- SI: Future Net Service Models & Designs
- Open Access
- Published:
Packet level video quality evaluation of extensive H.264/AVC and SVC transmission simulation
Journal of Internet Services and Applications volume 2, pages 129–138 (2011)
Abstract
Video transmission over error prone channels as present in most of today’s communication channels, such as Mobile TV or some IPTV systems, is constantly subject to research. Simulation is an important instrument to evaluate performance of the overall video transmission system, but the multitude of parameters often requires large and time-consuming simulation sets. In this paper, we present a packet level mechanism for fast evaluation of error-prone H.264/AVC and SVC video transmission with application layer video quality metrics, such as PSNR. Our approach significantly reduces the overall simulation time by eliminating redundancy in the evaluation phase and utilizing the prediction structure of the video codec. The benefit of the presented packet level video quality evaluation is evaluated with an exemplary simulation setup of an IPTV service with link congestion.
References
Wiegand T, Sullivan G, Bjontegaard G, Luthra A (2003) Overview of the H. 264/AVC video coding standard. IEEE Trans Circuits Syst Video Technol 13:560–576
Schwarz H, Marpe D, Wiegand T (2007) Overview of the scalable video coding extension of the H. 264/AVC standard. IEEE Trans Circuits Syst Video Technol 17:1103–1120
Klaue J, Rathke B, Wolisz A (2003) EvalVid—a framework for video transmission and quality evaluation. In: Computer performance. Lecture notes in computer science, vol 2794. Springer, Berlin, pp 255–272. doi:10.1007/978-3-540-45232-4_16
Ke C-H, Lin C-H, Shieh C-K, Hwang W-S (2006) A novel realistic simulation tool for video transmission over wireless network. In: International conference on sensor networks, ubiquitous, and trustworthy computing, vol 1, pp 275–283
Lie A, Klaue J (2008) EvalVid-RA: trace driven simulation of rate adaptive MPEG-4 VBR video. Multimed Syst 14:33–50. doi:10.1007/s00530-007-0110-0
Ke C, Shieh C, Hwang W, Ziviani A (2008) An evaluation framework for more realistic simulations of MPEG video transmission. J Inf Sci Eng 24:425–440
Le TA, Nguyen H, Zhang H (2010) EvalSVC—an evaluation platform for scalable video coding transmission. In: 14th international symposium on consumer electronics, Braunschweig, Germany, June 2010
Migliorini D, Mingozzi E, Vallati C (2010) QoE-oriented performance evaluation of video streaming over WiMAX. In: Wired/wireless Internet communications, pp 240–251
Kondrad L, Bouazizi I, Vadakital V, Hannuksela M, Gabbouj M (2009) Cross-layer optimized transmission of h.264/SVC streams over dvb-t2 broadcast system. In: IEEE international symposium on broadband multimedia systems and broadcasting. BMSB’09, May 2009, pp 1–5
Reibman A, Vaishampayan V, Sermadevi Y (2004) Quality monitoring of video over a packet network. IEEE Trans Multimed 6:327–334
Tao S, Apostolopoulos J, Guerin R (2008) Real-time monitoring of video quality in IP networks. IEEE/ACM Trans Netw, 16:1052–1065
Liang Y, Apostolopoulos J, Girod B (2003) Analysis of packet loss for compressed video: does burst-length matter. In: IEEE international conference on acoustics, speech, and signal processing. Proceedings (ICASSP’03), April. vol 5, pp V–684–7
Stuhlmüller K, Farber N, Link M, Girod B (2000) Analysis of video transmission over lossy channels. IEEE J Sel Areas Commun 18:1012–1032
Li Z, Chakareski J, Niu X, Zhang Y, Gu W (2009) Modeling and analysis of distortion caused by Markov-model burst packet losses in video transmission. IEEE Trans Circuits Syst Video Technol 19:917–931
Skupin R, Hellge C, Schierl T, Wiegand T (2010) Fast application-level video quality evaluation for extensive error-prone channel simulations. In: 15th IEEE international workshop on computer aided modeling, analysis and design of communication links and networks (CAMAD), Dec 2010, pp 6–10
Liebl G, Tappayuthpijarn K, Grüneberg K, Schierl T, Keip C, Stadali H (2010) Simulation platform for multimedia broadcast over DVB-sh. In: Proceedings of the 3rd international ICST conference on simulation tools and techniques, SIMUTools’10, ICST, Brussels, Belgium, pp 84:1–84:10.
Hellge C, Gómez-Barquero D, Schierl T, Wiegand T (2010) Intra-burst layer aware FEC for scalable video coding delivery in DVB-h. In: 2010 IEEE international conference on multimedia and expo (ICME), July 2010, pp 498–503
Schwarz H, Marpe D, Wiegand T (2006) Analysis of hierarchical b pictures and MCTF. In: IEEE international conference on multimedia and expo, July 2006, pp 1929–1932
Hong D, Horowitz M, Eleftheriadis A, Wiegand T (2010) H.264 hierarchical p coding in the context of ultra-low delay, low complexity applications. In: Picture coding symposium (PCS), Dec 2010, pp 146–149
Wang Z, Bovik A, Lu L (2002) Why is image quality assessment so difficult. In: IEEE international conference on acoustics speech and signal processing, vol 4. Springer, Berlin, pp 3313–3316. IEEE, New York 1999
Girod B (1993) What’s wrong with mean-squared error. In: Digital images and human vision. MIT Press, Cambridge, pp 207–220
ITU-T (2008) International Telecommunication Union, Geneva, Switzerland, Recommendation J.247—objective perceptual multimedia video quality measurement in the presence of a full reference.
Brunnstrom K, Hands D, Speranza F, Webster A (2009) VQeg validation and ITU standardization of objective perceptual video quality metrics [Standards in a Nutshell]. IEEE Signal Process Mag 26:96–101
Winkler S (2010) Video quality measurement standards—Current status and trends. In: 7th international conference on information, communications and signal processing. ICICS 2009. IEEE, New York, pp 1–5
Engelke U, Zepernick H (2007) Perceptual-based quality metrics for image and video services: a survey. In: 3rd EuroNGI conference on next generation Internet networks. IEEE, New York, pp 190–197
Opticom P (2005) Advanced perceptual evaluation of video quality.
Wang Z, Lu L, Bovik AC (2004) Video quality assessment based on structural distortion measurement. Signal Process Image Commun 19:121–132
ITU-T International Telecommunication Union, Geneva, Switzerland (2008) Recommendation G.826—End-to-end error performance parameters and objectives for international, constant bit rate digital paths and connections
DVB, Digital Video Broadcasting (2010) DVB-SH Implementation Guidelines Issue 2, DVB Document A120
Uitto M, Vehkaperä J (2009) Spatial enhancement layer utilisation for SVC in base layer error concealment. In: Proceedings of the 5th international ICST mobile multimedia communications conference, Mobimedia ’09, ICST, Brussels, Belgium, pp 10:1–10:7.
JVT (2009) SVC reference software JSVM (joint scalable video model) 9.17.
Wenger S, Wang Y-K, Schierl T, Eleftheriadis A (2011) Rfc6190: Rtp payload format for SVC video. In: Internet engineering task force (IETF).
Mushkin M, Bar-David I (2002) Capacity and coding for the Gilbert-Elliot channels. IEEE Trans Inf Theory 35:1277–1290
Issariyakul T, Hossain E (2007) Introduction to Network Simulator 2 (NS2). pp. 1–18
Ellis M, Perkins C, Pezaros D (2011) End-to-end and network-internal measurements on real-time traffic to residential users. In: Proc of ACM multimedia systems
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Skupin, R., Hellge, C., Schierl, T. et al. Packet level video quality evaluation of extensive H.264/AVC and SVC transmission simulation. J Internet Serv Appl 2, 129–138 (2011). https://doi.org/10.1007/s13174-011-0025-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s13174-011-0025-z
Keywords
- Network simulation
- Video quality evaluation
- H.264/AVC
- SVC
- IPTV