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Brazil enable the collection of geolocated mobility data of millions of people in large

Fulllist of author information is metropolitan areas. In addition, large, public datasets are made available on the Internet
available at the end of the article by open government programs, providing ways for citizens, NGOs, scientists, and public
managers to perform a multitude of data analysis with the goal of better understanding
the city dynamics to provide means for evidence-based public policymaking. However,
it is challenging to visualize huge amounts of data from mobility datasets. Plotting raw
trajectories on a map often causes data occlusion, impairing the visual analysis.
Displaying the multiple attributes that these trajectories come with is an even larger
challenge. One approach to solve this problem is trail bundling, which groups motion
trails that are spatially close in a simplified representation. In this paper, we augment a
recent bundling technique to support multi-attribute trail datasets for the visual analysis
of urban mobility. Our case study is based on the travel survey from the Sdo Paulo
Metropolitan Area, which is one of the most intense traffic areas in the world. The results
show that bundling helps the identification and analysis of various mobility patterns for
different data attributes, such as peak hours, social strata, and transportation modes.
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1 Introduction

Governments around the world are providing open datasets about city resources, such as
citizen surveys, data collected with the help of Internet of Things devices, accountability
and transparency reports, and so on. The Internet facilitates the gathering and the avail-
ability of a large variety of data sources, which allows citizens, researchers, companies,
non-profit organizations, and public agents to perform analyses on their matters of inter-
est regarding city-related issues. In the public administration realm, these data sources
can be used to provide better services for citizens, to improve the management of urban
infrastructure, or to reduce bureaucracy costs, supporting evidence-based policymaking
(1, 2].
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Urban mobility is a great concern for citizens and governments. It directly affects peo-
ple’s quality of life, causes prejudices to the environment, and has a high economical
impact. For example, the traffic congestion in the Sdo Paulo Metropolitan Area (SPMA)
is estimated to affect 89% of work-related commuting trips!, causing monetary losses of
seven billion Brazilian reals (~US$1.8 billion) every year [3]. Thus, the development of
more efficient transportation systems is a critical issue that cities should tackle.

Several data sources can be used for urban mobility analysis such as data captured with
IoT devices such as traffic cameras, GPS tracking, bike-sharing systems, as well as cen-
suses and trip surveys [4, 5]. In the SPMA, every ten years since 1967, the Sdo Paulo
Metropolitan Company (Metro), which manages the subway system in the city of Sdo
Paulo, conducts a travel study called Origin—Destination (OD) survey. This survey is per-
formed by interviewing citizens about their life and commuting activities on a typical
working day, resulting in a comprehensive panorama of the mobility behavior of the pop-
ulation over the SPMA. The last OD survey (2017) shows that there are around 42 million
trips over the 24 hours of a regular working day. Beyond a trip’s origin (O) and destination
(D) data itself, the survey also gather a wide number of trip-related and socioeconomic
aspects, or data attributes, such as transportation modes used, trip reasons, age, gender,
and household income. Hence, the OD survey generates a large and multivariate dataset.

While the above-mentioned OD survey is very comprehensive and accurate, urban
planners need proper tools to analyze this large amount of multivariate data. Spreadsheets
and statistics programs help producing tables and charts with aggregated information
showing, e.g., the number of users of the public transportation system over the years or
the number of women vs men that commute for work. Visual techniques, such as density
maps [6], can help to answer geolocated data-related questions, such as finding regions
that concentrate most of the mobility flow during the day or the most common origin—
destination pairs. However, considering the huge amount of information (and attributes)
that is produced every day in any city, translating geolocated data into meaningful images
is very challenging.

A recent survey about traffic visualization methods indicates the common use of
line-based visualization techniques to study the structure of mobility data, which often
includes pattern discovery and clustering tasks [7]. Still, drawing OD lines can only handle
thousands of trajectories. Visualizing 42 million trajectories, as recorded daily in the last
OD survey, would only generate a fully cluttered image (as can be seen in Fig. 5). Bundling
techniques improve upon line-based techniques and can depict high volumes of trajectory
data by essentially simplifying trajectories in the image space, grouping spatially close and
data-wise similar trajectories together [8, 9].

In this paper, we use bundling to visualize the structure and patterns of urban mobil-
ity in the Sdo Paulo Metropolitan Area (SPMA). For this, we adapt the recent CUBu
framework [10] — Compute Unified Device Architecture (CUDA) bundling, which has
proven to be useful in other scenarios using large movement datasets (e.g., flight traffic,
eye tracking) [11-13]. CUBu generates different bundling styles, grouping trips per dis-
tance, density, or direction. However, to the best of our knowledge, CUBu has not yet
been used on OD data of sizes comparable to the SPMA dataset. We adapt CUBu to use
bundling to find and visually explore mobility patterns created by different combinations

1\We use the terms trip, travel, trail, and trajectory interchangeably in the paper
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of the attributes present in the OD survey, such as traffic on peak hours, trips per social
strata, different transportation modes, and trips made for distinct reasons. We show how
the bundled visualizations help identify different structural patterns of urban mobility in
Séo Paulo, providing insights into the data characteristics that were analyzed.

This paper extends an earlier work presented in the IV Brazilian Workshop of Urban
Computing (CoUrb 2020) [14] with more detailed analyses of the findings obtained by
exploring the bundled visualizations of the SPMA data as well as a better coverage of
related work and more detailed explanation about the techniques we used. It is orga-
nized as follows. Section 2 outlines related work with a focus on OD data visualization,
trajectory bundling, and investigation of mobility patterns. Section 3 presents the main
characteristics of the SPMA and the OD survey data. Section 4 describes our visualization
approach. Section 5 presents the results of our analysis and discusses the use of bundling
in urban mobility visualization. In addition to the original explorations presented in [14],
Section 5 shows the visual exploration of several other attribute combinations: density
per social strata (Section 5.5), mobility of young students per social strata (Section 5.6),
directions at peak hours (Section 5.7), density by transportation mode (Section 5.8), and
trip distance per trip reasons (Section 5.9). Section 6 concludes the paper.

2 Background and related work
We next discuss related work on trajectory bundling with a focus on OD data and studies

that investigate mobility patterns in urban scenarios.

2.1 Trajectory bundling

Trajectories (or for short, trails) are typically sets of spatial points t = {x;} recorded at
consecutive time moments ¢; that describe the motion of an object over time. Origin—
Destination (OD) data are particular cases of trails which contain only the first and last
recorded point. Trails can have additional data attributes aj, recorded either at each sam-
ple point, e.g., speed a;(x;); or globally for the entire trail, e.g,, vehicle type a;. As such, an
OD dataset can be seen as a multivariate dataset with trails being the observations and
the measured attributes being the dimensions or variables. Trail data can be directly plot-
ted atop of 2D maps, with selected data attributes encoded into visual variables such as
color, line thickness, and line style. Besides statically drawing entire trail-sets, these can
be also shown by animating particles along their points x; [15, 16].

Visualizing trail-sets having thousands of trails or more, each with multiple attributes, is
challenging. Simply drawing the trails yields significant clutter which makes finding even
the simplest spatial patterns very hard. Particle techniques also do not scale well — with
over roughly 50 thousand points, the resulting visual pattern resembles Brownian motion.
Bundling methods aim to solve this visual scalability issue by grouping trail fragments
which are spatially close and, optionally, have similar data attributes. This creates more
overdraw between (similar) trails, but also generates visually empty space between trail
groups that reduces overall clutter.

Bundling is used in several other studies on movement data. Graser et al. [17] created
a bundled visualization to study the characteristics of bird migrations. Klein et al. [16]
developed a dynamic visualization for aircraft flight data where the trail-set itself varies
over time. Willems et al. [11] analyzed maritime vessel traffic using bundling techniques.
Separately, bundling was used to simplify eye-tracking data to infer reading patterns
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[12, 13]. Lhuillier et al. [9] compiled a survey on the state of the art on bundling tech-
niques. This survey distinguishes between bundling graph data (straight-line drawings of
graph layouts) and trail data (such as our OD data), highlighting the best methods for
both cases.

Image based bundling (IBB) techniques are a particular class. They essentially exploit
mean shift clustering [18], well known in image processing. We outline this process for
the Kernel Density Estimation Edge Bundling (KDEEB) technique [19], although all other
IBB techniques we are aware of work similarly and share the same properties (see also
Fig. 1). Let T = {t;} be the trail set to bundle, and let S = {p;} be a set of points that
densely sample T. First, a density map p : R? — R* is computed from S by kernel density
estimation (KDE), i.e. by convolving the points in S with an Epanechnikov kernel of radius
k. This parameter essentially specifies the scale of visual simplification — trails farther than
k units apart will not be bundled together. Hence, p will be high in regions of high density
of the sampling points — and by implication, of trails — and low elsewhere. Second, the
points in S are advected upwards in the density gradient Vp with a small step. Terminal
(O and D) points are kept fixed so that one can still identify the origin and destination
of the bundled trails next. Finally, a 1D Laplacian filter is used to smooth the trails in
T, thereby removing inherent numerical noise in the advection. The process is repeated
for N iterations, whereby k is continuously decreased so as to slow down’ the advection
and make trails converge around the local density maxima. The main advantages of IBB
are simplicity of implementation, control over the simplification induced by the bundling
(given by the parameter k), and, notably, speed, as image-space operations map well to
GPU functionality.

Zeng et al. [20] adapted the KDEEB technique into Road Aware Edge Bundling (RAEB),
which constraints the bundles along the road network on which the respective trails are
recorded. RAEB was demonstrated on 166K taxi trajectories from New York City. RAEB
is the only work that uses bundling with urban mobility data that we know of. However,
RAEB requires detailed trails data (not OD data) and the layout of the city road network.

Geometric-based edge bundling (GBEB) [21] partitions the trail-set T into clusters of
trails t; that are spatially close and, optionally, have similar attributes. Next, a geometric
guideline is extracted from each cluster to bundle its trails along. GBEB was demon-
strated on two real world OD datasets, US Airlines and US Migrations. Both have just
a few thousand trails, being thus orders of magnitude smaller than the SPMA dataset.
Moreover, the O’s and D’s of these datasets are cities on a map. In SPMA, the O’s and
D’s are the start and end points of trails followed by individual persons. The distribu-
tion of O’s and D’s is thus very different: For the US Migrations and Airlines, the O’s and

edge gradient edge Laplacian
resampling estimation advectio smoothing

input sampled density gradient bundled smooth final

graph edges map map graph bundles image

Fig. 1 Pipeline of the KDEEB algorithm
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D’s are city locations separated by large amounts of whitespace — specifically, 235 O/D’s
for US Air and 1790 O/D’s for US Migrations. Bundling OD trails for such datasets is
far easier than for a dataset like SPMA, where the number of O’s and D’s is massively
larger.

Skeleton-based edge bundling (SBEB) [22] follows a similar approach to GBEB by par-
titioning the trail-set into clusters. Next, each cluster is reduced to its geometric skeleton,
or medial axis, which is used to attract trails to form bundles. In addition to US Airlines
and Migrations, SBEB was demonstrated on the France Airlines dataset. This dataset has
the same characteristics as the first two — its O’s and D’s are airports in France (a few
hundred).

Both SBEB and GBEB rely strongly on their clustering step to partition the trail-set
into elongated clusters containing spatially close trails which are quite similar in direc-
tion. This works far easier for sparse OD datasets (like the ones discussed above) than
for OD datasets where the O’s and D’s can virtually be anywhere (like the SPMA dataset).
Clustering has other challenges too, as it requires careful parameter control. Too coarse
clusters will bundle together trails which are far away from each other; too fine-grained
clusters will bundle very little, thereby leaving the OD dataset cluttered. Clustering-based
bundling methods such as SBEB and GBEB need, also, to control both clustering and
bundling parameters. In contrast, in KDE-based methods, one needs to control only a sin-
gle parameter with a clear geometrical meaning — the KDE radius k discussed above for
KDEEB. Finally, both GBEB and SBEB cannot scale computationally to more than roughly
10K trails.

Clustering can be used as a visual simplification means for OD datasets also inde-
pendent on bundling. One can replace each trail cluster by any suitable (simplified)
representation, e.g., a centerline (for an overview of such techniques, we refer to [23]).
However, this exposes another problem: Clustering is a discrete process, which explicitly
partitions the trail-set into distinct groups. This can easily lead to false insights in the data
groups being strongly separated. In contrast, bundling — and in particular the one created
by KDE-based methods — implicitly partitions the trail-set into fuzzy groups (the bundles)
which can be continuously adjusted by the bundling parameters. As such, in cases where
cluster identities are not known a priori, like in the case of the SPMA dataset, bundling is
preferred to clustering for visual simplification.

CUBu, which stands for CUDA bundling, is an improved implementation of KDEEB
[10]. It leverages CUDA? to implement all IBB steps (trail sampling, KDE com-
putation, advection, smoothing, and final rendering) on the GPU, thereby surpass-
ing KDEEB and older IBB methods [24, 25] in speed by one to two orders of
magnitude. Additionally, CUBu supports several bundling styles, most notably direc-
tional bundling [24], which separates spatially close trails running in opposite direc-
tions in different bundles. Rendering-wise, CUBu supports a large palette of options,
such as pseudo-shading to emphasize high-density bundles [26], encoding bundle
importance into opacity, and color mapping trail attributes (e.g, direction, time,
length).

e Density map: We use the underlying density map p computed by the KDE process
implemented in CUBu to show the local edge density in the produced bundles. This

2developer.nvidia.com/cuda-zone
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way, one can easily separate visually high-density (important) traffic flows from less
important ones;

e Attribute filtering and coloring: We use CUBUs ability to color code trail directions
or trail lengths to study mobility behavior. We also extended CUBu to filter specific
attribute ranges, and select specific combinations of attributes to display. This allows
the analyst to search for different types of patterns present in the data;

e City map: We modified CUBu to blend its bundled result atop of a map of the SPMA
where traffic is analyzed. This allows correlating the bundles with actual locations in
the city.

2.2 Mobility patterns in urban areas

Discovering patterns of mobility can be useful to provide relevant information about
the local dynamics for public managers, which can propose better public policies using
evidence-based information. There are several studies that have investigated patterns of
mobility flows in large cities.

Guo et al. [27] used spatial clustering to discover mobility patterns. They used OD pairs
from GPS records of taxi trails from the city of Shenzen, China. First, their methodol-
ogy identifies meaningful potential places through the use of spatial clustering. These
meaningful places are clusters that could contain massive flows. After obtaining the clus-
ters, they computed flow measures (e.g., inflows, outflows, net flow) for each cluster in
different time periods to map spatial distribution and temporal trends. The mapped dis-
tribution is presented as a choropleth map showing city regions that receive or produce
more flows in different time periods of a day. As in our work, the data used in [27] is based
on OD pair trails. However, the dataset used in their study is related to a single trans-
portation mode, which could present different patterns when compared to other means
of transportation. Contrary to their approach, our study does not use the origin and des-
tination places as a weight to search for movement patterns. Instead, bundling uses the
proximity of flows to aggregate closer trajectories. Also, our approach does not depend
on finding clusters to identify the spatial distribution of the movements.

Moreira and Ceccato [28] investigated space-time patterns of mobility with a focus
on gender differences in violent victimization in Sdo Paulo’s metro train stations. The
data used in this study are official crime records from the Sdo Paulo’s police, land-
use data from Google Street View images, Sdo Paulo’s 2012 OD data, and census data
from regions close to the metro train stations. The land-use features considered in this
study include commercial establishments, parks, bus stops, number of employees per
station, etc. They applied negative binomial regression modeling to identify patterns of
mobility and land-use feature factors that differ between men and women. Their results
showed that there are different space-time patterns for women and men regarding vio-
lent victimization. The approach proposed in [28] was based on a model that was built
specifically to assess the violence by gender in the metro train transport mode, including
other related data sources. Differently, our study applies bundling in the most recent OD
dataset using time, space, and socioeconomic features to generate mobility flow patterns,
which can be used to highlight mobility differences for several features available in the
OD dataset.

Slovic et al. [29] studied the relationship between job accessibility, infrastructure, and
socioeconomic factors in the city of Sdo Paulo. They used data from General Transit
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Feed Specification (GTFS) and Automatic Vehicle Location (AVL) from the Sao Paulo bus
system to compute job accessibility. The Municipal Human Development Index (MHDI)
was used for the comparison, from which they selected the extreme values (below the
10th percentile and above the 90th percentile). Then, they applied a spatial clustering
technique, known as bivariate Local Indicator of Spatial Association (LISA), to measure
job accessibility and MHDI. The resulting clusters were plotted in a map used to visu-
alize overlapping patterns through the city. The results showed that areas with lower
rates of job accessibility overlap with areas with lower MHDI rates. Contrary to [29], our
approach explores multimodal transportation data along with socioeconomic features. In
[29], origins (from MHDI data) and destinations (from GTFS and AVL data) are asso-
ciated through LISA to produce the cluster patterns. In our study, both the origins and
destinations came from the same dataset, which is bundled to produce mobility patterns
for the whole population and also for distinct social strata.

Moreno-Monroy et al. [30] investigated the relationship between public secondary
schools and public transport to assess social inequality access to these schools. They pro-
posed an accessibility index that considers the spatial distribution of adolescents, school
locations, and public transport access in school areas. They used the SPMA as their case
study. Based on the proposed index, they simulated the impact of the redistribution of
these schools on school accessibility. This simulation was based on a non-implemented
policy proposed by the Sdo Paulo State Government, which intended to reduce the num-
ber of school facilities and keep them more concentrated in central districts. The results
showed that the redistribution would have negative impacts on school accessibility. The
accessibility index was built using data from the Brazilian census, Sdo Paulo’s 2007 OD
travel survey, the Brazilian School Census, geocoded public schools, and the Google
Distance Matrix API. This study is focused on secondary schools, while our analysis
regarding education addresses to identify flow patterns of students between 6 and 18 years
of age. We are also using the most recent OD survey, from 2017, in our study. While their
analysis is focused on accessibility for public transportation, our study also considers the
other means of transportation.

3 Mobility in the Sao Paulo Metropolitan Area

To provide a better understanding of the scenario of our analysis, this section describes
the Sao Paulo Metropolitan Area and the last travel survey data performed in that region.
To avoid misunderstanding between the Sdo Paulo Metropolitan Area (SPMA) and the
city of Sdo Paulo, we will refer to the city as capital or simply Sdo Paulo. We will refer to
the metropolitan area as SPMA or metro area.

3.1 Sao Paulo Metropolitan Area

The state of Sdo Paulo is located in the Southeastern coast of Brazil. The Sdo Paulo
Metropolitan Area is the most populated region of South America. According to the
Brazilian Institute of Geography and Statistics [31], the SPMA has 21.9 million citizens in
2020, which represents around 10% of the Brazilian population. The SPMA is composed
of 39 cities in an area of 7946.84 km?. The city of Sao Paulo is the capital of the state of
Sédo Paulo and it is placed at the center of the metro area. Figure 2 shows the 39 cities that
form the SPMA. The capital is the most populated city in Brazil, with 12.3 million inhab-
itants. In the SPMA, the other cities with more inhabitants are Guarulhos (1.4 million),
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Fig. 2 Municipalities of the SPMA

Sao Bernardo do Campo (844 thousand), Santo André (721 thousand), and Osasco (699
thousand) [31].

The capital and its nearest cities concentrate most of the job opportunities, public facil-
ities and services, universities, museums, and entertainment options [32]. Thus, there is
huge daily commuting to the capital downtown and its surrounding neighboring. In Sao
Paulo, neighborhoods close to the city center are highly valued, so living in these parts
of the city is expensive. People with less financial conditions usually live in the peripheral
areas of the capital or in other cities in the SPMA. Indeed, some cities in the SPMA are
dormitory towns for those who cannot afford to buy or rent a house in the capital [33, 34].

Regarding the transportation infrastructure, the capital has a subway system that serves
the northern, southern, eastern, western, southwest, and southeast regions of the city.
There are a few subway lines, most of them crossing the center of the capital, which limits
access to the subway system to some regions of the city. The other cities do not have
subway systems. There is a metropolitan railway system that serves several surrounding
cities and also the capital. The railway system is integrated with the subway system.

Each city has its own bus system and there is an intercity bus system to link the
neighboring cities. During the 20th Century until the late 1990s, most investments in
transportation were guided by a car-centric approach in detriment of public transporta-
tion [35]. The aims were to enlarge roads and streets to attend the increasing demand for
private cars. In the last two decades, the local governments have invested more in poli-
cies to incentivize public transportation, such as the implantation of bus corridors and the
replacement of bus fleet, building new subway lines, and modernizing the railway system.
Also, there is an increasing cycling infrastructure in the capital that is being expanded in
the last decade. Although these investments have increased in recent years, the SPMA still
suffers from traffic congestion, especially during peak hours [3, 35]. Thus, there is a need
for a better understanding of the traffic behavior in the SPMA to propose new policies to
improve mobility for its citizens.
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3.2 Origin-Destination survey

The Origin—Destination (OD) survey is the primary source of mobility information in the
SPMA. It is performed by the Sdo Paulo Metropolitan Company (Metrd) every ten years
since 1967. The last OD survey of 2017 (OD17) has information about 157992 trips of
people randomly sampled in the SPMA, which is a representative sample of the total pop-
ulation with an error margin of 6% and a confidence interval of 92% [36, p.34]. Trips occur
for different reasons such as work, house, study, and leisure, and different trip modes such
as by walk, car, subway, and train. Figure 3 shows the distribution of trips by transporta-
tion mode and by motivation. Figure 4 shows the distribution of trips by the hours of the
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As Fig. 3 shows, most trips in the city are made by pedestrians. Usually, pedestrian
trips cover small distances (624m on average) and stay inside a single district of the city.
However, there is also a significant number of trips by car and public transportation (bus,
subway, and train), most of them longer (7.7 km on average), especially by train and sub-
way (13.5 km on average). Looking at trips by hour (Fig. 4), we see that traffic in the SPMA
has three main peaks: in the morning (6 AM to 8 AM), at lunchtime (noon), and in the
early evening (5 PM to 7 PM).

The 157992 entries in the OD survey have several important attributes for our study, as
follows (attribute type indicated between brackets). The most important ones are the ori-
gin O and destination D coordinates (quantitative), and the expansion factor E of the trip
(quantitative), which is the statistical extrapolation for the population size that each sur-
veyed trip represents. That is, a trip t; in the OD survey with an expansion factor value
E; models a number of E; actual trips that closely follow the trail t;. The expansion factor
summed over all N = 157992 survey entries yields the 7 = 42 million trips on a typical
working day, i.e., Zf\i 1 Ei = T. Other attributes are the time of departure (quantitative),
the transportation mode (categorical, 17 values: train, subway, car driver, car passenger,
bus from the Sdo Paulo city and from other cities, intercity bus, monorail, chartered vehi-
cle, school bus, regular taxi, non regular taxi, motorcycle driver, motorcycle passenger,
pedestrians, bicycle, and others), and the reason for the trip (categorical: work, house,
study, and leisure).

Figure 5 shows the OD survey trajectories plotted over the map of the SPMA, where
each line represents an OD trail. The extreme clutter in this figure precludes the visu-
alization of individual trajectories, traffic patterns, or connections between the regions
of the map. From this image, we can only infer the existence of high traffic over the
major part of the metropolitan area and a significant concentration of this traffic at Sao
Paulo downtown. Moreover, this image does not show any of the available data attributes,
except O and D. Hence, filtering and aggregation techniques are essential to simplify the
visualization and make it understandable for the human eye.

Fig. 5 Naive straight-line drawing of OD trails from the SPMA
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4 Methodology

We used the OD17 data to explore how bundling can be used to visualize mobility
patterns over the Sdo Paulo Metropolitan Area (SPMA). The OD17 contains data that
represents trips of a regular working day over the SPMA. We parameterized and adapted
CUBu to explore several properties of this data with different bundled visualizations.
Figure 6 shows our entire pipeline. We detail each of its steps next.

4.1 Data representation
The OD trajectory data we use as input for bundling is described by a table with six
columns: trail ID, transportation mode, departure time, arrival time, origin coordinates,
and destination coordinates. We extract this data from the OD17: the trail ID is the iden-
tifier obtained directly from the OD17 dataset. The origin and destination coordinates are
transformed to the latitude/longitude system (required to geolocate these coordinates on
a map). The transportation mode is stored as an integer in the range 1 to 17. The expan-
sion factor of each OD record (introduced in Section 3.2) is used to replicate trails — for an
OD17 trail with expansion factor E, we create E copies of that trail as input for bundling.
This yields a complete dataset of 42 million trails. For all such replicated trails, we keep
the ID of the underlying OD17 trail which generated them. This way, we can trace back
which bundled trails correspond to an OD17 record. To this base data, extra attributes
from the OD17 survey can be added such as trip reason (see Section 3.2) and personal
data (age, income). Overall, this yields a dataset with over ten attributes per trail.

Table 1 shows a sample of the generated trails. Here, trails corresponding to the top two
rows were created from the same OD17 trail with ID 50 and E = 2.

4.2 Data preprocessing
Although CUBu is — according to its authors and also to the best of our knowledge —
the fastest existing solution for trail bundling, it still cannot process 42 million trails at
interactive rates, which is required if one wants to explore a dataset by changing the
visualization parameters and see the changes’ effects within several tens of milliseconds.
CUBuU’s original implementation, which uses a dual-GPU NVidia GTX 690 card, can pro-
cess around 1 million trails interactively. Using newer GPUs can push this to several
million. However, large trail sets create another problem, namely that these would not fit
in the Video RAM (VRAM) memory of the card, as 1 million trails requires roughly 1GB
VRAM in CUBu. To deal with these scalability problems, we reduced the OD17 dataset
based on the expansion factor E.

Consider the distribution of the expansion values E; over the sample records from
OD17. As explained in Section 3.2, these generate by expansion 7" = 42 million trails.
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Table 1 Format of data used as input for bundling

ID Mode Depart time Arrive time Origin Destination

50 1 6:45 7:10 -46.62809376987491° -47.00348104352116¢
-23.551691865840347° -23.39356328288028"

50 1 6:45 7:10 -46.62809376987491¢ -47.00348104352116/
-23.5516918658403479 -23.39356328288028

51 4 8:30 9:05 -47.00187231236886¢ -47.00348104352116*
-23.398468606276961 -23.39356328288028'
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We argue that, if we are able to reduce the trail-dataset T to a smaller one T”, which has
the same distribution of E; values, then 7" roughly captures the same insights as T, but
is faster to bundle. A simple way to obtain T’ is to downscale the expansion factors as
E! = E;/K, where K > 1 is a downscaling factor, and next construct 7’ by expanding the
factors E;. However, for E; < K, E; < 1, which would mean the respective records would
expand into less than one trail. Since the number of trails is an integer, this means those
records would practically not influence T’. Hence, we simplify the OD17 record set by

e removing all records where E; < E,;;, (for a given E,;;;, value, discussed next);
® setting E; = E;/Emin for the remaining records;
e expanding these records, each into E] trails.

To find a suitable E,,;, value, we analyze the accumulated percentage of trips that are
removed for different threshold values E,,;, (see Fig. 7). For these values, i.e. where
Eyin < 75, the removed trails would represent less than 4% of the total population,
ie, Y p_p . Ei < 0.04T. Given that the error margin of OD17 was below 6% (see
Section 3.2), we argue that removing such records would not affect the key insights cap-
tured by the dataset. In practice, we used the even more conservative value E,;, = 55,
which removes 2.35% of the total population (trail-set). Following this, we computed the
downscaled distribution E; = E;/E,,;,. This effectively reduces the size of the trail-set by
a factor E,;y, or, in practice, reduces T from 42 million to a trail-set T’ of 685115 trails.
This value is easily within the range of interactive exploration by CUBu.

4.3 Filtering and slicing the dataset

Beyond the data reduction process explained above, we also applied two other sim-
plification methods, filtering and slicing, to investigate specific characteristics of the
dataset.

To see the relations between the different transportation modes and the traffic direc-
tions over the peak hours, we used visual filters that make undesired trajectories fully
transparent in the visualization. This is particular helpful when we want to visualize rela-
tions between different data, like how the buses from SP and from other neighboring



Martins et al. Journal of Internet Services and Applications (2021) 12:6 Page 13 of 32

3.45

BB Trips (%)

3.17
2.77
2.35
) 2.01
1.61
1.34
i 0.96
0.69
046.
0.23
0.12
o 001 0.0 puy N
25 30 35 40 45 50 55 60 65

5 10 15 20

Percentage of removed trips

70
Expansion factor threshold F,,in

Fig. 7 Accumulated percentage of trip records removed by thresholding the expansion factor £;. See
Section 4.2

cities relates to each other, so it is suggestive to apply bundling in the entire data and then
differentiate them somehow in the visualization, in this case we used different colors and
filter options.

To perform the analyses related to trip reason, household income, and age of com-
muters, we sliced the whole dataset for each of these features separately and applied
bundling to those subsets. This brings more details to the observed feature because it
removes the interference of other data. This is also more straightforward to execute,
instead of implementing filters to all the features, albeit it is desired to have both options
in the analysis process.

4.4 Parameter setting

The literature is not clear on how to choose good bundling parameters [9]. This was
observed and explicitly studied in Zeng et al. [20], which also proposed ways to com-
pute good parameter settings. However, as they also mention, these settings are valid for
their method (RAEB) and would not generalize directly to other methods, such as CUBu.
Hence, we had to find good parameters for our study empirically. The obtained parameter
set in this way was: image resolution R = 512 x 512 pixels; trail sampling step: 10 pixels
(in line with the recommendation in Van Der Zwan et al. [10] of using for this about 1%
of the image diagonal dimension); kernel size k = 18 pixels; and number of bundling iter-
ations N = 15. In our biggest dataset, represented by all 685115 trips, this configuration
yielded around 3.2 million sample points, which were bundled in around 52 milliseconds
per iteration on a PC with a 4GB NVidia GeForce 940MX graphics card GPU. We used
this parameter set to create most of the bundled visualizations shown next in Section 5,
except for the ones from Section 5.5 where we show the commuting patterns of different
social strata classes. For these particular subsets, we lowered the sampling step to 5 pix-
els and set alpha transparency of the trails to the fraction of 0.15. In practice, half of the
sampling step parameter doubles the number of points in the visualization, and also the
changes in the transparency of trails reduces the amount of details in the visualization.
But we observed that these variations are helpful to highlight the density spots that we
seek in our analysis with no impact in the underlying structure of the visualization.
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4.5 Visualization enhancements

To enrich our visualizations of Sdo Paulo urban mobility, we made two important addi-
tions to CUBu. First, we added the map of the metropolitan area as a background image
and plotted the subway and train lines atop of the bundled image (see Section 5.2).
This way, one can use the map to reason about where certain bundles are; and can
use the rails to see how bundles correspond to specific train infrastructure. Next, we
implemented filters to select the subset of the 17 transportation modes to display in the
visualization, using different categorical colors for each of them. We used this feature to
explore relations between the different modes and their impact on urban mobility (see
Section 5.4).

5 Results

This section presents the results of several analyses of the OD17. We started by explor-
ing the different visual encodings provided by CUBu (density, distance, direction, and
coloring) to visualize the distinct characteristics of the OD17 dataset. These aspects are
covered next in Sections 5.1, 5.2, 5.3, and 5.4. Based on these visual encodings, we next
designed several visualizations for studying specific mobility patterns. These are detailed
in Sections 5.5, 5.6, 5.7, 5.9, and 5.8.

5.1 Adjusting density to visualize bundled trails

As explained in Section 2, standard bundling trades off clutter for overdraw. However,
such a visualization does not tell us how many trails have been grouped in a bundle. The
typical solution for this, pioneered by Holten [37] is to draw semi-transparent trails, each
having a fixed transparency @ < 1. Thus, blending will show high-density trails as more
opaque and low-density ones as more transparent, respectively. In addition to that (since
transparency is not a strong quantitative visual variable [38]), we also encode trail den-
sity, directly estimated by the KDE density p, into color. Figure 8a shows a visualization
obtained using color encoding for the entire OD17 dataset. We can see a few dense paths
but the image still presents much clutter. This fact occurs because on consumer-grade
GPUs, the transparency « is modeled, during blending, as an 8-bit integer value. Hence,
only 255 different transparency levels are possible, i.e., only 255 different trail-density
levels can be displayed. Setting o too high would immediately saturate the transparency
channel where higher trail densities occur — all densities above 255 are clamped to 255.
Setting « lower than 1/255 would result in no image, since this would correspond to zero
opacity on the 8-bit representation.

We address this problem by actually mapping the density p in both transparency and
color. Since p is computed with floating-point accuracy on the GPU during KDE, no
clamping or rounding-off issues occur. This density-based transparency modulation is
useful to highlight even more the high-density areas and reduce general clutter — an
alternative to the use of higher kernel sizes that would create stronger bundles but also
cause more edge distortion. Figure 8b shows the resulting visualization on the same data
as in Fig. 8a. Now high-density bundles appear more salient — there is more dynamic
range in this image. The image suggests that the traffic network of the metropolitan
area can be divided into a few core branches that are strongly connected to the cen-
tral area, where the city of Sdo Paulo is placed. Indeed, this makes sense because this
is the most populous part of the metropolitan area (see Section 3.1). Moreover, most
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Fig. 8 Bundled trajectories colored by density in (a) fixed and (b) modulated transparency modes

transportation systems cross the capital downtown area, including subway and bus lines,
and the main expressways.

5.2 Overlapping subway and train infrastructure vs bundled trails

The public transportation system is the most used by the citizens of the SPMA, respon-
sible for 36.4% of the total daily trips [36, p.56]. The impact of the rail mesh over the
commuting of people is clear when we plot the rail lines over the bundled trajectories, as
regions with the highest flows correspond to the paths of the rail lines (see Fig. 9, where
the rail lines are the black lines). This is an expected result since according to the OD sur-
vey, about 44% of daily trips by public transportation involve the subway or trains. More
interestingly, one may wonder whether the rail system was accurately planned to sup-
ply the demand, as the bundled visualization suggests, or whether the availability of this
transportation option influenced the existence of such dense flows. While we may not
know how to answer this question, traffic managers might use this kind of visualization
to devise policies for public transportation. The high correlation between the paths and
the rail lines also indicate good parameter settings for the bundled visualization in the
metropolitan scale.

Note that this type of correlation (of bundles with rails) is not the same as RAEB [20]. In
RAEB, the bundling was explicitly made to follow roads. In our case, roads are superim-
posed by a bundling that uses only the OD data. One may argue that RAEB, in this sense,
produces more ‘correct’ bundles since these are constrained to follow the roads. How-
ever, upon a closer look, we can see that RAEB cannot have all bundles precisely follow
the roads their trails went along — doing so would basically block any bundling. More-
over, RAEB requires registering OD trails with an accurate road network to function, and
is significantly more complex to implement and more expensive to run than our CUBu-
based solution. Hence, we argue that, by using relatively small kernels k, thus limiting the
distortion of the original trails, our CUBu-based solution is an overall better alternative
to RAEB.

5.3 Mapping length and direction attributes to bundled trails

To explore urban mobility from different perspectives, we need means to visualize its
multiple data attributes. However, this variety of attributes requires distinct visualization
strategies. Two important trail attributes for the study of mobility patterns are trail length
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Fig. 9 Bundled trails colored by density and rail lines

and trail direction. Figures 10 and 11 show the visualization of the entire OD17 dataset
using length and direction, respectively.

Figure 10 displays color-coded trail lengths with density-modulated transparency as
explained in Section 5.1 using the same rainbow colormap as in Fig. 9. We see a single
roughly horizontal red curve in this image, but with maximal opacity. This implies there
are many long trips, all which perfectly map to this trajectory between the same origin
and destination (if they did not, we would see a fanning-out bundle rather than a precise
curve). This is an interesting finding that, we argue, could not be easily found using non-
visual methods. Besides this outlier, other trails, in general, run over regular distances.

Long-distance edges can indicate lack of services or resources that do not satisfy local
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Fig. 10 Mapping trail length to colors
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Fig. 11 Mapping trail direction to colors

regions, forcing people to commute long distances to access them. The OD17 contains
more information that may help to investigate the reason behind these long trips.

Figure 11 shows the same data as in Fig. 10, but with color encoding trail directions.
Also, we used here the directional bundling mode of CUBu which separates different-
direction, close-location, trails into two roughly parallel bundles. We can clearly see the
existence of parallel trajectories over the bundles, which is not surprising because the OD
survey records the typical two-way commuting of people going from and then coming
back to their origins. However, this symmetry would possibly not be seen if we analyzed
a short time period of the day.

5.4 Coloring transportation modes: local vs intercity buses

The OD17 dataset contains 17 transportation modes. While it would be ideal to be able
to see the 17 categories all at once in our bundled visualization, that would not be easy to
do, since it would require the simultaneous encoding of 17 different categorical attributes.
Instead, we use transparency to hide trails according to a user-set selector that filters
them by transportation mode. Figure 12 shows how we can use these filters to visualize
the integration between buses from the city of Sdo Paulo (local buses) and intercity buses.
Each transportation mode has a distinct color — olive for local buses and blue for intercity
buses.

Figure 12 also highlights that these different transportation systems appear to comple-
ment each other. The central region of Sdo Paulo has a very active commerce and industry
(it accounts for 64% of jobs in the SPMA [36, p.48]) so that many people from neighbor-
ing cities work there. Thus, the availability of public transportation and its integration is
very important for these people. This kind of filtering along with bundling helps to better
understand correlations between data attributes — in this case, transportation modes.

5.5 Density per social strata
We used our bundle visualization to study how citizens with different economical
conditions commute in the SPMA. The Brazilian Economical Classification Criterion
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Fig. 12 Edges filtered by transportation modes: bundled trails of local and intercity buses

(BECC) [39] is the official socioeconomic index used in the Brazilian Demographic Cen-
sus, which is performed by the Brazilian Institute of Geography and Statistics. It measures
the purchasing power of the Brazilian society. The BECC is divided into six levels or strata
(Table 2). This index is used in the OD17 survey to complement the mobility data. Table 2
also shows the average monthly income in the local currency (Brazilian reals) and in US
dollars, and the number of trips in the SPMA for each BECC level considering the whole
population and only citizens with age between 6 and 18 years that commute for study (see
Section 5.6).

To compare the mobility patterns of different BECC social strata, we bundled the trails
in each stratum separately, as shown in Figs. 13, 14, 15, 16, 17, 18 and 19. We see signifi-
cant differences in the mobility patterns between the highest and lowest income levels as
shown in Fig. 13. The A level (on the left-hand side) has a high density in the center of
SPMA, which includes the capital downtown surroundings. The highest density is located
in the west, southwest, and northeast neighborhoods near downtown. There are density
flows between the capital and the cities of Barueri and Cotia, which have high-income
residential areas. There are other high dense flows linking the capital to the cities of Séo
Bernardo do Campo and Santo André. Comparing A to the D—E level (on the right-hand
side of Fig. 13), we see that D—E has the highest dense flows in the capital eastern region.

Table 2 Trips grouped per BECC income level, social stratum, and traveler age

BECC level Monthly income Monthly income Trips Tripsof 6to 18
(Brazilian reals (R$)) (US dollars (~US$)) years old students

A 23,345 4,245 3,062,892 184,772

B1 10,386 1,888 3,854,040 260,652

B2 5363 975 12,856,182 963,242

@ 2,965 539 11,277,159 976,745

2 1,691 307 7,852,806 721,218

D-E 708 128 2,233,801 219,612
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Fig. 13 Comparing density of trails between social strata A (left-hand side) and D-E (right-hand side)

In the D—E level map, we can see the absence of high-dense flows in regions that are near-
est to the capital downtown; in contrast, these are present in the A level map. We can see
more details of A and D—E strata in Figs. 14 and 19

When we compare all maps from the A to the D-E level (Figs. 14, 15, 16, 17, 18 and
19), we see that the densest flows (red) tend to displace from the capital downtown to the
eastern region of the city. The concentration of high-density flows is increasingly spread-
ing from the center to the peripheral regions of the SPMA. Even the less dense flows are
increasing and spreading over the SPMA. However, the D—E map shows that those flows
diminish considerably for these social strata. This may indicate that low-income citizens
have less access to the urban mobility system. As a consequence, these people would have
less access to the social, educational, health, and cultural services of the SPMA, as those
facilities are concentrated in the center regions of the cities. For example, data from the
city of Sédo Paulo shows that in 2017, 68% of all cultural facilities were concentrated in
the center areas of Sdo Paulo, from which 30% were located in the downtown (Sé district)
and 14% were located in the Pinheiros district [40]. It is worthy to note that those central
regions also have more job opportunities. Looking at the D—E map, we can see a “hole" in
the capital west downtown. This region (Pinheiros district) concentrates a large number
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Fig. 14 Density of trails of social stratum A
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Fig. 15 Density of trails of social stratum B1

of jobs related to information technology and financial services, which requires workers
with high and medium education levels. Thus, the map shows that low-income citizens
are not going to that region, which reflects the inequality of opportunities that these citi-
zens face. Indeed, data from the city of Sdo Paulo [41] shows that in 2018, Pinheiros had
19.8% of all jobs for medium to high education levels against 7% of all jobs for those with
lower education levels.

5.6 Mobility of young students from different social strata

To explore even more the mobility patterns showed by bundling visualizations, we com-
pared the trips of students from different social strata. We filtered citizens with age
between 6 and 18 years whose commuting reason is study. We split them into two groups,

e
density
low high
N T ﬁ

Fig. 16 Density of trails of social stratum B2
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Fig. 17 Density of trails of social stratum C1

the high- to moderate-income, which includes the BECC levels A, B1, B2, and C1; and the
low-income, which includes levels C2 and D—E. The C2 and D-E strata represent the pop-
ulation with family income of up to 4 minimum wages. These populations cannot pay for
private schools for their children. Generally, students from private schools in Brazil have a
higher performance compared to those from public schools [42]. Also, the socioeconomic
characteristics of both the student and the student’s peers correlate with academic per-
formance [43]. Moreover, the average monthly expenses with education of E, D, and C2
strata are up to 25% of 1 minimum wage [44], which is not enough to pay a private school.
For the C1 stratum, this value is at least 67% of 1 minimum wage. Figures 20 and 21 show

the density maps for the high- to moderate-income and low-income groups.
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Fig. 18 Density of trails of social stratum C2
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Fig. 19 Density of trails of social strata D-E

The density map of the high- to moderate-income students (Fig. 20) shows a large
number of dense flows spread across the central region of SPMA. This part of SPMA
concentrates most private schools, universities, and complementary colleges. In addition,
high density flows are not as long as flows from other maps with all the data (e.g., Fig. 8).
This indicates that trips to study are shorter than trips to work.

The density map of low-income students (Fig. 21) shows that their mobility is very lim-
ited compared to the higher-income students. There are a few dense flows, most of them
outside of the capital downtown. The high density flows of low-income students are more
present in the peripheral regions of the city and also in the neighboring cities. There is
a concentration of both groups in the southwest region, where the neighborhoods of the
Campo Limpo district are.
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Fig. 20 Density of trails of young students from high-income households
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Fig. 21 Density of trails of young students from low-income households

It is worth noting that the public schools in the SPMA are spread across the central
and peripheral parts of the cities. Generally, the students are enrolled in these schools
according to the proximity of their residences [30]. Thus, they do not have to travel long
distances to reach their schools. On the other hand, public schools have lower educa-
tional performance than private schools in Sdo Paulo. Thus, citizens with better financial
conditions usually enroll their children in private schools.

The scarcity of flows from low-income students may indicate that they have less school
choices available, as they are enrolled in schools in their neighborhood. This also mean
that their school peers also live nearby and, presumably, belong to a similar socioeco-
nomic group — which, as mentioned before, is correlated with academic performance.
They also do not use to go to the central region of the city and, thus, have less access
to universities and complementary colleges. This inequality will probably impact these
students’ jobs and economical conditions.

We also see that there are many more trails for the high- to moderate-income stu-
dents (Fig. 20) than for low-income students (Fig. 21). The high-to moderate-income
students also travel larger distances to study, which indicates that they can choose more
flexibly where to study. This fact is corroborated by urban mobility studies that indicate
that people with better financial conditions have more mobility than those with poorest
conditions [45, 46].

5.7 Directions at peak hours
As discussed earlier in Section 3.2, Fig. 4 shows the distribution of trips by hour of
the day, with two main rush-hour peaks (6—-9 AM and 5-8 PM). However, this aggre-
gated table does not give us insights in how the rush-hour patterns may differ. To see
this, we selected the two rush-hour time intervals and visualized them separately, using
directional bundling and color-coding.

Comparing the peak hours, we can see that morning flows going to the SPMA center
(Fig. 22, cyan bundle) are overall denser and longer than the flows coming from the SPMA
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Fig. 22 Directions of trips between 6 to 9 AM

center during the afternoon/evening peak (Fig. 23, red). This suggests that in the morning
people are in a hurry to reach their work, while they are less in a hurry to go back home
(or to other destinations like schools or the gym) in the afternoon/evening.

In Fig. 22, we can see that flows in the morning peak going to the capital downtown
(cyan bundle coming from the east) are denser than opposite flows (red bundle going to
the east). Although flows leaving the capital downtown in the morning are thinner than
their opposite ones, they also concentrate a large number of trips, especially to the east

and southwest. In Fig. 23, the opposite flows seem more equally distributed.
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Fig. 23 Directions of trips between 5 to 8 PM
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5.8 Density by transportation mode

We next split the OD17 data by transportation mode to compare the flow patterns for four
different transportation modes: pedestrians, bicycles, cars, and subway. Figures 24, 25, 26
and 27 show the respective visualizations.

Pedestrian trails (Fig. 24) form several low-density ‘islands’ spread across the SPMA,
with the densest one (red in figure) being in the capital downtown. Most trails are quite
short, which is expected (pedestrians). However, we see a few longer bundles between the
capital downtown and the south and north regions of the city. Dense flows are also present
in the neighboring cities of Diadema, Tabodo da Serra, Osasco, Guarulhos, Po4, and Mogi
das Cruzes. Upon examination, we found these dense flows to match the cities’ downtown

Fig. 25 Density of bicycle trips
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and commercial areas. This information could be useful to find places that could deserve
the attention of local governments to provide improvements for pedestrians.

As most of the pedestrian trips are short, the bundling technique forms a few flows
over the SPMA. Using bundling for those short trips result in low-density trails, which
is less useful compared to long trips. Thus, in these cases it may not be necessary to use
bundling. In the upper left area of Fig. 24, we can see the OD trails without using bundling,
which are near identical to the main bundled area.

Bicycle trips (Fig. 25) exhibit similar patterns to pedestrian ones. They are shorter than
three kilometers on average. In this figure, we see some thin flows in the capital down-
town area. There are also some more salient flows in the capital northeast and in the
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Fig. 27 Density of subway trips
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neighboring cities of Suzano and Guarulhos. However, comparing Fig. 25 with all other
transportation means, we immediately see that bicycle trips are by far the least numer-
ous, and exhibit a far sparser pattern, with few star-shaped ‘hubs’ where many trails meet.
This suggests that the cycling infrastructure is quite limited, and fragmented. Figure 25
also shows trails without using bundling in the upper left corner.

The car trips (Fig. 26) show a pattern similar to the one displaying the entire dataset,
i.e., all transportation modes (see e.g. Fig. 8). For a start, this tells that cars are the dom-
inant form of transportation in the SPMA, accounting for the main traffic patterns. The
highest-density flows occur in the capital downtown. There are several high-density flows
linking the downtown area to the other regions of the capital, and also coming and going
from the cities of Guarulhos, Barueri, Cotia, Sio Bernardo do Campo, Santo André,
Maui, and Mogi das Cruzes. Compared to all other transportation modes, cars show
a far more ‘spread out’ pattern that covers very large areas, indicating that cars are the
prevalent transportation mode in most parts of the SPMA.

Finally, subway trips (Fig. 27) show a strong star-shaped pattern, with very high density
bundles that connect the capital with the neighboring cities, due to the integration of
the subway system with the train system. Compared to all other transportation modes,
subways show a clearer, simpler, trip pattern structure.

5.9 Different trip reasons
We next aim to study whether trips done for different reasons exhibit distinct trip pat-
terns. For this, we create bundled visualizations from the OD17 data with trips grouped
by work, health, education, and shopping. Figures 28, 29, 30 and 31 show the results.
Work-related trips (Fig. 28) are overall longer than the other trip reasons, and also cover
a larger area (see the central agglomeration in the figure). Interestingly, the longest trips,
between the east side and the city center (red bundle), are similar in pattern to the longest
trips for health and education. Trips for health reasons are sparser than work-related ones,
and also show a more star-like pattern, with long bundles connecting to the central area.
This may indicate that peripheral regions are not well served by health services. Trips for
studying reasons (Fig. 30) have the largest distances between the northeast and the west-
ern regions of the SPMA. Their pattern is somewhere in-between the work and health
trips. Interestingly, education trips show several ‘loops’ in the center of the SPMA. Finally,
shopping trips (Fig. 31) show the least dense, and overall also shortest, patterns, apart
from a few outliers like the red (important) bundle connecting the center to the northeast.
This tells that, unlike health, education, and work, shopping facilities (which are actually
provided by private companies) are better distributed over the SPMA. This outlines that
bundled visualizations are useful not only when they show the presence of certain data,
e.g. trails linking far-apart regions; the absence of patterns is also insightful, as in the case
of the lack of long shopping trips.

6 Conclusions and future work

In this work, we explored the usage of trail bundling for creating visualizations of various
aspects of the urban mobility data from the Sdo Paulo Metropolitan Area. Our analyses on
the characteristics of the 2017 OD survey shows that bundling can be used to identify and
compare different mobility patterns implied by different subsets of the data and subsets
of the available attributes. By suitably combining filtering (to reduce the amount of data
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trail length
L

Fig. 28 Distance of trips for work reasons

and/or attributes to be explored) with bundling (to simplify the created visualizations and
reduce visual clutter) and with the available visual channels (opacity, color, direction),
we highlight different patterns in the OD17 dataset which would not have been easily
obtainable by classical data mining and data analysis tools. In contrast to earlier work [14],
this paper presents visual explorations of additional attribute combinations — density per
social strata, mobility of young students per social strata, directions at peak hours, density
by transportation mode, and trip distance per trip reasons. Together with earlier results
[10, 14], our results strengthen the claim that trail bundling is an useful and usable tool

for the visual analysis of large OD trail-sets.

' : low trail length %

Fig. 29 Distance of trips for health-related reasons
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trail length

w

Fig. 30 Distance of trips for education reasons

The bundled layout for the trajectory dataset highlights its centrality structure over
the represented area. Moreover, this structure matches the subway and rail lines infras-
tructure of Sdo Paulo. Albeit this was not a surprise, the correlation suggests that our
parameters were well tuned for the visualization in the metropolitan scale. Our methodol-
ogy to reduce the dataset complexity from 42 million trips to less than a million, and also
our customization of a general-purpose bundling framework (CUBu) to bundle specific
subsets of data and/or attributes were key points that made this analysis possible.

As future work, we intend to explore improvements in the usage and usability of bun-
dled visualizations. From a visualization perspective, improvements in the map to display
region divisions on top of the trajectories, as proposed in Klein et al. [16], can help to
better identify the connections between the regions. A different approach to convey the

trail length
-

Fig. 31 Distance of trips for shopping reasons
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density information of bundles could be to scale edge lines thickness proportionally to
the expansion factor of each record instead of using colors, similarly to Lhuillier et al.
[25]. This design is worth exploring, as it would eliminate the need to replicate edges and
would therefore significantly reduce the size of the dataset. These are important steps to
enable the use of bundling for real-time analysis over the Internet.

From an application perspective, there are many other possibilities for urban mobil-
ity analysis using data from the OD survey itself and along with other datasets, such as
those from private mobility companies, IoT devices, and bike-sharing systems. Last but
not least, we also intend to perform a user study to assess the usefulness of bundled

visualizations with feedback from actual traffic managers.
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