Skip to main content

Advertisement

You are viewing the new article page. Let us know what you think. Return to old version

Original Papers | Open | Published:

Cloud computing: state-of-the-art and research challenges

Abstract

Cloud computing has recently emerged as a new paradigm for hosting and delivering services over the Internet. Cloud computing is attractive to business owners as it eliminates the requirement for users to plan ahead for provisioning, and allows enterprises to start from the small and increase resources only when there is a rise in service demand. However, despite the fact that cloud computing offers huge opportunities to the IT industry, the development of cloud computing technology is currently at its infancy, with many issues still to be addressed. In this paper, we present a survey of cloud computing, highlighting its key concepts, architectural principles, state-of-the-art implementation as well as research challenges. The aim of this paper is to provide a better understanding of the design challenges of cloud computing and identify important research directions in this increasingly important area.

References

  1. 1.

    Al-Fares M et al (2008) A scalable, commodity data center network architecture. In: Proc SIGCOMM

  2. 2.

    Amazon Elastic Computing Cloud, aws.amazon.com/ec2

  3. 3.

    Amazon Web Services, aws.amazon.com

  4. 4.

    Ananthanarayanan R, Gupta K et al (2009) Cloud analytics: do we really need to reinvent the storage stack? In: Proc of HotCloud

  5. 5.

    Armbrust M et al (2009) Above the clouds: a Berkeley view of cloud computing. UC Berkeley Technical Report

  6. 6.

    Berners-Lee T, Fielding R, Masinter L (2005) RFC 3986: uniform resource identifier (URI): generic syntax, January 2005

  7. 7.

    Bodik P et al (2009) Statistical machine learning makes automatic control practical for Internet datacenters. In: Proc HotCloud

  8. 8.

    Brooks D et al (2000) Power-aware microarchitecture: design and modeling challenges for the next-generation microprocessors, IEEE Micro

  9. 9.

    Chandra A et al (2009) Nebulas: using distributed voluntary resources to build clouds. In: Proc of HotCloud

  10. 10.

    Chang F, Dean J et al (2006) Bigtable: a distributed storage system for structured data. In: Proc of OSDI

  11. 11.

    Chekuri C, Khanna S (2004) On multi-dimensional packing problems. SIAM J Comput 33(4):837–851

  12. 12.

    Church K et al (2008) On delivering embarrassingly distributed cloud services. In: Proc of HotNets

  13. 13.

    Clark C, Fraser K, Hand S, Hansen JG, Jul E, Limpach C, Pratt I, Warfield A (2005) Live migration of virtual machines. In: Proc of NSDI

  14. 14.

    Cloud Computing on Wikipedia, en.wikipedia.org/wiki/Cloudcomputing, 20 Dec 2009

  15. 15.

    Cloud Hosting, CLoud Computing and Hybrid Infrastructure from GoGrid, http://www.gogrid.com

  16. 16.

    Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: Proc of OSDI

  17. 17.

    Dedicated Server, Managed Hosting, Web Hosting by Rackspace Hosting, http://www.rackspace.com

  18. 18.

    FlexiScale Cloud Comp and Hosting, www.flexiscale.com

  19. 19.

    Ghemawat S, Gobioff H, Leung S-T (2003) The Google file system. In: Proc of SOSP, October 2003

  20. 20.

    Google App Engine, URL http://code.google.com/appengine

  21. 21.

    Greenberg A, Jain N et al (2009) VL2: a scalable and flexible data center network. In: Proc SIGCOMM

  22. 22.

    Guo C et al (2008) DCell: a scalable and fault-tolerant network structure for data centers. In: Proc SIGCOMM

  23. 23.

    Guo C, Lu G, Li D et al (2009) BCube: a high performance, server-centric network architecture for modular data centers. In: Proc SIGCOMM

  24. 24.

    Hadoop Distributed File System, hadoop.apache.org/hdfs

  25. 25.

    Hadoop MapReduce, hadoop.apache.org/mapreduce

  26. 26.

    Hamilton J (2009) Cooperative expendable micro-slice servers (CEMS): low cost, low power servers for Internet-scale services In: Proc of CIDR

  27. 27.

    IEEE P802.3az Energy Efficient Ethernet Task Force, www.ieee802.org/3/az

  28. 28.

    Kalyvianaki E et al (2009) Self-adaptive and self-configured CPU resource provisioning for virtualized servers using Kalman filters. In: Proc of international conference on autonomic computing

  29. 29.

    Kambatla K et al (2009) Towards optimizing Hadoop provisioning in the cloud. In: Proc of HotCloud

  30. 30.

    Kernal Based Virtual Machine, www.linux-kvm.org/page/MainPage

  31. 31.

    Krautheim FJ (2009) Private virtual infrastructure for cloud computing. In: Proc of HotCloud

  32. 32.

    Kumar S et al (2009) vManage: loosely coupled platform and virtualization management in data centers. In: Proc of international conference on cloud computing

  33. 33.

    Li B et al (2009) EnaCloud: an energy-saving application live placement approach for cloud computing environments. In: Proc of international conf on cloud computing

  34. 34.

    Meng X et al (2010) Improving the scalability of data center networks with traffic-aware virtual machine placement. In: Proc INFOCOM

  35. 35.

    Mysore R et al (2009) PortLand: a scalable fault-tolerant layer 2 data center network fabric. In: Proc SIGCOMM

  36. 36.

    NIST Definition of Cloud Computing v15, csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc

  37. 37.

    Osman S, Subhraveti D et al (2002) The design and implementation of zap: a system for migrating computing environments. In: Proc of OSDI

  38. 38.

    Padala P, Hou K-Y et al (2009) Automated control of multiple virtualized resources. In: Proc of EuroSys

  39. 39.

    Parkhill D (1966) The challenge of the computer utility. Addison-Wesley, Reading

  40. 40.

    Patil S et al (2009) In search of an API for scalable file systems: under the table or above it? HotCloud

  41. 41.

    Salesforce CRM, http://www.salesforce.com/platform

  42. 42.

    Sandholm T, Lai K (2009) MapReduce optimization using regulated dynamic prioritization. In: Proc of SIGMETRICS/Performance

  43. 43.

    Santos N, Gummadi K, Rodrigues R (2009) Towards trusted cloud computing. In: Proc of HotCloud

  44. 44.

    SAP Business ByDesign, www.sap.com/sme/solutions/businessmanagement/businessbydesign/index.epx

  45. 45.

    Sonnek J et al (2009) Virtual putty: reshaping the physical footprint of virtual machines. In: Proc of HotCloud

  46. 46.

    Srikantaiah S et al (2008) Energy aware consolidation for cloud computing. In: Proc of HotPower

  47. 47.

    Urgaonkar B et al (2005) Dynamic provisioning of multi-tier Internet applications. In: Proc of ICAC

  48. 48.

    Valancius V, Laoutaris N et al (2009) Greening the Internet with nano data centers. In: Proc of CoNext

  49. 49.

    Vaquero L, Rodero-Merino L, Caceres J, Lindner M (2009) A break in the clouds: towards a cloud definition. ACM SIGCOMM computer communications review

  50. 50.

    Vasic N et al (2009) Making cluster applications energy-aware. In: Proc of automated ctrl for datacenters and clouds

  51. 51.

    Virtualization Resource Chargeback, www.vkernel.com/products/EnterpriseChargebackVirtualAppliance

  52. 52.

    VMWare ESX Server, www.vmware.com/products/esx

  53. 53.

    Windows Azure, www.microsoft.com/azure

  54. 54.

    Wood T et al (2007) Black-box and gray-box strategies for virtual machine migration. In: Proc of NSDI

  55. 55.

    XenSource Inc, Xen, www.xensource.com

  56. 56.

    Zaharia M et al (2009) Improving MapReduce performance in heterogeneous environments. In: Proc of HotCloud

  57. 57.

    Zhang Q et al (2007) A regression-based analytic model for dynamic resource provisioning of multi-tier applications. In: Proc ICAC

Download references

Author information

Correspondence to Raouf Boutaba.

Rights and permissions

Reprints and Permissions

About this article

Keywords

  • Cloud computing
  • Data centers
  • Virtualization