Weiser M. The computer for the 21st century. Sci Am. 1991; 265(3):94–104.

Article
Google Scholar

Weiser M. Some computer science issues in ubiquitous computing. Commun ACM. 1993; 36(7):75–84.

Article
Google Scholar

Lyytinen K, Yoo Y. Ubiquitous computing. Commun ACM. 2002; 45(12):63–96.

Article
Google Scholar

Estrin D, Govindan R, Heidemann JS, Kumar S. Next century challenges: Scalable coordination in sensor networks. In: MobiCom’99. New York: ACM: 1999. p. 263–70.

Google Scholar

Pottie GJ, Kaiser WJ. Wireless integrated network sensors. Commun ACM. 2000; 43(5):51–8.

Article
Google Scholar

Ashton K. That ’Internet of Things’ Thing. RFiD J. 2009; 22:97–114.

Google Scholar

Atzori L, Iera A, Morabito G. The internet of things: a survey. Comput Netw. 2010; 54(15):2787–805.

Article
MATH
Google Scholar

Mann S. Wearable computing: A first step toward personal imaging. Computer. 1997; 30(2):25–32.

Article
Google Scholar

Martin T, Healey J. 2006’s wearable computing advances and fashions. IEEE Pervasive Comput. 2007; 6(1):14–6.

Article
Google Scholar

Lee EA. Cyber-physical systems-are computing foundations adequate. In: NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques and Roadmap, volume 2. Citeseer: 2006.

Rajkumar RR, Lee I, Sha L, Stankovic J. Cyber-physical systems: the next computing revolution. In: 47th Design Automation Conference. ACM: 2010.

Abowd GD, Mynatt ED. Charting past, present, and future research in ubiquitous computing. ACM Trans Comput Human Interact (TOCHI). 2000; 7(1):29–58.

Article
Google Scholar

Stajano F. Security for ubiquitous computing.Hoboken: Wiley; 2002.

Book
Google Scholar

Pierce BC. Types and programming languages, 1st edition. Cambridge: The MIT Press; 2002.

MATH
Google Scholar

Cousot P, Cousot R. Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints. In: POPL. New York: ACM: 1977. p. 238–52.

Google Scholar

McMillan KL. Symbolic model checking. Norwell: Kluwer Academic Publishers; 1993.

Book
MATH
Google Scholar

Leroy X. Formal verification of a realistic compiler. Commun ACM. 2009; 52(7):107–15.

Article
Google Scholar

Rice HG. Classes of recursively enumerable sets and their decision problems. Trans Amer Math Soc. 1953; 74(1):358–66.

Article
MathSciNet
MATH
Google Scholar

Wilson RP, Lam MS. Efficient context-sensitive pointer analysis for c programs. In: PLDI. New York: ACM: 1995. p. 1–12.

Google Scholar

Cadar C, Dunbar D, Engler D. KLEE: Unassisted and automatic generation of high-coverage tests for complex systems programs. In: OSDI. Berkeley: USENIX: 2008. p. 209–24.

Google Scholar

Coppa E, Demetrescu C, Finocchi I. Input-sensitive profiling. In: PLDI. New York: ACM: 2012. p. 89–98.

Google Scholar

Graham SL, Kessler PB, McKusick MK. gprof: a call graph execution profiler (with retrospective). In: Best of PLDI. New York: ACM: 1982. p. 49–57.

Google Scholar

Godefroid P, Klarlund N, Sen K. Dart: directed automated random testing. In: PLDI. New York: ACM: 2005. p. 213–23.

Google Scholar

Nethercote N, Seward J. Valgrind: a framework for heavyweight dynamic binary instrumentation. In: PLDI. New York: ACM: 2007. p. 89–100.

Google Scholar

Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ, Hazelwood K. Pin: Building customized program analysis tools with dynamic instrumentation. In: PLDI. New York: ACM: 2005. p. 190–200.

Google Scholar

Rimsa AA, D’Amorim M, Pereira FMQ. Tainted flow analysis on e-SSA-form programs. In: CC. Berlin: Springer: 2011. p. 124–43.

Google Scholar

Serebryany K, Bruening D, Potapenko A, Vyukov D. Addresssanitizer: a fast address sanity checker. In: ATC. Berkeley: USENIX: 2012. p. 28.

Google Scholar

Russo A, Sabelfeld A. Dynamic vs. static flow-sensitive security analysis. In: CSF. Washington: IEEE: 2010. p. 186–99.

Google Scholar

Carlini N, Barresi A, Payer M, Wagner D, Gross TR. Control-flow bending: On the effectiveness of control-flow integrity. In: SEC. Berkeley: USENIX: 2015. p. 161–76.

Google Scholar

Klein G, Elphinstone K, Heiser G, Andronick J, Cock D, Derrin P, Elkaduwe D, Engelhardt K, Kolanski R, Norrish M, Sewell T, Tuch H, Winwood S. sel4: Formal verification of an os kernel. In: SOSP. New York: ACM: 2009. p. 207–20.

Google Scholar

Jourdan J-H, Laporte V, Blazy S, Leroy X, Pichardie D. A formally-verified c static analyzer. In: POPL. New York: ACM: 2015. p. 247–59.

Google Scholar

Soares LFG, Rodrigues RF, Moreno MF. Ginga-NCL: the declarative environment of the brazilian digital tv system. J Braz Comp Soc. 2007; 12(4):1–10.

Article
Google Scholar

Maas AJ, Nazaré H, Liblit B. Array length inference for c library bindings. In: ASE. New York: ACM: 2016. p. 461–71.

Google Scholar

Fedrecheski G, Costa LCP, Zuffo MK. ISCE. Washington: IEEE: 2016.

Rellermeyer JS, Duller M, Gilmer K, Maragkos D, Papageorgiou D, Alonso G. The software fabric for the internet of things. In: IOT. Berlin, Heidelberg: Springer-Verlag: 2008. p. 87–104.

Google Scholar

Furr M, Foster JS. Checking type safety of foreign function calls. ACM Trans Program Lang Syst. 2008; 30(4):18:1–18:63.

Article
Google Scholar

Dagenais B, Hendren L. OOPSLA. New York: ACM: 2008. p. 313–28.

Melo LTC, Ribeiro RG, de Araújo MR, Pereira FMQ. Inference of static semantics for incomplete c programs. Proc ACM Program Lang. 2017; 2(POPL):29:1–29:28.

Article
Google Scholar

Godefroid P. Micro execution. In: ICSE. New York: ACM: 2014. p. 539–49.

Google Scholar

Manna Z, Waldinger RJ. Toward automatic program synthesis. Commun ACM. 1971; 14(3):151–65.

Article
MATH
Google Scholar

López HA, Marques ERB, Martins F, Ng N, Santos C, Vasconcelos VT, Yoshida N. Protocol-based verification of message-passing parallel programs. In: OOPSLA. New York: ACM: 2015. p. 280–98.

Google Scholar

Bronevetsky G. Communication-sensitive static dataflow for parallel message passing applications. In: CGO. Washington: IEEE: 2009. p. 1–12.

Google Scholar

Teixeira FA, Machado GV, Pereira FMQ, Wong HC, Nogueira JMS, Oliveira LB. Siot: Securing the internet of things through distributed system analysis. In: IPSN. New York: ACM: 2015. p. 310–21.

Google Scholar

Lhoták O, Hendren L. Context-sensitive points-to analysis: Is it worth it? In: CC. Berlin, Heidelberg: Springer: 2006. p. 47–64.

Google Scholar

Agha G. An overview of actor languages. In: OOPWORK. New York: ACM: 1986. p. 58–67.

Google Scholar

Haller P, Odersky M. Actors that unify threads and events. In: Proceedings of the 9th International Conference on Coordination Models and Languages. COORDINATION’07. Berlin, Heidelberg: Springer-Verlag: 2007. p. 171–90.

Google Scholar

Imam SM, Sarkar V. Integrating task parallelism with actors. In: OOPSLA. New York: ACM: 2012. p. 753–72.

Google Scholar

Cousot P, Cousot R, Logozzo F. A parametric segmentation functor for fully automatic and scalable array content analysis. In: POPL. New York: ACM: 2011. p. 105–18.

Google Scholar

Nazaré H, Maffra I, Santos W, Barbosa L, Gonnord L, Pereira FMQ. Validation of memory accesses through symbolic analyses. In: OOPSLA. New York: ACM: 2014.

Google Scholar

Paisante V, Maalej M, Barbosa L, Gonnord L, Pereira FMQ. Symbolic range analysis of pointers. In: CGO. New York: ACM: 2016. p. 171–81.

Google Scholar

Maalej M, Paisante V, Ramos P, Gonnord L, Pereira FMQ. Pointer disambiguation via strict inequalities. In: Proceedings of the 2017 International Symposium on Code Generation and Optimization, *CGO ’17*. Piscataway: IEEE Press: 2017. p. 134–47.

Google Scholar

Maalej M, Paisante V, Pereira FMQ, Gonnord L. Combining range and inequality information for pointer disambiguation. Sci Comput Program. 2018; 152(C):161–84.

Article
Google Scholar

Sui Y, Fan X, Zhou H, Xue J. Loop-oriented pointer analysis for automatic simd vectorization. ACM Trans Embed Comput Syst. 2018; 17(2):56:1–56:31.

Article
Google Scholar

Poovendran R. Cyber-physical systems: Close encounters between two parallel worlds [point of view]. Proc IEEE. 2010; 98(8):1363–6.

Article
Google Scholar

Conti JP. The internet of things. Commun Eng. 2006; 4(6):20–5.

Article
MathSciNet
Google Scholar

Rinaldi SM, Peerenboom JP, Kelly TK. Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 2001; 21(6):11–25.

Article
Google Scholar

US Bureau of Transportation Statistics BTS. Average age of automobiles and trucks in operation in the united states. 2017. Accessed 14 Sept 2017.

U.S. Department of Transportation. IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments WAVE. 2013.

Maurer M, Gerdes JC, Lenz B, Winner H. Autonomous driving: technical, legal and social aspects.Berlin: Springer; 2016.

Book
Google Scholar

Patel N. 90% of startups fail: Here is what you need to know about the 10%. 2015. https://www.forbes.com/sites/neilpatel/2015/01/16/90-of-startups-will-fail-heres-what-you-need-to-know-about-the-10/. Accessed 09 Sept 2018.

Jacobsson A, Boldt M, Carlsson B. A risk analysis of a smart home automation system. Futur Gener Comput Syst. 2016; 56(Supplement C):719–33.

Article
Google Scholar

Rivest RL, Shamir A, Adleman LM. A method for obtaining digital signatures and public-key cryptosystems. Commun ACM. 1978; 21(2):120–6.

Article
MathSciNet
MATH
Google Scholar

Miller VS. Use of elliptic curves in cryptography. In: CRYPTO, volume 218 of Lecture Notes in Computer Science. Berlin: Springer: 1985. p. 417–26.

Google Scholar

Koblitz N. Elliptic curve cryptosystems. Math Comput. 1987; 48(177):203–9.

Article
MathSciNet
MATH
Google Scholar

Barbulescu R, Gaudry P, Joux A, Thomé E. A heuristic quasi-polynomial algorithm for discrete logarithm in finite fields of small characteristic. In: EUROCRYPT 2014. Berlin: Springer: 2014. p. 1–16.

Google Scholar

Diffie W, Hellman M. New directions in cryptography. IEEE Trans Inf Theor. 2006; 22(6):644–54.

Article
MathSciNet
MATH
Google Scholar

Barker E. Federal Information Processing Standards Publication (FIPS PUB) 186-4 Digital Signature Standard (DSS). 2013.

Barker E, Johnson D, Smid M. Special publication 800-56A recommendation for pair-wise key establishment schemes using discrete logarithm cryptography. 2006.

Simon DR. On the power of quantum computation. In: Symposium on Foundations of Computer Science (SFCS 94). Washington: IEEE Computer Society: 1994. p. 116–23.

Google Scholar

Knill E. Physics: quantum computing. Nature. 2010; 463(7280):441–3.

Article
Google Scholar

Grover LK. A fast quantum mechanical algorithm for database search. In: Proceedings of ACM STOC 1996. New York: ACM: 1996. p. 212–19.

Google Scholar

Shor PW. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J Comput. 1997; 26(5):1484–509.

Article
MathSciNet
MATH
Google Scholar

McEliece RJ. A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. 1978; 44:114–6.

Google Scholar

Merkle RC. Secrecy, authentication and public key systems / A certified digital signature. PhD thesis, Stanford. 1979.

Regev O. On lattices, learning with errors, random linear codes, and cryptography. In: Proceedings of ACM STOC ’05. STOC ’05. New York: ACM: 2005. p. 84–93.

Google Scholar

Buchmann J, Dahmen E, Hülsing A. Xmss - a practical forward secure signature scheme based on minimal security assumptions In: Yang B-Y, editor. PQCrypto. Berlin: Springer: 2011. p. 117–29.

Google Scholar

McGrew DA, Curcio M, Fluhrer S. Hash-Based Signatures. Internet Engineering Task Force (IETF). 2017. https://datatracker.ietf.org/doc/html/draft-mcgrew-hash-sigs-13. Accessed 9 Sept 2018.

Bennett CH, Brassard G. Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE ICCSSP’84. New York: IEEE Press: 1984. p. 175–9.

Google Scholar

Bos J, Costello C, Ducas L, Mironov I, Naehrig M, Nikolaenko V, Raghunathan A, Stebila D. Frodo: Take off the ring! practical, quantum-secure key exchange from LWE. Cryptology ePrint Archive, Report 2016/659. 2016. http://eprint.iacr.org/2016/659.

Alkim E, Ducas L, Pöppelmann T, Schwabe P. Post-quantum key exchange - a new hope. Cryptology ePrint Archive, Report 2015/1092. 2015. http://eprint.iacr.org/2015/1092.

Misoczki R, Tillich J-P, Sendrier N, PBarreto LSM. MDPC-McEliece: New McEliece variants from moderate density parity-check codes. In: IEEE International Symposium on Information Theory – ISIT’2013. Istambul: IEEE: 2013. p. 2069–73.

Google Scholar

Hoffstein J, Pipher J, Silverman JH. Ntru: A ring-based public key cryptosystem. In: International Algorithmic Number Theory Symposium. Berlin: Springer: 1998. p. 267–88.

Google Scholar

Bos J, Ducas L, Kiltz E, Lepoint T, Lyubashevsky V, Schanck JM, Schwabe P, Stehlé D. Crystals–kyber: a CCA-secure module-lattice-based KEM. IACR Cryptol ePrint Arch. 2017; 2017:634.

Google Scholar

Aragon N, Barreto PSLM, Bettaieb S, Bidoux L, Blazy O, Deneuville J-C, Gaborit P, Gueron S, Guneysu T, Melchor CA, Misoczki R, Persichetti E, Sendrier N, Tillich J-P, Zemor G. BIKE: Bit flipping key encapsulation. Submission to the NIST Standardization Process on Post-Quantum Cryptography. 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

Barreto PSLM, Gueron S, Gueneysu T, Misoczki R, Persichetti E, Sendrier N, Tillich J-P. Cake: Code-based algorithm for key encapsulation. In: IMA International Conference on Cryptography and Coding. Berlin: Springer: 2017. p. 207–26.

Google Scholar

Jao D, De Feo L. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies. In: International Workshop on Post-Quantum Cryptography. Berlin: Springer: 2011. p. 19–34.

MATH
Google Scholar

Costello C, Jao D, Longa P, Naehrig M, Renes J, Urbanik D. Efficient compression of sidh public keys. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques. Berlin: Springer: 2017. p. 679–706.

MATH
Google Scholar

Jao D, Azarderakhsh R, Campagna M, Costello C, DeFeo L, Hess B, Jalali A, Koziel B, LaMacchia B, Longa P, Naehrig M, Renes J, Soukharev V, Urbanik D. SIKE: Supersingular isogeny key encapsulation. Submission to the NIST Standardization Process on Post-Quantum Cryptography. 2017. https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-1-Submissions.

Galbraith SD, Petit C, Shani B, Ti YB. On the security of supersingular isogeny cryptosystems. In: International Conference on the Theory and Application of Cryptology and Information Security. Berlin: Springer: 2016. p. 63–91.

MATH
Google Scholar

National Institute of Standards and Technology (NIST). Standardization Process on Post-Quantum Cryptography. 2016. http://csrc.nist.gov/groups/ST/post-quantum-crypto/. Accessed 9 Sept 2018.

McGrew D, Kampanakis P, Fluhrer S, Gazdag S-L, Butin D, Buchmann J. State management for hash-based signatures. In: International Conference on Research in Security Standardization. Springer: 2016. p. 244–60.

Bernstein DJ, Hopwood D, Hülsing A, Lange T, Niederhagen R, Papachristodoulou L, Schneider M, Schwabe P, Wilcox-O’Hearn Z. SPHINCS: Practical Stateless Hash-Based Signatures. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 368–97.

MATH
Google Scholar

Barker E, Barker W, Burr W, Polk W, Smid M. Recommendation for key management part 1: General (revision 3). NIST Spec Publ. 2012; 800(57):1–147.

Google Scholar

Waters B. Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. In: Public Key Cryptography. LNCS, 6571 vol.Berlin: Springer: 2011. p. 53–70.

Google Scholar

Liu Z, Wong DS. Practical attribute-based encryption: Traitor tracing, revocation and large universe. Comput J. 2016; 59(7):983–1004.

Article
Google Scholar

Oliveira LB, Aranha DF, Gouvêa CPL, Scott M, Câmara DF, López J, Dahab R. Tinypbc: Pairings for authenticated identity-based non-interactive key distribution in sensor networks. Comput Commun. 2011; 34(3):485–93.

Article
Google Scholar

Kim T, Barbulescu R. Extended tower number field sieve: A new complexity for the medium prime case. In: CRYPTO (1). LNCS, 9814 vol.Berlin: Springer: 2016. p. 543–71.

Google Scholar

Boneh D, Franklin MK. Identity-based encryption from the weil pairing. SIAM J Comput. 2003; 32(3):586–615.

Article
MathSciNet
MATH
Google Scholar

Al-Riyami SS, Paterson KG. Certificateless public key cryptography. In: ASIACRYPT. LNCS, 2894 vol.Berlin: Springer: 2003. p. 452–73.

Google Scholar

Boldyreva A, Goyal V, Kumar V. Identity-based encryption with efficient revocation. IACR Cryptol ePrint Arch. 2012; 2012:52.

Google Scholar

Simplício Jr. MA, Silva MVM, Alves RCA, Shibata TKC. Lightweight and escrow-less authenticated key agreement for the internet of things. Comput Commun. 2017; 98:43–51.

Article
Google Scholar

Neto ALM, Souza ALF, Cunha ÍS, Nogueira M, Nunes IO, Cotta L, Gentille N, Loureiro AAF, Aranha DF, Patil HK, Oliveira LB. Aot: Authentication and access control for the entire iot device life-cycle. In: SenSys. New York: ACM: 2016. p. 1–15.

Google Scholar

Mouha N. The design space of lightweight cryptography. IACR Cryptol ePrint Arch. 2015; 2015:303.

Google Scholar

Daemen J, Rijmen V. The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Berlin: Springer; 2002.

Book
MATH
Google Scholar

Grosso V, Leurent G, Standaert F-X, Varici K. Ls-designs: Bitslice encryption for efficient masked software implementations. In: FSE. LNCS, 8540 vol.Berlin: Springer: 2014. p. 18–37.

Google Scholar

Dinu D, Perrin L, Udovenko A, Velichkov V, Großschädl J, Biryukov A. Design strategies for ARX with provable bounds: Sparx and LAX. In: ASIACRYPT (1). LNCS, 10031 vol.Berlin: Springer: 2016. p. 484–513.

Google Scholar

Albrecht MR, Driessen B, Kavun EB, Leander G, Paar C, Yalçin T. Block ciphers - focus on the linear layer (feat. PRIDE). In: CRYPTO (1). LNCS, 8616 vol.Berlin: Springer: 2014. p. 57–76.

Google Scholar

Beierle C, Jean J, Kölbl S, Leander G, Moradi A, Peyrin T, Sasaki Y, Sasdrich P, Sim SM. The SKINNY family of block ciphers and its low-latency variant MANTIS. In: CRYPTO (2). LNCS, 9815 vol.Berlin: Springer: 2016. p. 123–53.

Google Scholar

Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJB, Seurin Y, Vikkelsoe C. PRESENT: an ultra-lightweight block cipher. In: CHES. LNCS, 4727 vol.Berlin: Springer: 2007. p. 450–66.

Google Scholar

Reis TBS, Aranha DF, López J. PRESENT runs fast - efficient and secure implementation in software. In: CHES, volume 10529 of Lecture Notes in Computer Science. Berlin: Springer: 2017. p. 644–64.

Google Scholar

Aumasson J-P, Bernstein DJ. Siphash: A fast short-input PRF. In: INDOCRYPT. LNCS, 7668 vol.Berlin: Springer: 2012. p. 489–508.

Google Scholar

Kölbl S, Lauridsen MM, Mendel F, Rechberger C. Haraka v2 - efficient short-input hashing for post-quantum applications. IACR Trans Symmetric Cryptol. 2016; 2016(2):1–29.

Google Scholar

Aumasson J-P, Neves S, Wilcox-O’Hearn Z, Winnerlein C. BLAKE2: simpler, smaller, fast as MD5. In: ACNS. LNCS, 7954 vol.Berlin: Springer: 2013. p. 119–35.

Google Scholar

Stevens M, Karpman P, Peyrin T. Freestart collision for full SHA-1. In: EUROCRYPT (1). LNCS, 9665 vol.Berlin: Springer: 2016. p. 459–83.

Google Scholar

NIST Computer Security Division. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. FIPS Publication 202, National Institute of Standards and Technology, U.S. Department of Commerce, May 2014.

McGrew DA, Viega J. The security and performance of the galois/counter mode (GCM) of operation. In: INDOCRYPT. LNCS, 3348 vol.Berlin: Springer: 2004. p. 343–55.

Google Scholar

Koblitz N. A family of jacobians suitable for discrete log cryptosystems. In: CRYPTO, volume 403 of LNCS. Berlin: Springer: 1988. p. 94–99.

Google Scholar

Bernstein DJ. Curve25519: New diffie-hellman speed records. In: Public Key Cryptography. LNCS, 3958 vol.Berlin: Springer: 2006. p. 207–28.

Google Scholar

Bernstein DJ, Duif N, Lange T, Schwabe P, Yang B-Y. High-speed high-security signatures. J Cryptographic Eng. 2012; 2(2):77–89.

Article
MATH
Google Scholar

Costello C, Longa P. Four\(\mathbb {Q}\): Four-dimensional decompositions on a \(\mathbb {Q}\)-curve over the mersenne prime. In: ASIACRYPT (1). LNCS, 9452 vol.Berlin: Springer: 2015. p. 214–35.

Google Scholar

Banik S, Bogdanov A, Regazzoni F. Exploring energy efficiency of lightweight block ciphers. In: SAC. LNCS, 9566 vol.Berlin: Springer: 2015. p. 178–94.

Google Scholar

Dinu D, Corre YL, Khovratovich D, Perrin L, Großschädl J, Biryukov A. Triathlon of lightweight block ciphers for the internet of things. NIST Workshop on Lightweight Cryptography. 2015.

Kocher PC. Timing attacks on implementations of diffie-hellman, rsa, dss, and other systems. In: CRYPTO. LNCS, 1109 vol.Berlin: Springer: 1996. p. 104–13.

Google Scholar

Rodrigues B, Pereira FMQ, Aranha DF. Sparse representation of implicit flows with applications to side-channel detection In: Zaks A, Hermenegildo MV, editors. Proceedings of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain, March 12-18, 2016. New York: ACM: 2016. p. 110–20.

Google Scholar

Almeida JB, Barbosa M, Barthe G, Dupressoir F, Emmi M. Verifying constant-time implementations. In: USENIX Security Symposium. Berkeley: USENIX Association: 2016. p. 53–70.

Google Scholar

Kocher PC, Jaffe J, Jun B. Differential power analysis. In: CRYPTO. LNCS, 1666 vol. Springer: 1999. p. 388–97.

Biham E, Shamir A. Differential fault analysis of secret key cryptosystems. In: CRYPTO. LNCS, 1294 vol.Berlin: Springer: 1997. p. 513–25.

Google Scholar

Kim Y, Daly R, Kim J, Fallin C, Lee J-H, Lee D, Wilkerson C, Lai K, Mutlu O. Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors. In: ISCA. Washington, DC: IEEE Computer Society: 2014. p. 361–72.

Google Scholar

Ishai Y, Sahai A, Wagner D. Private circuits: Securing hardware against probing attacks. In: CRYPTO. LNCS, 2729 vol. Springer: 2003. p. 463–81.

Balasch J, Gierlichs B, Grosso V, Reparaz O, Standaert F-X. On the cost of lazy engineering for masked software implementations. In: CARDIS. LNCS, 8968 vol.Berlin: Springer: 2014. p. 64–81.

Google Scholar

Nogueira M, dos Santos AL, Pujolle G. A survey of survivability in mobile ad hoc networks. IEEE Commun Surv Tutor. 2009; 11(1):66–77.

Article
Google Scholar

Mansfield-Devine S. The growth and evolution of ddos. Netw Secur. 2015; 2015(10):13–20.

Article
Google Scholar

Thielman S, Johnston C. Major Cyber Attack Disrupts Internet Service Across Europe and US. https://www.theguardian.com/technology/2016/oct/21/ddos-attack-dyn-internet-denial-service. Accessed 3 July 2018.

DDoS attacks: For the hell of it or targeted – how do you see them off?http://www.theregister.co.uk/2016/09/22/ddos_attack_defence/. Accessed 14 Feb 2017.

Santos AA, Nogueira M, Moura JMF. A stochastic adaptive model to explore mobile botnet dynamics. IEEE Commun Lett. 2017; 21(4):753–6.

Article
Google Scholar

Macedo R, de Castro R, Santos A, Ghamri-Doudane Y, Nogueira M. Self-organized SDN controller cluster conformations against DDoS attacks effects. In: 2016 IEEE Global Communications Conference, GLOBECOM, 2016, Washington, DC, USA, December 4–8, 2016. Piscataway: IEEE: 2016. p. 1–6.

Google Scholar

Soto J, Nogueira M. A framework for resilient and secure spectrum sensing on cognitive radio networks. Comput Netw. 2015; 79:313–22.

Article
Google Scholar

Lipa N, Mannes E, Santos A, Nogueira M. Firefly-inspired and robust time synchronization for cognitive radio ad hoc networks. Comput Commun. 2015; 66:36–44.

Article
Google Scholar

Zhang C, Song Y, Fang Y. Modeling secure connectivity of self-organized wireless ad hoc networks. In: IEEE INFOCOM. Piscataway: IEEE: 2008. p. 251–5.

Google Scholar

Salem NB, Hubaux J-P. Securing wireless mesh networks. IEEE Wirel Commun. 2006; 13(2):50–5.

Article
Google Scholar

Yang H, Luo H, Ye F, Lu S, Zhang L. Security in mobile ad hoc networks: challenges and solutions. IEEE Wirel Commun. 2004; 11(1):38–47.

Article
Google Scholar

Nogueira M. SAMNAR: A survivable architecture for wireless self-organizing networks. PhD thesis, Université Pierre et Marie Curie - LIP6. 2009.

ITU. NGN identity management framework: International Telecommunication Union (ITU); 2009. Recommendation Y.2720.

Lopez J, Oppliger R, Pernul G. Authentication and authorization infrastructures (aais): a comparative survey. Comput Secur. 2004; 23(7):578–90.

Article
Google Scholar

Arias-Cabarcos P, Almenárez F, Trapero R, Díaz-Sánchez D, Marín A. Blended identity: Pervasive idm for continuous authentication. IEEE Secur Priv. 2015; 13(3):32–39.

Article
Google Scholar

Bhargav-Spantzel A, Camenisch J, Gross T, Sommer D. User centricity: a taxonomy and open issues. J Comput Secur. 2007; 15(5):493–527.

Article
Google Scholar

Garcia-Morchon O, Kumar S, Sethi M, Internet Engineering Task Force. State-of-the-art and challenges for the internet of things security. Internet Engineering Task Force; 2017. https://datatracker.ietf.org/doc/html/draft-irtf-t2trg-iot-seccons-04.

Torres J, Nogueira M, Pujolle G. A survey on identity management for the future network. IEEE Commun Surv Tutor. 2013; 15(2):787–802.

Article
Google Scholar

Hanumanthappa P, Singh S. Privacy preserving and ownership authentication in ubiquitous computing devices using secure three way authentication. In: Proceedings. International Conference on Innovations in Information Technology (IIT): 2012. p. 107–12.

Fremantle P, Aziz B, Kopecký J, Scott P. Federated identity and access management for the internet of things. In: 2014 International Workshop on Secure Internet of Things: 2014. p. 10–17.

Domenech MC, Boukerche A, Wangham MS. An authentication and authorization infrastructure for the web of things. In: Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks, Q2SWinet ’16. New York: ACM: 2016. p. 39–46.

Google Scholar

Birrell E, Schneider FB. Federated identity management systems: A privacy-based characterization. IEEE Secur Priv. 2013; 11(5):36–48.

Article
Google Scholar

Nguyen T-D, Al-Saffar A, Huh E-N. A dynamic id-based authentication scheme. In: Proceedings. Sixth International Conference on Networked Computing and Advanced Information Management (NCM), 2010.2010. p. 248–53.

Gusmeroli S, Piccione S, Rotondi D. A capability-based security approach to manage access control in the internet of things. Math Comput Model. 2013; 58:1189–205.

Article
Google Scholar

Akram H, Hoffmann M. Supports for identity management in ambient environments-the hydra approach. In: Proceedings. 3rd International Conference on Systems and Networks Communications, 2008. ICSNC’08.2008. p. 371–7.

Liu J, Xiao Y, Chen CLP. Authentication and access control in the internet of things. In: Proceedings. 32nd International Conference on Distributed Computing Systems Workshops (ICDCSW) 2012.2012. p. 588–92.

Ndibanje B, Lee H-J, Lee S-G. Security analysis and improvements of authentication and access control in the internet of things. Sensors. 2014; 14(8):14786–805.

Article
Google Scholar

Kim Y-P, Yoo S, Yoo C. Daot: Dynamic and energy-aware authentication for smart home appliances in internet of things. In: Consumer Electronics (ICCE), 2015 IEEE International Conference on.2015. p. 196–7.

Markmann T, Schmidt TC, Wählisch M. Federated end-to-end authentication for the constrained internet of things using ibc and ecc. SIGCOMM Comput Commun Rev. 2015; 45(4):603–4.

Article
Google Scholar

Dasgupta D, Roy A, Nag A. Multi-factor authentication. Cham: Springer International Publishing; 2017. p. 185–233.

Book
Google Scholar

NIST. Digital Identity Guidelines. NIST Special Publication 800-63-3. 2017. https://doi.org/10.6028/NIST.SP.800-63-3.

Dzurenda P, Hajny J, Zeman V, Vrba K. Modern physical access control systems and privacy protection. In: 2015 38th International Conference on Telecommunications and Signal Processing (TSP).2015. p. 1–5.

Guinard D, Fischer M, Trifa V. Sharing using social networks in a composable web of things. In: Proceedings. 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2010.2010. p. 702–7.

Rotondi D, Seccia C, Piccione S. Access control & IoT: Capability based authorization access control system. In: Proceedings. 1st IoT International Forum: 2011.

Mahalle PN, Anggorojati B, Prasad NR, Prasad R. Identity authentication and capability based access control (iacac) for the internet of things. J Cyber Secur Mob. 2013; 1(4):309–48.

Google Scholar

Moreira Sá De Souza L, Spiess P, Guinard D, Köhler M, Karnouskos S, Savio D. Socrades: A web service based shop floor integration infrastructure. In: The internet of things. Springer: 2008. p. 50–67.

Jindou J, Xiaofeng Q, Cheng C. Access control method for web of things based on role and sns. In: Proceedings. IEEE 12th International Conference on Computer and Information Technology (CIT), 2012. Washington: IEEE Computer Society: 2012. p. 316–21.

Google Scholar

Han Q, Li J. An authorization management approach in the internet of things. J Inf Comput Sci. 2012; 9(6):1705–13.

Google Scholar

Zhang G, Liu J. A model of workflow-oriented attributed based access control. Int J Comput Netw Inf Secur (IJCNIS). 2011; 3(1):47–53.

Google Scholar

do Prado Filho TG, Vinicius Serafim Prazeres C. Multiauth-wot: A multimodal service for web of things athentication and identification. In: Proceedings of the 21st Brazilian Symposium on Multimedia and the Web, WebMedia ’15. New York: ACM: 2015. p. 17–24.

Google Scholar

Alam S, Chowdhury MMR, Noll J. Interoperability of security-enabled internet of things. Wirel Pers Commun. 2011; 61(3):567–86.

Article
Google Scholar

Seitz L, Selander G, Gehrmann C. Authorization framework for the internet-of-things. In: Proceedings. IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile and Multimedia Networks (WoWMoM). Washington, DC: IEEE Computer Society: 2013. p. 1–6.

Google Scholar

OASIS. Saml v2.0 executive overview. 2005. https://www.oasis-open.org/committees/download.php/13525/sstc-saml-exec-overview-2.0-cd-01-2col.pdf.

Hardt D. The oauth 2.0 authorization framework. RFC 6749, RFC Editor; 2012. http://www.rfc-editor.org/rfc/rfc6749.txt.

Maler E, Reed D. The venn of identity: Options and issues in federated identity management. IEEE Secur Priv. 2008; 6(2):16–23.

Article
Google Scholar

Naik N, Jenkins P. Securing digital identities in the cloud by selecting an apposite federated identity management from saml, oauth and openid connect. In: 2017 11th International Conference on Research Challenges in Information Science (RCIS). Piscataway: IEEE: 2017. p. 163–74.

Google Scholar

OASIS. Authentication context for the oasis security assertion markup language (saml) v2.0. 2005. http://docs.oasis-open.org/security/saml/v2.0/saml-authn-context-2.0-os.pdf.

Paci F, Ferrini R, Musci A, Jr KS, Bertino E. An interoperable approach to multifactor identity verification. Computer. 2009; 42(5):50–7.

Article
Google Scholar

Pöhn D, Metzger S, Hommel W. Géant-trustbroker: Dynamic, scalable management of saml-based inter-federation authentication and authorization infrastructures In: Cuppens-Boulahia N, Cuppens F, Jajodia S, El Kalam AA, Sans T, editors. ICT Systems Security and Privacy Protection. Berlin, Heidelberg: Springer Berlin Heidelberg: 2014. p. 307–20.

Google Scholar

Zeng D, Guo S, Cheng Z. The web of things: A survey. J Commun. 2011;6(6). http://ojs.academypublisher.com/index.php/jcm/article/view/jcm0606424438.

The OpenID Foundation. Openid connect core 1.0. 2014. http://openid.net/specs/openid-connect-core-1\_0.html.

Domenech MC, Comunello E, Wangham MS. Identity management in e-health: A case study of web of things application using openid connect. In: 2014 IEEE 16th International Conference on e-Health Networking, Applications and Services (Healthcom). Piscataway: IEEE: 2014. p. 219–24.

Google Scholar

OASIS. Extensible access control markup language (xacml) version 3.0. 2013. http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.pdf.

Borges F, Demirel D, Bock L, Buchmann JA, Mühlhäuser M. A privacy-enhancing protocol that provides in-network data aggregation and verifiable smart meter billing. In: ISCC. USA: IEEE: 2014. p. 1–6.

Google Scholar

Borges de Oliveira F. Background and Models. Cham: Springer International Publishing; 2017. p. 13–23.

Book
Google Scholar

Borges de Oliveira F. Reasons to Measure Frequently and Their Requirements. Cham: Springer International Publishing; 2017. p. 39–47.

Book
Google Scholar

Holvast J. The Future of Identity in the Information Society, volume 298 of IFIP Advances in Information and Communication Technology In: Matyáš V, Fischer-Hübner S, Cvrček D, Švenda P, editors. Berlin: Springer Berlin Heidelberg: 2009. p. 13–42.

Toshniwal D. Privacy preserving data mining techniques privacy preserving data mining techniques for hiding sensitive data hiding sensitive data: a step towards open data open data. Singapore: Springer Singapore: 2018. p. 205–12.

Li N, Li T, Venkatasubramanian S. t-closeness: Privacy beyond k-anonymity and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering. USA: IEEE: 2007. p. 106–15.

Google Scholar

De Montjoye Y-A, Hidalgo CA, Verleysen M, Blondel VD. Unique in the crowd: The privacy bounds of human mobility. Sci Rep. 2013; 3:1–5.

Article
Google Scholar

Borges de Oliveira F. Quantifying the aggregation size. Cham: Springer International Publishing; 2017. p. 49–60.

Book
Google Scholar

Gentry C. A Fully Homomorphic Encryption Scheme. Stanford: Stanford University; 2009. AAI3382729.

MATH
Google Scholar

Borges de Oliveira F. A Selective Review. Cham: Springer International Publishing; 2017. p. 25–36.

Book
Google Scholar

Borges de Oliveira F. Selected Privacy-Preserving Protocols. Cham: Springer International Publishing; 2017. p. 61–100.

Book
Google Scholar

Borges F, Lara P, Portugal R. Parallel algorithms for modular multi-exponentiation. Appl Math Comput. 2017; 292:406–16.

MathSciNet
Google Scholar

Stamm MC, Wu M, Liu KJR. Information forensics: An overview of the first decade. IEEE Access. 2013; 1:167–200.

Article
Google Scholar

Wu M, Quintão Pereira FM, Liu J, Ramos HS, Alvim MS, Oliveira LB. New directions: Proof-carrying sensing — Towards real-world authentication in cyber-physical systems. In: Proceedings of ACM Conf. on Embedded Networked Sensor Systems (SenSys). New York: ACM: 2017.

Google Scholar

Grigoras C. Applications of ENF analysis in forensic authentication of digital audio and video recordings. J Audio Eng Soc. 2009; 57(9):643–61.

Google Scholar

Garg R, Varna AL, Hajj-Ahmad A, Wu M. “seeing” enf: Power-signature-based timestamp for digital multimedia via optical sensing and signal processing. TIFS. 2013; 8(9):1417–32.

Google Scholar

Satchidanandan B, Kumar PR. Dynamic watermarking: Active defense of networked cyber–physical systems. Proc IEEE. 2017; 105(2):219–40.

Article
Google Scholar