments with a playback duration that varies
from 2 to 15 sec, where a segment is available in each of
the multiple bitrate representations. This information is
captured in a Media Presentation Description (MPD) file,
which is sent to the end user’s device at the beginning
of video streaming. Adaptive bitrate (ABR) algorithms
at the client-side video player are the primary means to
optimize video quality [3, 4] from the representations
available through the MPD file. The ABR algorithm at
the client side attempts to select the best possible bitrates
for future segments given the network condition while
minimizing bitrate switching from one segment to the
next too often [5].
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A major challenge that video content service providers
face is to understand whether the users are adequately
receiving satisfactory video quality experience video
streaming. Since the content providers serve numer-
ous users at any instance, the interest is to under-
stand on ensemble how their services are being received
by the users. Furthermore, they want to monitor this
periodically during streaming. In other words, ensemble
quality of video streaming on the fly is an important chal-
lenge for content service providers. To our knowledge,
this problem from a content providers’ perspective has
received little attention in the literature, although QoE for
video streaming has been an active research topic for a
while.
In this work, we propose quantitative QoE models that

help to capture the QoE during video streaming on the fly.
Our models are targeted for QoE monitoring by content
providers for video streaming management. We refer to
our models broadly asmoving QoE (MQoE) models. Note
that quantitative QoE is commonly used in video QoE lit-
erature (see [6, 7] for two extensive surveys), although no
previous work has addressed moving QoE models.
There has been a number of works to develop staticQoE

models such as the one proposed with the Model Predic-
tive Control (MPC) approach [5]. Such QoE models are
used to calculate a quantitative value once the video deliv-
ery is completed and for each individual client. On the
other hand, such QoE models are not readily usable by
video content providers that would want to monitor QoE
snapshots in real-time to capture end user experience for
numerous videos being streamed.
We present two MQoE models for video delivery mon-

itoring by content service providers when multiple clients
watch vidoes at the same time. Two important metrics
that impact quality of video streaming is bitrates selected
by clients and the frequency of bitrate switching. Our first
model considers the bitrate of segments as well as the
sensitivity due to the nonlinear behavior from video qual-
ity switching frequencies between segments. We refer to
this moving QoE model as MQoE_RF (Moving QoE with
rate and frequency). Our second MQoE model captures
bitrate changes through the standard deviation of bitrate
switching, which we refer to as MQoE_SD. Our moving
QoE models are designed to take periodic snapshots for
video streaming monitoring. Our MQoE models are par-
ticularly suitable for multiple clients watching videos that
the content providers would like to assess service delivery.
In order to study our MQoE models and to mimic

the perspective of a content provider to monitor the
video streaming service, we implemented a multi-client
environment accessing video streaming service using the
GENI testbed [8]. Our goal was to consider two aspects in
our study: first one is related to the specific video being
streamed and the second one on user mobility.

For the first aspect, we consider the same video being
streamed to multiple clients to conduct a controlled study.
Interestingly, the situation ofmultiple clients accessing the
same video is also common in practical situations such as
when a video lecture is delivered by a instructor watched
by students, or live events when multiple users want to
watch the same event such as a sport event. It may be
noted that for delivering live contents, YouTube also pro-
vides an API that uses DASH [9]. Considering the same
video being watched by multiple clients lets us observe
whether QoE is being equitably allocated among clients.
For the second aspect in our study, we conducted our

study of theMQoEmodels with mobile clients for users in
transit to fully capture the moving QoE behavior. For this,
our work considers three different mobility patterns for
the clients to emulate traveling in a car, a ferry, or a train.
Considering these two study factors together, our study

focuses on multiple clients watching the same video
stream while traveling on a ferry or a train, or cars. It is
easy to image multiple users on a train or a ferry watch-
ing the same live events at the same time. In the case of
cars, we envision that more than one user watching the
same event on their own mobile devices in the back seat
of a car, or users from a fleet of cars traveling in close
proximity watching the same event. We point out that our
moving QoE model is not dependent on the live scenarios
studied in the paper. We considered the live scenario with
the same video being watched for a controlled study. Such
a study allows us to monitor QoE observed by different
clients since they are all watching the same video.
We clarify that the focus of this work is not to devise a

new ABR algorithm; rather, for a given ABR algorithm, we
present moving QoE models that can be used by content
providers for video streaming monitoring and manage-
ment. For content service providers, it is first important
to establish moving QoE models and collect data from
monitoring to do a detailed analysis on the service impact;
this is the scope and the focus of our paper. Note that
seeking to improve quality for end users is a separate
problem in itself that could mean changing ABR, increas-
ing bandwidth on outgoing links (from content providers’
locations), and possibly making additional business agree-
ments with access providers where the clients are access-
ing services from; exploration of these issues is outside the
scope of our present work.
The novelty of our work is that, to our knowledge, we

are the first one to present moving QoE models for video
stream monitoring from a content service provider’s per-
spective. Furthermore, our work helps content providers
to applymovingQoEmodels tomonitor performance on a
continual basis. Since in our experience, content providers
give different priorities to different factors, we present two
QoE models so that content providers have the freedom
to choose one of the models that suit their needs based on



Kiani Mehr et al. Journal of Internet Services and Applications            (2021) 12:1 Page 3 of 26

their preferences. As we show through our work, a static
QoE model such as MPC QoE model is not applicable for
use in a content monitoring environment.
The rest of the paper is as follows. We present our mov-

ing QoE models in Section 2. We then present our study
environment in Section 3. Initial analysis on parameter
selection is discussed in Section 4 before presenting our
comparative study on the models and mobility scenarios
in Section 5. In Section 6, we discuss the related work.
Finally, we present a summary in Section 7.

2 Moving QoEmodels
Our first moving QoE model, MQoE_RF, considers two
QoE metrics: bitrate gain and bitrate switching frequency.
Bitrate gain reflects increase in quality to the end users.
On the other hand, if bitrate switching frequency happens
frequently, the end usermay be displeased; that is, this fac-
tor negatively impacts overall quality of experience. Thus,
our model rewards the bitrate gain while it somewhat
penalizes bitrate switching frequency metric. Since our
model focuses on a multi-client environment, both these
metrics are considered in terms of aggregation among all
the clients. Secondly, to address for in-flight QoE estima-
tion, we take a window-based approach. To consider the
nonlinear relationship between the two metrics over mul-
tiple clients and tomodestly penalize for bitrate switching,
our model considers adding the average bitrates received
by all the clients, which is divided by the sum of the
exponential smoothing values of the bitrate switching fre-
quency of all clients in each window adjusted by a weight.
If we set �t to be the window and the number of active
clients to be C, then our MQoE_RF model can be written
as (see Table 1 for the complete list of notations):

MQoE_RFC,�t =
1
C

(
C∑
c=1

Bc,�t

)

1 +
1
C

(
C∑
c=1

δc,�t

)

γ

. (1)

Table 1 Notations used in various models

Variable Description

B Bitrate

B Average bitrate

K Number of segments

C Number of active clients

�t Time window

δ Exponential smoothing of the switching frequency

N Number of switching frequencies

σ Standard deviation

ν Exponential smoothing weight (0 ≤ ν ≤ 1)

α, β , γ Weight parameters

Here, Bc,�t represents the average bitrate for client c
during the window �t, and δc,�t represents exponential
moving average on bitrate switching frequency, given by

δc,�t = (1 − ν) ∗ δc,�t−1 + νNc,�t . (2)

We now explain further the rationale behind our
choices. Our assumption is that window �t is a reason-
able time window for measurements (see Section 4 for
further discussion). Then, Bc,�t represents the average of
all the DASH segments for client c in �t. The switch-
ing frequency factor in the denominator is exponentially
smoothed to even out any large oscillatory behavior dur-
ing window �t. The parameter γ acts as a scaling (damp-
ing) parameter on this bitrate switching frequency. Finally,
to account for the possibility of no switching frequency,
especially over multiple windows, that could lead to δc,�t
being nearly zero, we have added one in the denomina-
tor in (1) as the final stabilization factor in our MQoE_RF
model. In this case, the QoE model can still be computed
based on the average bitrate.
Our second moving QoE model, MQoE_SD, differs

from MQoE_RF (1) in that it is a linear model that relates
the bitrate magnitute with the change arising in bitrates.
That is, the first term in MQoE_SD is the same as the
numerator in MQoE_RF, which reflects the average of
bitrates among all the clients. The standard deviation of
the bitrates of all the clients in a window can be an aggre-
gated value to capture the switching magnitude during the
window; this term is then subtracted from the bitrate term
based on a weight. Thus, our second model, MQoE_SD,
can be written as:

MQoE_SDC,�t = 1
C

( C∑
c=1

Bc,�t

)

−α · 1
C

( C∑
c=1

σ(Bc,�t)

)
, (3)

where σ(Bc,�t) represents the standard deviation on
bitrates in window �t for client c.
To contrast our moving QoE models, consider next

a static QoE model such as the original MPC QoE
model [5]:

QoE_MPC =
K∑

k=1
Bk − β ·

K−1∑
k=1

|Bk − Bk−1|, (4)

where Bk is the bitrate of segment k while K is the total
number of segments in a video. Note that such static
QoEmodels consider all segments being delivered in their
QoE calculation. Before we discuss how a static model
could be adapted for moving QoE determination, we point
out that we kept the two most dominant terms from [5]:
bitrates of segments and differences in bitrate from one
segment to the next from the original MPC QoE model.
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We do not consider two terms from the original MPC
QoEmodel: the startup delay and rebuffering. The startup
delay is an issue only at the beginning of a video session.
Since we are considering a windowed scenario for mov-
ing QoE, this term is relevant only at the beginning in the
initial window, but no longer in any other windows and
is, thus, irrelevant for moving QoE and is ignored. The
other term, rebuffering, was found to have very minimal
effects in a recent extensive study with video streaming
[10]; thus, we also do not consider this term (we will com-
ment on rebuffering later in Section 5.3 based on our study
and point out how rebuffering is indirectly captured by
our MQoE models). Since (4) for observing QoE is for
an entire video, we adapt it for use in each window by
computing for the segments transferred in each window.
Assume that in the window �t, the number of segments
is K�t , the MPC QoE model in the window �t for client c
can be rewritten as:

QoE_MPCc,�t =
K�t∑
k=1

Bc
k − β ·

K�t−1∑
k=1

|Bc
k − Bc

k−1|. (5)

Thus, over the set of all clients in window �t, we get the
following moving MPC-based QoE model, which we refer
to as MQoE_MO:

MQoE_MOC,�t = 1
C

C∑
c=1

⎛
⎝K�t∑

k=1
Bc
k

−β ·
K�t−1∑
k=1

|Bc
k − Bc

k−1|
⎞
⎠ . (6)

3 Study environment
To study the MQoE models, we implemented our study
environment on the GENI testbed [8], in which clients
access a video from a DASH video server. In this environ-
ment, we allow multiple clients to access simultaneously
the same video to emulate watching the same live event
by a number of users. The raw link bandwidth was set
to 10 Mbps. The DASH client code was implemented in
Python and was first used in [11]; the video server was
based on Apache HTTP server. For the ABR scheme used
by the clients, we used the commonly used hybrid ABR
algorithm that applies both throughput and buffer signal
for bitrate selection based on [12].
For our study, we used Big Buck Bunny (BBB) and Ele-

phants Dream (ED) [13], two well-known DASH video
datasets, which consist of 150 and 164 segments, respec-
tively. Each of these videos has 20 bitrate representations,
ranging form 0.045Mbps at the lowest resolution for both
of the datasets to 3.936 Mbps and 4.066 Mbps at the high-
est resolution for Big Buck Bunny and Elephants Dream,
respectively. The twenty representations and the gaps
between the representations sequence in both datasets are
very similar. Each segment was of 4 sec playback dura-
tion. Thus, the entire Big Buck Bunny video is 10 min long
and the entire Elephants Dream video is 11 min. While
the two datasets have very similar bitrate representation,
the sizes in terms of bytes of each segment in a dataset
with a specific representation is not the same as the other
dataset. In Fig. 1, we show the segment sizes (in MB) of
the highest bitrate codec representation for each dataset
to illustrate this point. For example, for first few segments
of Big Buck Bunny with highest bitrate of 3.936 Mbps has

Fig. 1 Segments in megabytes: BBB vs. ED for the highest representation



Kiani Mehr et al. Journal of Internet Services and Applications            (2021) 12:1 Page 5 of 26

Fig. 2Mobile network topology

a significant larger size than the first few segments of Ele-
phants Dream highest bitrate of 4.066 Mbps. We observe
similar differences in the other segments multiple times.
The main implication of this observation is that even if
each segment received is from the highest representation,
the bitrates are not related to the segment sizes in bytes.
Consequently,MQoE observed for user watching Big Buck
Bunny would be different than for Elephants Dream since
the ABR algorithm depends on the throughput as a factor,
assuming all other factors being equal.
To emulate the effect on the clients to experience mobil-

ity while traveling and connected to a wireless network
environment as shown in Fig. 2, we used traces on path
behavior dataset provided by Riser et al. [14] while travel-
ing by a car, a train, or a ferry. We installedWondershaper
[15] on the server machine to throttle the link with these
traffic traces. As noted in [14], with a car, there are fre-
quent fluctuations on bandwidth availability and also dead
time when the signal is not available. On the other hand,
due to length of the videos we studied, our study faces the
frequent fluctuation part, but never reached the dead time
mentioned in [14]. With the train trace, there is a large
drop in bandwidth availability at one point during our
study, which captures essentially the dead time. Finally,
for the ferry trace, the ferry was going from one shore
to another shore; thus, the bandwidth availability con-
tinued to gradually drop as the ferry moved away from
the departing shore. Due to the duration of the videos
we studied, the bandwidth availability was just about to
start to ramp up due to signal strength improving from
the other shore when our videos ended. Thus, the three
traces gave us different perspectives on mobility patterns
during the video streaming period and it is instructive to
keep this in mind. We conducted our study in this set-
ting with multiple clients ranging from three clients to ten
clients. Finally, MQoE models for multiple clients are pre-
sented by normalizing based on themaximum value of the
MQoE model for a single client for the associated traffic
trace.

4 Initial analysis and adjustment
Our initial analysis centered around determining window
�t, weights associated with our QoE models, and the lim-
itation of MQoE_MO for use in moving QoE monitoring.
Our first experimentation was to determine the window

duration�t by varying the window size.We observed that
with a small window size, there are many windows that
have no switching. Sometimes with a higher traffic that
causes latency in the client’s request, no segment might be
transmitted if it is a very tiny window. Based on our initial
trials, the window size of 60 sec was found to be a good
window size that has a reasonable number of segments
and switching in each window. The window size was kept
at a constant time duration for the rest of our study. Then,
in all our study, we consider the first window for �t to be
the ramp-up window; thus, we will focus on results from
window 2 to window 10 for both the videos. In addition,
we can observe ramp-up of the frequency in the second
window as we used exponential smoothing with previous
value from the first window.
For use in (1), exponential smoothing in switching fre-

quency was used as shown in (2). We found that setting
ν = 0.75, which gives more weight to the newest value of
switching frequency, allows us a level of relative stability
while capturing the changes. Thus, this value was used in
the rest of our study.
We considered a number of different values for both γ

and α used in (1) and (3), respectively. The combination
of γ and α are categorized into three sets: set0: γ = 25
and α = 0.5; set1: γ = 10 and α = 1; set2: γ = 5
and α = 1.5. This is summarized in Table 2. We found

Table 2 Sets of weight parameters for MQoE models

Sets γ α

Set0 25 0.5

Set1 10 1.0

Set2 5 1.5
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that when γ = 25 (from set0), the MQoE_RF behavior
is similar to the bitrates received by the clients; i.e., the
bitrate term in the numerator is the dominant term in (1)
for MQoE_RF at this value of γ . As we reduced γ from
25 to 5, we noticed that the MQoE behavior changes to
the point of being more fluctuating, while giving higher
weights to the denominator in (1); Thus, we show the
graphs for three values of γ at 25, 10, and 5 in Fig. 3a with
three clients in car. Similarly, we found that when α = 0.5
(from set0), then the MQoE_SD behavior in (3) is similar
to the bitrates received by the clients. When α increases to
1.5, the MQoE behavior changes to the point where QoE
has higher fluctuation because it is giving more weights to
the second term in (3). Thus, for α, three values 0.5, 1.0,
1.5 are shown in Fig. 3b for three clients in car. From this
discussion, it is clear that set0, i.e., α = 0.5 and γ = 25
essentially reflects the same behavior as bitrates. Thus, we
exclude set0 in the rest of the discussions in this paper.
The parameters, γ and α, are self-learned parameters.

We note that γ between 5 and 25 and α between 0.5 and
1.5 are the useful ranges for these parameters to account
for the associated term. Below or above these ranges, we
observe asymptotic behavior that would not give us any
new information.
Consider next theMQoE_MOmodel (6). We found that

the straightforward extension of the MPC QoE model to
moving QoE model (6) is problematic at times. Consider
again Fig. 4, which also includesMQoE_MO on the graph.
From window 8 to 10, the MQoE_MO value dropped by
57.0% while the bitrate drop was only 20.03% with set1
(see Fig. 5a). On further investigation, we found that since
the number of segments transmitted during a window can
vary (depending on the network condition), it may also be
possible that this number can be quite low as it so hap-
pened in window 10. With (6), a large drop is possible in
the moving QoE in a particular window. This result also
illustrates that a static QoE model is not readily usable as
a moving QoE model. Thus, for moving QoE, new models

as we proposed here are necessary. In the rest of the paper,
we simply focus on our MQoE models (1) and (3), and for
two sets of α and γ parameters values: set1 and set2.

5 Comparative study
By considering three mobility traces based on car, train
and ferry, our study focuses on three dimensions: 1) to
establish the behavior of the MQoEmodels as the number
of clients is varied, 2) to understand how the models are
impacted as we consider two different videos, and 3) per-
ceived QoE by clients in a multi-client scenario. As noted
earlier, the environment for this study mimics as if the
clients are watching a live event.
Of the two videos, most of our discussions from our

study centers around scenarios for the Big Buck Bunny
video. We also discuss results for Elephants Dream, in
certain cases with cars, to show the difference in behav-
ior that is a manifestation of the difference between the
two videos in terms of bitrates and segment sizes that we
discussed earlier in Section 3.
For each scenario, we show a set of figures that repre-

sents the average bitrate, the bitrate exponential switching
frequency, the standard deviation of the bitrate switching
magnitude, and the MQoE values for both our models
as �t changes. For some of the scenarios, we present
the mean segment size of each window along with max-
imum and minimum values of each window during the
session for all the clients. This will show the main reason
of difference in bitrate representation selection for the two
datasets and finally the MQoE values while having similar
configurations. Then we provide segment-based size and
bitrate comparison for the first client of a scenario for the
two datasets.
Next the results are discussed for each of the three

mobility trace scenarios: car, train, and ferry, with more
detailed discussions for ‘car’. For all trace scenarios, we
studied three situations in terms of the number of simul-
taneous clients: three, five and ten clients.

Fig. 3 Three clients (car) with different values of α and γ (for BBB)
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Fig. 4 Three clients/Car, Moving QoE models MQoE_RF, MQoE_SD and MQoE_MO (for BBB)

Fig. 5 Three clients, car (BBB)
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Fig. 6 Three clients, car (ED)

Fig. 7 Three clients (with car), bytes range in each window for BBB and ED
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Table 3 Average values of segment sizes (in MB)

Scenario Average value BBB Average value ED

Car (3 clients) 0.38 0.35

Car (5 clients) 0.26 0.21

Car (10 clients) 0.13 0.11

Train (3 clients) 0.27 0.34

Train (5 clients) 0.17 0.19

Train (10 clients) 0.12 0.10

Ferry (3 clients) 0.33 0.34

Ferry (5 clients) 0.24 0.22

Ferry (10 clients) 0.13 0.11

5.1 Mobility trace: car
5.1.1 Three clients
Consider first three simultaneous clients watching when
the Big Buck Bunny video is streamed. From Fig. 5a, we
see that as we go from window 6 to window 7, the bitrate
increases. Along with that, the bitrate switching frequency
and bitrate switching magnitude also increase (see Fig. 5b
and c), which affect the QoE models (see Fig. 5d) in
different ways. With set1, the bitrate switching frequency
and bitrate switching magnitude impact on both models
which cause QoE value drop by 2.43% for MQoE_RF and
with a larger drop by 6.88% for MQoE_SD. The impact
of the magnitude on the linear model is larger than the
impact of frequency on the non-linear model for window
7. These changes becomemore severe when the value of α

increase and γ decrease where MQoE_RF and MQoE_SD
drop by 9.6% and 13.44% for set2, respectively.
From window 7 to window 8 MQoE_RF with either

value of γ shows an increasing trend when the bitrate
reaches the peak value. It means that for that value of
bitrate, the bitrate switching frequency cannot be much
significant for the model to take a different trend than
bitrate. The value of bitrate switching frequency Fig. 5b
did not change notably. However, MQoE_SD decreases
and with larger values of α from set2, a larger drop occurs,
which is caused by the high value of the bitrate switching
magnitude with a higher weight in (3).
Note that in the plots on the standard deviation of

the bitrate switching magnitude (see Fig. 5c and also
in later figures), some windows have values equal to
zero. This happens when in a specific window, no bitrate
switching occurs. This may also happen if the latency due
to congestion on a link is too high that the number of
segments in these windows is one or less.
Now if we look at the results for the Elephants Dream

video (Fig. 6), the metrics’ value and behavior on each
window were found to be different than with the Big
Buck Bunny video. Bitrate (see Fig. 6a), unlike the Big
Buck Bunny (see Fig. 5a), in the first three windows
has an increasing trend as the standard deviation on
bitrate switching shows some values on those win-
dows. From window 8 to widow 9, while the bitrate
decreases,MQoE_SD shows an increasing trend when
the standard deviation for bitrate switching decreases.
MQoE_RF shows a closer trend to the bitrate as the bitrate

Fig. 8 Three clients (car), first client’s segments in bytes for BBB and ED
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switching frequency has almost the same value for these
two windows. From window 9 to window 10, the bitrate
has an increasing trend; however, MQoE_SD decreases
due to the increase in bitrate switching standard devia-
tion by almost six times. TheMQoE_RF still shows rise for
both sets, although the jump is lower than bitrate jump, as
the bitrate switching frequency has been doubled.
We next take a comparative view of the observations

from the two different videos. As we mentioned in the
previous section, the bitrate codecs of the two videos are
similar; however, segments at the same level of the bitrate
codec vary in sizes (in terms of MB). In other words,
similar codecs do not mean similar sizes in bytes. The
average, maximum and minimum on the sizes in MB for
segments transmitted in each window for all clients are
shown in Fig. 7. For Big Buck Bunny, the average sizes (in
MB) from window 3 to window 6 are close to Elephants
Dream. On the other hand, from the window 1 to win-
dow 3 and from the window 7 to window 10, the average
sizes for Big Buck Bunny is higher than Elephants Dream.
Table 3 shows the average values for all studied cases. This
presents the average size of the 10 window for each dataset
wherein Big Buck Bunny is found to be greater than that
for Elephants Dreams in this for three clients (in car)). It is

instructive to compare bitrates for each video, shown here
for the first client along with segment byte sizes chosen;
see Fig. 8. This is to illustrate that the measuredMQoE for
each video can be noticeably different, which is possible
since the ABR algorithm uses throughput (that depends
on the bytes transferred) as a factor in deciding the bitrate
to choose for the next segment.

5.1.2 Five clients
Going from three clients to five clients (see Fig. 9) for
Big Buck Bunny, we see that bitrates have more swings
(compare Figs. 9a to 5a). Both models follow the pattern
of bitrate changes with set1. Same trend can be observed
for set2 with MQoE_RF (where γ = 5), but from window
8 to 9 this trend changes temporally for MQoE_SD (where
α = 1.5). The MQoE_RF has higher rise compared to
MQoE_SD for both sets of weight parameters as the effect
of bitrate switching frequency is smaller than the bitrate
switchingmagnitude.With a larger α, we see a shorter rise
for MQoE_SD as the effect of bitrate switching magnitude
is too high that MQoE_SD does not show a similar trend
as bitrate for these windows.
We note that the bitrate value on the window 8 spikes for

Big Buck Bunny (see Fig. 9a) while for Elephants Dreams, it

Fig. 9 Five clients, car (BBB)
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Fig. 10 Five clients, car (ED)

Fig. 11 Five clients (with car), bytes range in each window for BBB and ED
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Fig. 12 Five clients (car), first client’s segments in bytes for BBB and ED

Fig. 13 Ten clients, car (BBB)
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Fig. 14 Ten clients, car (ED)

Fig. 15 Ten clients (with car), bytes range in each window for BBB and ED
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Fig. 16 Ten clients (car), first client’s segments in bytes for BBB and ED

Fig. 17 Three clients, train (BBB)
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shows a drop (see Fig. 10a). From window 9 to window 10,
there is a rise in the bitate and bitrate switching frequency
and magnitude; however MQoE_SD decreased with both
sets of parameters. The reason is that from window 9 to
window 10 there is a very large rise of bitrate switching
magnitude. The QoE value (see Fig. 10d) show smaller
drop and rise compared to Big Buck Bunny as the value
of bitrate switching frequency and standard deviation for
Elephants Dream change less for sequential windows than
the same metrics in Big Buck Bunny. The average segment
size per window for Elephants Dream is less than that for
Big Buck Bunny (see Fig. 11 and Table 3). Figure 12 shows
first client’s segments in bytes for the two videos when
there are five clients.

5.1.3 Ten clients
When we go from five clients to ten clients for Big Buck
Bunny (see Fig. 13), the shape of the bitrate swings is
notably different while the range of values are smaller due
to higher number of clients. There is a 12.32% rise for
MQoE_RF from window 5 to window 7 with set1. On the
other hand, from window 5 to 6, the MQoE_RF with set2
and MQoE_SD with set1 and set2, there is an increase
in the MQoE value by 14.17%, 3.69%, 3.55%, respectively;

then, from window 6 to window 7, these models decrease
by 8.91%, 2.75%, 20.76%, respectively. The reason for the
drop in MQoE_SD is that the bitrate switching magnitude
is much larger in this window compared to previous win-
dows and this value has a significant effect on the linear
model (3). At window 7, the bitrate switching frequency is
also large. However, its effect on the nonlinear model (1)
is not as significant as the linear model (3). This is an illus-
tration of how our QoE models are amenable to capturing
the sensitivity due to frequency and the magnitude of the
switching.
For Elephants Dream video, the bitrate has a large rise

on window 7 compared to other windows. The two mod-
els (see Fig. 14d), within any set of parameters, show a
very similar behavior while on window 10 they all drop
while the bitrate shows a rise. This drop is moderate
for MQoE_RF and severe for MQoE_SD. The increase
in bitrate switching frequency on window 10 is almost
twice that in the window 9 and the increase of bitrate
switching standard deviation is tripled the value of win-
dow 9. Figure 15 shows that Big Buck Bunny has larger size
segments in each window than for Elephants Dream. In
general, the 10-client situation leads to a congested envi-
ronment, and thus, the differences are minimized due to

Fig. 18 Five clients, train (BBB)
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competing for link resources by all clients. Figure 16 shows
first client’s segments in bytes for the two videos when
there are ten clients.

5.2 Mobility trace: train
5.2.1 Three clients
We next consider our study for mobility being from a train
with three clients for Big Buck Bunny. For this mobility
scenario, a large drop in bitrate occurs in the middle due
to a drop in bandwidth availability (see Fig. 17a).
More specifically, in window 6, the operable bitrate

drops significantly; during this window, there is no switch-
ing to improve the bitrate. Naturally, QoE for each model
also drops in this window. Going from window 6 to win-
dow 7, there is a spike in the bitrate, which increases the
values for bothMQoEmodels with set1. More specifically,
we see a larger increase in MQoE_RF than MQoE_SD.
When α increases with set2, MQoE_SD takes a down-
ward trend. In window 7, both bitrate switching frequency
and bitrate switching magnitude have large value. But,
by increasing α for set2, the effect of bitrate switching
magnitude on the MQoE_SD model is higher. MQoE_RF
and MQoE_SD, were both able to capture the penalty of
the bitrate switching frequency and the bitrate switching
magnitude.

5.2.2 Five and ten clients
For five clients (Fig. 18 for Big Buck Bunny), the over-
all behavior is similar to that of three clients in most
windows. However, with ten clients (Fig. 19), we observe a
different shape than three and five clients. From window
6 to window 7, for both sets of weight parameters, there is
a rise for both models along with the rise represented for
the bitrate. This increase is larger for MQoE_RF.
From window 7 to window 8, the bitrate is decreasing

slightly. For the model MQoE_RF with set1, we can see
that the QoE value decreases while the bitrate frequency
switching decreases from window 7 to window 8. The rea-
son is that the model receives the impact of bitrate trend
more than the bitrate switching frequency. However, for
set2, the MQoE_RF is almost flat as the model receive
more impact by bitrate switching frequency. On the other
hand,MQoE_SD behaves differently than bitrate. For both
sets of the weight parameters,MQoE_SD increases, unlike
the bitrate and MQoE_RF. This rise means that the mag-
nitude size is not significant compared to the previous
window.

5.2.3 Comparison between two videos
For three, five and ten clients on a train watching the
Elephants Dream video, MQoE models generally show

Fig. 19 Ten clients, train (BBB)
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Fig. 20 Three clients, train (ED)

somewhat similar patterns (see Figs. 20, 21, and 22). On
the other had, for Elephants Dream compared to Big Buck
Bunny, there is more fluctuation of bitrates and, thus, for
MQoEs. Based on Figs. 23, 24 and Fig. 25 that show sizes
on windows, for three clients train the area under the
curve for Elephants Dream is larger than that for Big Buck
Bunny. For five clients, the two plots of Elephants Dream
and Big Buck Bunny are going through many changes,
however, the overall sizes are not significantly different.
For ten clients train the area under the curve for Big Buck
Bunny is slightly larger than that for Elephants Dream (see
Table 3 for average values).

5.3 Mobility trace: ferry
For the case of traveling in a ferry, the signal drops grad-
ually as the ferry moves away from the departing shore,
which impacts the available bandwidth. Thus, with all
ferry scenarios with three, five and ten clients, we see the
QoE value gradually drop for both MQoE models along
with the bitrate (see Figs. 26, Fig. 27, and Fig. 28) for Big
Buck Bunny. We do note a small difference in window 10
for all the scenarios as the bitrate shows a small increase
from window 9 to 10.
With three clients, there is a small difference in

MQoE_RF compared to MQoE_SD on each �t

(MQoE_RF is higher than MQoE_SD). With MQoE_RF
when γ decreases in set2, it does not reflect the small
peaks of bitrate significantly. However, MQoE_SD is
more sensitive on the magnitude of bitrate switching and
shows bumps and dents even more than the bitrate.
For the five and ten clients alsoMQoE_RF is higher than

MQoE_SD. For MQoE_RF the jumps on window 4 and
window 7 are significantly higher than MQoE_SD. This is
mostly affected by increase of the bitrate on those win-
dows when there are more number of clients to compete
and the value of bitrate switching frequency decreases.
There are high values of bitrate switching magnitude in
these windows, which does not let MQoE_SD to rise as
much as MQoE_RF. For ten clients, the peaks get smaller
when the α increases as the bitrate switching magnitude
is large for these windows; by increasing α (in set2), its
impact on the linear model MQoE_SD is noticeable. The
trend in the case of Elephants Dream is very similar to Big
Buck Bunny and, thus, is not shown here.
Recall that our model does not explicitly consider

rebuffering. We found that only in the case of a ferry, we
observed some rebuffering, which occurred as it reached
the lowest point of the wireless signal. Certainly, rebuffer-
ing is a factor when there is a dead time. On the other
hand, our QoE models capture this drop indirectly by
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Fig. 21 Five clients, train (ED)

reporting a lower QoE value and assigning a zero if there
are no segments transmitted at all in a window. Thus, as
we postulated early on, rebuffering does not need to be
explicitly captures in the MQoE models.

5.4 MQoE comparison with multi-client and fairness
We now discuss how increasing the number of clients
impacts MQoE. With a higher number of the clients,
the competition for the resources increases, which causes
each client to get a smaller share of the resources. Smaller
shares also causes a QoE degradation (see Fig. 29, shown
for Big Buck Bunny). In the case of cars, MQoE_RF with
γ = 10 (for set1), three clients scenario has higher MQoE
value than for five and ten clients. With five clients, the
QoE decreases about 36.86% on average compared to
three clients. With ten clients, the QoE shows a decrease
of 53.71% on average compared to five clients.
In the case of the train, regardless of the number of

clients, the QoE drops to the lowest point at window 6.
For the rest of the windows, QoE behavior with the train
is showing almost the same pattern as with the car. On
average, with five clients, the QoE decreases by 37% com-
pared to three clients. With ten clients, the QoE shows a
decrease of 47% compared to five clients.

With the ferry, we see the decreasing trend from the
starting window to the final window. But the QoE drop for
the case with three clients is much more significant since
the QoE was higher to start at the beginning compared to
five and ten clients scenarios.
We show the results for three, five and ten client scenar-

ios for MQoE_SD with α = 1 in Fig. 30. We observed a
similar trend as with MQoE_RF.
We also analyze how fairly each client is treated

in terms of MQoE. In the case of three clients, for
MQoE_RF of each client with γ = 10, the standard
deviation was 6.89% compared to the average among
them. With the same weight parameter, for ten clients
this value decreased to 2.52%. The lower deviation indi-
cates that clients are getting fairer share in a con-
gested environment, although none are getting very high
QoE. Recall that all clients watched the same video
in our study. This shows that the ABR does not treat
each client equally fairly except for in a congested
environment.

6 Related work
There have been a number of works, which proposed QoE
models with objective QoE metrics.



Kiani Mehr et al. Journal of Internet Services and Applications            (2021) 12:1 Page 19 of 26

Fig. 22 Ten clients, train (ED)

Fig. 23 Three clients (with train), bytes range in each window for BBB and ED
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Fig. 24 Five clients (with train), bytes range in each window for BBB and ED

Fig. 25 Ten clients (with train), bytes range in each window for BBB and ED
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Fig. 26 Three clients, ferry (BBB)

Some work proposed models to capture the exponential
relation between the QoE and QoS parameters [16–21].
However, QoS metrics are not sufficient to measure the
satisfaction of the users. Due to the nonlinear relationship
between these metrics, it is not easy to construct a simple
model [7].
Most approaches formulated a linear parametric model

with QoE objective metrics. Yin et al. [5] proposed a QoE
model in the Model Predictive Control (MPC) approach;
we refer to this model as the MPC QoE model. This QoE
model was used in assessing QoE for video streaming
[10]. They considered QoE metrics such as bitrate gain,
rebuffering and the difference between the quality level of
consecutive chunks (switching amplitude).
Hoßfeld et al. [22] discussed factors that influence aQoE

model. Yarnagula et al. [23] formulated a complex para-
metric QoE model over a number of metrics. De Vriendt
et al. [24] addressed the problem of how to assess QoE of
an end user under the form of a prediction for the MOS.
For surveys on QoE models for DASH, see [7, 25].
Wang et al. [26] proposed a model to maximize the

QoE by considering the average video bitrate, frequency of
variations and the amplitude of variations. The variation

metric is a centralized measure for the variation of the
video quality around the average quality that is denoted as
spectrum equation in [27]. Moldovan et al. [28] proposed
a quadratic problem formulation which maximize both
service quality and fairness. They define the objective as
being to maximize the average quality, minimize the num-
ber of quality switches, and ensure equal utility (QoE)
among users.
Xue et al. [29] proposed a model which combines

instantaneous qualities and cumulative quality taking into
account video segment quality. The instantaneous qual-
ity was obtained using a linear model using Quantiza-
tion parameter (QP) values and instantaneous rebuffer-
ing. Guo et al. [30] proposed a model which esti-
mates the overall quality using a linear combination
of median and minimum of the instantaneous quality.
The instantaneous quality was obtained from QP val-
ues using the normalized quality vs. inverted normal-
ized quantization stepsize (NQQ) model. Tran et al.
[31] presented a model considering encoded video qual-
ity and quality variation. The quality of the encoded
video is calculated for each segment considering the
average QP.
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Fig. 27 Five clients, ferry (BBB)

Manga et al. [32] presented a measurement study on
QoE performance. However, their work do not present
any moving QoE models.
Live streaming has also been investigated in a num-

ber of work on video streaming [33–35]. But these works
focused on the QoE for a single client, and none are from
the perspective of a content service provider.
Note that our work focuses on quantitative moving QoE

models. On the other hand, subjective QoE, measured
using Mean Opinion Score (MOS), is studied for video
delivery [23, 36]. It is also pointed out in [36] that sub-
jective assessments are costly, time-consuming, and not
scalable. First, we note that no previous work has studied
subjective QoE from a content service provider’s perspec-
tive. Secondly, subjective QoE assessment, for moving
QoE snapshots, is impractical from a content provider’s
perspective for video quality monitoring. Consider a con-
tent service provider streaming a live event to thousands
of end users. If subjects were to be employed to mimic
understanding this situation, a significant number of sub-
jects would be necessary. If monitoring is to be captured,
say every minute for video stream monitoring, then this
would require each subject to be reminded every minute

to record the MOS score, which may potentially require
additional 10 to 15 seconds to record, the user would be
distracted from continuing to watch the video for the next
minute. Furthermore, fatigue could quickly set in even
after a few minutes of scoring, resulting in noisy mea-
sures. Thus, as we proposed here, a quantitative MQoE
approach is a more viable approach for monitoring video
streaming for content service providers.
Most of the quantitative models discussed above were

formulated for assessing QoE for an individual user or
the QoE is reported at the end of a video session. Sec-
ondly, they were not readily adaptable in a multi-client
scenario, especially in a scenario like a live event and on
a rolling basis. Our proposed QoE models fill the void in
the current literature. Our QoE model is the first work
to address moving QoE (collectively for multiple clients)
for video streaming which is more suited for a service
provider point of view monitoring instead of individual
client perspective.

7 Summary and future work
We presented two moving QoE models that can report
ensemble QoE in review windows for multiple clients
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Fig. 28 Ten clients, ferry (BBB)

streaming on a periodic basis. To our knowledge, we are
the first to propose MQoE models for video streaming
performance monitoring that can be used by content ser-
vice providers. Secondly, the multi-client scenario has
rarely been studied before, which is important to con-
sider for content providers. Our study shows that such
models can be used to understand the QoE behavior of
multiple clients during streaming, especially for a video
transmission such as for a live event. We also found
out that a static QoE model such as MQoE_MO is not
suitable for moving QoE. Our nonlinear model MQoE_RF
is preferable when a content provider wants to capture
the bitrate switching frequency in the QoE model. Our
linear model MQoE_SD, in general, is useful at captur-
ing the standard deviation of bitrate switching. Based on
our observation, For weight parameters, γ = 10 with
MQoE_RF and α = 1 with MQoE_SD (i.e., set1) were
found to be the best values to use to adequately capture
the bitrate switching frequency and bitrate switchingmag-
nitude impact while keeping quality due to bitrates. Our
work is expected to be useful to content providers (stake-
holders) to observe variations for different conditions and
fairness on QoE received by different clients so that they
can take appropriate actions.

There are a number of additional studies that could be
pursued. First, the window we used was as we observed
for our study environment. When there is a much higher
number of clients simultaneously streaming, the desirable
window could be different than the one used in our study.
In other words, a further study is needed to provide better
recommendation on the optimal window size. Secondly,
our study was limited to a maximum of ten simultane-
ous users. In real life, a very larger number of users may
watch live events, coming from different devices and loca-
tions. In such a situation, videos are also not served from a
single server since the content providers use a data center
for video hosting. Thus, even with a very large number of
clients streaming, they would be divided to be served by
many servers. Amonitoring analysis can be done based on
each server as well as for a cluster of servers such as a rack
of servers at a data center to understand MQoE behavior.
In addition, this raises a scheduling need on which clients
should be served from a specific server. For instance, a
specific group of clients could be served from a particular
server, either based on the clients’ geographic locations or
based on service level agreements to provide prioritized
service to certain clients. It would be worthwhile to look
into such associated problems in future research.
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Fig. 29Multi-client comparison, MQoE_RF γ = 10 (BBB)

Fig. 30Multi-client comparison, MQoE_SD α = 1 (BBB)
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